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Abstract

In this article we derive multivariate quantitative approximation by
Kantorovich-Shilkret type quasi-interpolation neural network operators
with respect to supremum and Lp norms. This is done with rates using
the multivariate modulus of continuity. We approximate continuous and
bounded functions on RN ; N 2 N. When they are also uniformly contin-
uous we have pointwise and uniform convergences, plus Lp estimates. We
include also the related Complex approximation. Our activation functions
are induced by multiple general sigmoid functions.
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univariate and multivariate quasi-interpolation neural network approximation,
Kantorovich-Shilkret type operators.

1 Introduction

The author in [1] and [2], see Chapters 2-5, was the �rst to establish neural net-
work approximations to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliaguet-Euvrard and "Squashing" types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The de�ning these operators "bell-
shaped" and "squashing" functions are assumed to be compact support. Also
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in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chaptes 4-5 there.
The author inspired by [16], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8]. For recent works see [9] - [15].
The author here performs multivariate multiple general sigmoid activation

functions based neural network approximation to continuous functions over the
whole RN , N 2 N, then he extends his results to complex valued functions. Lp
approximations are included. All convergences here are with rates expressed
via the modulus of continuity of the involved function and given by very tight
Jackson type inequalities.
The author comes up with the "right" precisely de�ned �exible quasi-interpolation,

Kantorovich-Shilkret type integral coe¢ cient neural networks operators associ-
ated with: multiple general sigmoid activation functions. In preparation to
prove our results we present important properties of the general density func-
tions de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =

nX
j=0

cj� (haj � xi+ bj) , x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental neural
network models, the activation functions are based on multiple general sigmoid
activation functions. About neural networks in general read [17], [18], [19].
In recent years non-additive integrals, like the N. Shilkret one [20], have

become fashionable and more useful in Economics, etc.

2 Background

2.1 About Shilkret integral

Here we follow [20].
Let F be a �-�eld of subsets of an arbitrary set 
. An extended non-negative

real valued function � on F is called maxitive if � (?) = 0 and

� ([i2IEi) = sup
i2I

� (Ei) ; (1)
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where the set I is of cardinality at most countable. We also call � a maxitive
measure. Here f stands for a non-negative measurable function on 
. In [20],
Niel Shilkret developed his non-additive integral de�ned as follows:

(N�)

Z
D

fd� := sup
y2Y

fy � � (D \ ff � yg)g ; (2)

where Y = [0;m] or Y = [0;m) with 0 < m � 1, and D 2 F . Here we take
Y = [0;1).
It is easily proved that

(N�)

Z
D

fd� = sup
y>0

fy � � (D \ ff > yg)g : (3)

The Shilkret integral takes values in [0;1].
The Shilkret integral ([20]) has the following properties:

(N�)

Z



�Ed� = � (E) ; (4)

where �E is the indicator function on E 2 F ,

(N�)
Z
D

cfd� = c (N�)

Z
D

fd�; c � 0; (5)

(N�)

Z
D

sup
n2N

fnd� = sup
n2N

(N�)

Z
D

fnd�; (6)

where fn, n 2 N, is an increasing sequence of elementary (countably valued)
functions converging uniformly to f . Furthermore we have

(N�)

Z
D

fd� � 0; (7)

f � g implies (N�)

Z
D

fd� � (N�)

Z
D

gd�; (8)

where f; g : 
! [0;1] are measurable.
Let a � f (!) � b for almost every ! 2 E, then

a� (E) � (N�)

Z
E

fd� � b� (E) ;

(N�)

Z
E

1d� = � (E) ;

f > 0 almost everywhere and (N�)
R
E
fd� = 0 imply � (E) = 0;

(N�)
R


fd� = 0 if and only f = 0 almost everywhere;

(N�)
R


fd� <1 implies that

N (f) := f! 2 
jf (!) 6= 0g has �-�nite measure; (9)
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(N�)

Z
D

(f + g) d� � (N�)

Z
D

fd�+ (N�)

Z
D

gd�;

and ����(N�)

Z
D

fd�� (N�)

Z
D

gd�

���� � (N�)

Z
D

jf � gj d�: (10)

