INEQUALITIES FOR THE NORMALIZED DETERMINANTS OF
TWO POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector * € H, define the normalized determinant by Agz(A) :=
exp (In Az, z). In this paper we prove among others that, if A, B > 0 then for
z, y € H with ||z|| = ||ly|| = 1, we have the inequalities

exp (1 - <A711‘,$> <By7 y)) < 2:Eg; < exp ((ACC,.Z‘> <Bily7 y> — 1) .

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [3], [4], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z|| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
For each unit vector « € H, see also [6], we have:

(i) continuity: the map A — A,(A) is norm continuous;
(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);

(iil) continuous mean: (Apx,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T Az(A)
for p T 0;

(iv) power equality: A, (AY) = AL(A)! for all ¢ > 0;
(v) homogeneity: Ay(tA) =tAL(A) and Ay (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A, (4) < A, (B);
(vii) multiplicativity: Ay(AB) = Az(A)A4(B) for commuting A and B;
(viii) Ky Fan type inequality: A,((1 —a) A+ aB) > Ay (A)}~2A,(B)* for 0 <

a<l1.
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We define the logarithmic mean of two positive numbers a, b by

lng:?na if b 7& a,
L(a,b) :=
aif b =a.

In [3] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M I, where m, M are positive
numbers,

(L1) 0= (o) = Au(4) £ LOm M) fin o, 1) 4 22 =20y
—-—m
for all x € H, ||z|| = 1.
We recall that Specht’s ratio is defined by [7]
—hr e ifh e (0,1)U(1,00),

1
-1
1
eln( hh-1

)

lifh=1.

It is well known that lim,_, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [4], the authors obtained the following multiplicative reverse inequality as well

(Az, x) M
1. 1< < —
() =am =
for0<mlI <A< MIandzx€H, |z| =1.

(1.2) S(h) ==

2. MAIN RESULTS
The first main result is as follows:

Theorem 1. If A, B > 0 then for x, y € H with ||z| = |ly|| = 1, we have the
inequalities

(2.1) exp (1 — <A_1x,m> (By,y)) < 2y§g§ < exp (<A,’E7.’I}> <B_1y,y> — 1) .
In particular,
(2.2) exp (1 — (A 'z, z) (Ay,y)) < i:gj; <exp ((Az,z) (A" 1y,y) — 1)
and

Ay (A)

(2.3)  exp(1— (A 7'z, z) (Bz,2)) <

<exp ((Az,z) (B 'z,z) — 1).

Proof. In [1] we obtained the following result for two operators and a convex func-
tion:

Let I be an interval and f : I — R be a convex and differentiable function on I
(the interior of I') whose derivative f’ is continuous on I. If A and B are selfadjoint
operators on the Hilbert space H with spectra Sp (4), Sp (B) C I, then

(24) (' (A)z,2)(By,y) — (f' (A) Az,z) < (f (B)y,y) = (f (A) z, )
< (f'(B) By,y) — (Az,z) (' (B) y,y)
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for any x,y € H with ||z|| = ||y| = 1.
Let A, B two positive definite operators on H. By applying the above inequalities
for the convex function f (t) = —Int, ¢ > 0, then we have the inequalities

(25) 1-— <A_1at,:c> (By,y) < (ln Az, z) — (In By,y) < (Az,x) <B_1y7y> -1

for any z,y € H with |z]| = |ly|| = 1.
By taking the exponential in (2.5) then we get

exp (In Az, z)

exp (1 = (A0 0) By, ) < 2 W0An)

< exp ((Az,z) (B~ 'y, y) — 1),
which gives (2.1). O

Corollary 1. If A, B > 0 then for z, y € H with ||z|| = |ly|]| = 1, we have the
inequalities

(26) exp (1= (A7'2,2) (A7y,y)) < Ax(A)Ay(A) < exp (A, 2) (Ay,y) — 1)

and, in particular,

2.7)  exp [; (1- <A_1x,a:>2)} < Au(A) < exp B ((Az,2* - 1)] .