From now on in this article we assume that � : F ! [0;+1):

2.2 On activation functions

Let i = 1; :::; N 2 N and hi : R ! [�1; 1] be a general sigmoid function,
such that it is strictly increasing, hi (0) = 0, hi (�x) = �hi (x), hi (+1) = 1,
hi (�1) = �1. Also hi is strictly convex over (�1; 0] and striclty concave over
[0;+1), with h(2)i 2 C (R; [�1; 1]).
Some examples of related sigmoid functions follow: 1

1+e�x ; tanhx;
2
� arctan

�
�
2x
�
;

x
2mp1+x2m , m 2 N; 4

� gd (x) ;
x

(1+jxj)
1
�
, � is odd; erf

�p
�
2 x
�
; 1
1+e��x , tanh�x,

� > 0; for all x 2 R:
We consider the activation function

 i (x) :=
1

4
(hi (x+ 1)� hi (x� 1)) , x 2 R; i = 1; :::; N: (11)

As in [11], p. 285, we get that  i (�x) =  i (x) ; thus  i is an even function.
Since x+ 1 > x� 1, then hi (x+ 1) > hi (x� 1), and  i (x) > 0, all x 2 R.
We see that

 i (0) =
hi (1)

2
; i = 1; :::; N: (12)

Let x > 1, we have that

 0i (x) =
1

4
(h0i (x+ 1)� h0i (x� 1)) < 0;

by h0i being strictly decreasing over [0;+1):
Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds

h0i (x� 1) = h0i (1� x) > h0i (x+ 1), so that again  
0
i (x) < 0: Consequently  i

is stritly decreasing on (0;+1) :
Clearly,  i is strictly increasing on (�1; 0), and  0i (0) = 0:
See that

lim
x!+1

 i (x) =
1

4
(hi (+1)� hi (+1)) = 0; (13)

and
lim

x!�1
 i (x) =

1

4
(hi (�1)� hi (�1)) = 0: (14)

That is the x-axis is the horizontal asymptote on  i.
Conclusion,  is a bell symmetric function with maximum

 i (0) =
hi (1)

2
:
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We need

Theorem 1 We have that
1X

i=�1
 i (x� i) = 1, 8 x 2 R; i = 1; :::; N: (15)

Proof. As exactly the same as in [11], p. 286 is omitted.

Theorem 2 It holds Z 1

�1
 i (x) dx = 1; i = 1; :::; N: (16)

Proof. Similar to [11], p. 287. It is omitted.
Thus  i (x) is a density function on R, i = 1; :::; N:
We need also

Theorem 3 Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 i (nx� k) <
�
1� hi

�
n1�� � 2

��
2

, i = 1; :::; N: (17)

Notice that

lim
n!+1

�
1� hi

�
n1�� � 2

��
2

= 0; i = 1; :::; N:

Proof. Similar to [13], as such is omitted.
We make

Remark 4 We de�ne

Z (x1; :::; xN ) := Z (x) :=
NY
i=1

 i (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (18)

It has the properties:
(i)

Z (x) > 0; 8x 2 RN ; (19)

(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z (x1 � k1; :::; xN � kN ) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

NY
i=1

 i (xi � ki) =
NY
i=1

 1X
ki=�1

 i (xi � ki)
!

(5)
= 1:
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Hence
1X

k=�1
Z (x� k) = 1: (20)

That is
(iii)

1X
k=�1

Z (nx� k) = 1; 8x 2 RN ; n 2 N: (21)

And
(iv)Z
RN

Z (x) dx =

Z
RN

 
NY
i=1

 i (xi)

!
dx1:::dxN =

NY
i=1

�Z 1

�1
 i (xi) dxi

�
(16)
= 1;

(22)
thus Z

RN
Z (x) dx = 1; (23)

that is Z is a multivariate density function.
Here denote x = (x1; :::; xN ) ; kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also

set 1 := (1; :::;1), �1 := (�1; :::;�1) upon the multivariate context, 0 <
� < 1;

(v) We have

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z (nx� k) =
1X

k1=�1
:::