The proof follows by Theorem 1 by taking B = A~
We also have:

Corollary 2. If A, B, C > 0 then for z, y € H with |z|| = |ly|| = 1, we have the
inequalities

(2.8) exp <1 — % (By,y) <(A_1 + C_l) x,x>>
AL((1—t) A+ tC)dt
where
® (z,y,A,B,C)
exp((Ca:,:z:)<B_1y,y>71)7exp((Aa:,w><B_1y,y>71)
((Cx,z)—(Az,z)) (B~ 1y.y)
B if (Cx,z)— (Az,x) #0,
exp [((Cm,x) — (Az, x)) <B_1y,y>}
if (Cx,z)— (Az,x) =0
and
(2.9) exp <1 - % (Bz,z) (A" +C71) x,m>)

Jy A ((1—t) A+ tC)dt
- Ay(B)

SQ("I;7A5B7C)7
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where
‘b (x7 A7 B7 C)

exp((Cz,x)<B_1z,1>71)7exp((Am,z><B_1x,m>71)
(Czyx)—(Az,x)) (B~ 'z,x)
if (Cz,z) — (Az,x) #0,

exp [((Cz,z) — (Az,z)) (B~ 'z, z)]
if (Cz,z)— (Az,z)=0.

Proof. From (2.1) we get
exp (1 — <((1 —t)A+tC)! :E,1'> (By,y))
AL ((1—t) A+t0)
B Ay(B)
<exp (((1—t)A+tC)z,z) (B 'y,y) —1).

for all t € [0,1] and z, y € H with ||z| = ||y| = 1.
By taking the integral, we derive

/01 exp (1 - <((1 —t)A+tC)! xm> <By7y>> dt

B Jy Ap((1—t) A+ tC)dt
- Ay(B)

< / exp ((1—t) A+tC) z,z) (B 'y,y) — 1) dt
0

for z, y € H with ||z|| = ||y|| = 1.
‘We have

/0 exp ((1—t) A+tC) z,z) (B 'y,y) — 1) dt
- / exp (((Cr, ) — (Aw, )t + (A, 2)) (B~ My, ) — 1) dt

= /0 exp (((Cz, z) — (A, x)) <B71y,y> t+ (Azx, x) <Bily, y) —1)dt

_ exp ((Cz,2) (B~ 'y,y) — 1) — exp ((Az,z) (B~ 'y,y) — 1)
(Cz,z) — (Az,z)) (B~ 'y, y)
for z, y € H with ||z|| = |ly|| = 1 and by Jensen’s inequality for the exponential,

exp (1 - <((1 —t)A+tC) ! x,x> (By,y)) dt
> exp (1 — (By,y) </01 (1—t)A+tC)™" dtx,a:>>

for z, y € H with ||z|| = [ly|| = 1.
By Hermite-Hadamard inequality for the operator convex functions, we also have

/1((1_t)A+tC)1dt<;(A_1+C_l)7
0
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which gives

_ </01 (1 —t)A+tC)1dtx,:c> > — <; (A7t +Cc™) xw’ﬂ>

for x € H with ||z = 1.

Therefore
exp (1 — (By,y) </01 (1—t)A+tC)™" dt:c,a?>>
> exp (1 - % (By,y) (A~ +C™) x7x>>
for z, y € H with ||z|| = ||y|]| = 1 and the inequality (2.8) is proved. O

Corollary 3. If A, C > 0 then for x € H with ||z|| = 1, we have the inequalities

(2.10) exp (1— i((A—i—C')x,x)«A—l +C7) x,x>)
AL((1—t) A
< b2 (,?w)* 1O g (a,a.0),
where
U (x, A, BC)

exp((Cz,z><(#)ilx,w>71) 7exp((Aw,w><(#)il$,w>fl>
({Cm,m>7(Ax,:v))<(#)_lm,az>
Zf <C£L’,£U> - <A£L’,£C> 7é 0,

exp [((C’x,x) — (Az, x)) <(%)_1 x,x>]
if (Cx,z)— (Az,z) =0.

Further, we have:

Theorem 2. If A, B > 0 then for x, y € H with ||z| = |ly| = 1, we have the
inequalities

(Az, x)
Ay(B)

(2.11)  exp (1 — <A*1z,x> (By,y)) < < exp ((A:z:,:r> <B*1y, y> — 1) )

In particular,

<Al‘,-’L‘> < exp (<A.’E,.’II> <A_1y’y> - 1)

(2.12) exp (1 — <A_1gc,cc> (Ay,y)) < A,(4)

and

) Az, x
(213) exp (]_ — <A7 :L‘,ﬂ?> <B$,’l’>) < <Aw(B)>

< exp ((A:z:,x> <B*1:c,x> — 1) .