1X
kN=�1

k kn�xk1> 1

n�

 
NY
i=1

 i (nxi � ki)
!
=

NY
i=1

0BBBBBB@
1X

8<: ki = �1

 k
n � x




1 > 1

n�

 i (nxi � ki)

1CCCCCCA � (for some r 2 f1; :::; Ng )

0B@ NY
i=1
i 6=r

 1X
ki=�1

 i (nxi � ki)
!1CA

0BBBBBB@
1X

8<: kr = �1��kr
n � xr

�� > 1
n�

 r (nxr � kr)

1CCCCCCA = (24)

1X
8<: kr = �1��kr

n � xr
�� > 1

n�

 r (nxr � kr) =
1X

8<: kr = �1
jnxr � krj > n1��

 r (nxr � kr)
(17)
<
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1� hr
�
n1�� � 2

�
2

� max
i2f1;:::;Ng

 
1� hi

�
n1�� � 2

�
2

!
.

That is
1X

8<: k = �1

 k
n � x




1 > 1

n�

Z (nx� k) < max
i2f1;:::;Ng

 
1� hi

�
n1�� � 2

�
2

!
; (25)

0 < � < 1, n 2 N : n1�� > 2, 8 x 2 RN :

Denote by

�N (�; n) := max
i2f1;:::;Ng

 
1� hi

�
n1�� � 2

�
2

!
; (26)

0 < � < 1:

For f 2 C+B
�
RN
�
(continuous and bounded functions from RN into R+), we

de�ne the �rst modulus of continuity

!1 (f; �) := sup

x; y 2 RN
kx� yk1 � h

jf (x)� f (y)j , h > 0: (27)

Given that f 2 C+U
�
RN
�
(uniformly continuous from RN into R+, same de�ni-

tion for !1), we have that
lim
h!0

!1 (f; h) = 0: (28)

When N = 1, !1 is de�ned as in (27) with k�k1 collapsing to j�j and has the
property (28).

3 Main Results

We need

De�nition 5 Let L be the Lebesgue �-algebra on RN , N 2 N, and the maxitive
measure � : L ! [0;+1), such that for any A 2 L with A 6= ?, we get
� (A) > 0.
For f 2 C+B

�
RN
�
, we de�ne the multivariate Kantorovich-Shilkret type

neural network operators for any x 2 RN :

T�n (f; x) = T�n (f; x1; :::; xN ) :=

1X
k=�1

0@ (N�)
R
[0; 1N ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1AZ (nx� k) =
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1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

0@ (N�)
R 1

n

0
:::
R 1

n

0
f
�
t1 +

k1
n ; t2 +

k2
n ; :::; tN +

kN
n

�
d� (t1; :::; tN )

�
��
0; 1n

�N�
1A

(29)

�
 

NY
i=1

 i (nxi � ki)
!
;

where x = (x1; :::; xN ) 2 RN , k = (k1; :::; kN ), t = (t1; :::; tN ), n 2 N:
Clearly here �

��
0; 1n

�N�
> 0, 8 n 2 N.

Above we notice that
kT�n (f)k1 � kfk1 , (30)

so that T�n (f; x) is well-de�ned.

We make

Remark 6 Let t 2
�
0; 1n

�N
and x 2 RN , then

f

�
t+

k

n

�
= f

�
t+

k

n

�
� f (x) + f (x) �

����f �t+ k

n

�
� f (x)

����+ f (x) ; (31)
hence

(N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) �

(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) + f (x)�
 �
0;
1

n

�N!
: (32)

That is

(N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t)� f (x)�

 �
0;
1

n

�N!
� (33)

(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) :
Similarly, we have

f (x) = f (x)� f
�
t+

k

n

�
+ f

�
t+

k

n

�
�
����f �t+ k

n

�
� f (x)

����+ f �t+ k

n

�
;

hence

(N�)

Z
[0; 1n ]

N
f (x) d� (t) � (N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t)
+ (N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) :
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That is

f (x)�

 �
0;
1

n

�N!
� (N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) � (34)

(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) :
By (33) and (34) we derive�����(N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t)� f (x)�

 �
0;
1

n

�N!����� �
(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) : (35)

In particular it holds������
(N�)

R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N� � f (x)

������ �
(N�)

R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N� : (36)

We present the following approximation result.

Theorem 7 Let f 2 C+B
�
RN
�
, 0 < � < 1; x 2 RN ; N;n 2 N with n1�� > 2:

Then
i)

sup
�
jT�n (f; x)� f (x)j � !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 �N (�; n) =: �n; (37)

and
ii)

sup
�
kT�n (f)� fk1 � �n: (38)

Given that f 2
�
C+U

�
RN
�
\ C+B

�
RN
��
, we obtain lim

n!1
T�n (f) = f , uni-

formly. Above �N (�; n) is as in (26).

Proof. We observe that

jT�n (f; x)� f (x)j =������
1X

k=�1

0@ (N�)
R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1AZ (nx� k)�

1X
k=�1

f (x)Z (nx� k)

������ =
9



������
1X

k=�1

0@0@ (N�)
R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1A� f (x)

1AZ (nx� k)

������ �
1X

k=�1

������
0@ (N�)

R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1A� f (x)

������Z (nx� k)
(36)
�

1X
k=�1

0@ (N�)
R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZ (nx� k) =

1X
8<: k = �1
:


 k
n � x




1 � 1

n�

0@ (N�)
R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZ (nx� k)+

(39)
1X

8<: k = �1
:


 k
n � x




1 > 1

n�

0@ (N�)
R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZ (nx� k) �

1X
8<: k = �1
:


 k
n � x




1 � 1

n�

0@ (N�)
R
[0; 1n ]

N !1
�
f; ktk1 +



 k
n � x




1
�
d� (t)

�
��
0; 1n

�N�
1AZ (nx� k)

+2 kfk1

0BBBBBB@
1X

8<: k = �1
:


 k
n � x




1 > 1

n�

Z (nx� k)

1CCCCCCA (by (25))

� !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 �N (�; n) ; (40)

proving the claim.
Additionally we give

De�nition 8 Denote by C+B
�
RN ;C

�
= ff : RN ! Cjf = f1 + if2, where

f1; f2 2 C+B
�
RN
�
, N 2 Ng. We set for f 2 C+B

�
RN ;C

�
that

T�n (f; x) := T�n (f1; x) + i T
�
n (f2; x) ; (41)

8 n 2 N, x 2 RN , i =
p
�1:
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Theorem 9 Let f 2 C+B
�
RN ;C

�
, f = f1 + if2, N 2 N, 0 < � < 1, x 2 RN ;

n 2 N with n1�� > 2. Then
i)

sup
�
jT�n (f; x)� f (x)j �

�
!1

�
f1;

1

n
+
1

n�

�
+ !1

�
f2;

1

n
+
1

n�

��
+2 (kf1k1 + kf2k1) �N (�; n) =: ln, (42)

and
ii)

sup
�
kT�n (f)� fk � ln: (43)

Proof.

jT�n (f; x)� f (x)j = jT�n (f1; x) + i T�n (f2; x)� f1 (x)� if2 (x)j =

j(T�n (f1; x)� f1 (x)) + i (T�n (f2; x)� f2 (x))j �

jT�n (f1; x)� f1 (x)j+ jT�n (f2; x)� f2 (x)j
(37)
� (44)�

!1

�
f1;

1

n
+
1

n�

�
+ 2 kf1k1 �N (�; n)

�
+�

!1

�
f2;

1

n
+
1

n�

�
+ 2 kf2k1 �N (�; n)

�
=�

!1

�
f1;

1

n
+
1

n�

�
+ !1

�
f2;

1

n
+
1

n�

��
+

2 (kf1k1 + kf2k1) �N (�; n) : (45)

proving the claim.
We �nish with an Lp1 , p1 � 1; estimate.

Theorem 10 Let f 2 C+B
�
RN ;C

�
; f = f1 + if2; N 2 N, 0 < � < 1; n 2 N

with n1�� > 2, and p1 � 1. Then

kT�n (f)� fkp1;� � ln j�j
1
p1 ; (46)

where j�j <1, is the Lebesgue measure of compact � � RN , and ln as in (42).

Proof. By integrating (42), etc.
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