Proof. In [1] we obtained the following result for two operators and a convex func-
tion as well: )

Let I be an interval and f : I — R be a convex and differentiable function on I
(the interior of I) whose derivative f’ is continuous on I.If A and B are selfadjoint
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operators on the Hilbert space H with Sp (A), Sp (B) C I, then
(2.14)  f'((Az,z)) ((By,y) — (Az,z)) < (f (B)y,y) — [ ((Az,2))
< (f'(B) By,y) — (Az,z) (' (B) y,y)

for any x, y € H with ||z|| = |ly|| = 1.

If we write the inequality (2.14) for the convex function f(¢) = —Int, ¢t > 0,
then we have the inequalities
(2.15) 1— (Az,z)"" (By,y) < In((Az,2)) - (In By, y)

< (Az,z) (B~ y,y) — 1

for any z, y € H with ||z| = |ly|| = 1.
If we take the exponential in (2.15), then we get
_ Az, x)
1- (A 1 B ) < <7’
exp (1= (42,2)™" (By.)) < exp (In By, y)
< exp [{Az,x) (B~1y,y) — 1]

for any x, y € H with ||z|| = |ly|| = 1. O

Remark 1. If we take B = A in (2.18) we get
-1 (Az, z) -1
(2.16)  exp (1 — (A7 'z, z) (Az,z)) < AA) <exp ((Az,z) (A" 'z, z) — 1)

for x € H with ||z|| = 1.

Since (Az,z) (A" w,2) — 1 > 0 for € H with ||z| = 1, we observe that the
first inequality in (2.16) is not as good as the second inequality in (ii) from the
introduction.

By replacing A with A~! and B with B~! in Theorem 2 we can state:
Corollary 4. If A, B > 0 then for x, y € H with ||z| = ||y|| = 1, we have the

inequalities

ey (g A,(B)
(217)  exp (1 - (Az,z) (B y,y)) < TEm
< exp (<A*1x,x> (By,y) — 1) .

In particular,

o) (4 ) < )
(2.18) exp (1 (Az, ><A y’y>) S (A*lx,xfl
< exp ((A™'e,z) (Ay,y) — 1)
and
. A (4)
(2.19) exp (1 — (Az,z) (A7 z,2)) < W

<exp ((A7'z,z) (Az,z) — 1) .

Since (Az,z) (A~ 'z, 2)—1 > 0 for # € H with ||z[| = 1, we observe that the first
inequality in (2.16) is not as good as the first inequality in (ii) from the introduction.
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3. RELATED RESULTS

We also have:

Theorem 3. Assume that the operators A, B satisfy the condition 0 < m < A,
B < M, then fort € [0,1]

o) <A;Bx,x>

>/ ((1—1) ,x) +t(Bx, ) (t (Az,x) + (1 — t) (Bx, z))
> VAL ( 1—t) +tB) A, (tA+ (1 —1t) B))
wo(A5) | (A50re) o

>m M—m M—m

- b

for x € H with ||z|| = 1.

Proof. In [2] we obtained the following inequalities:

Let A and B selfadjoint operators on the Hilbert space H and assume that
Sp(4), Sp(B) C [m, M] for some scalars m, M with m < M. If f is a convex
function on [m, M], then

32)  f <<A;Bz,x>)

. [f (L =1t) (Az, z) + ¢ (B, x)) + [ (¢t (Az, ) + (1 - ) (B, )]
[

IN

2

IN

f((l—t)A+tB)+f(tA+(1—t)B)]x,x>

M — <A+Bxx> <A+—me> m
M 2m f(m)+ M —m

N | =

IN

f (M)

for any t € [0,1] and each = € H with ||z|| = 1.
If we write the inequality (3.2) for the convex function f (¢) = —Int, then we
get for A, Bwith0<m< A, B<M

n((%572))

((1 —¢t) (Az,x) + t (Bx,z)) + In (¢t (Az, z) + (1 — t) (Bz, 2))]

vV

Y
/\l\')\)—‘

[In
1

2[111((1t)A+tB)+1n(tA+(1t)B)]x,:c>
M — <A+—Baxx A%Bx 33> m

) (
> T In (m) + T —m In (M),
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namely

33)  In <<A;Bx,x>>

>1In\/((1—t)(Az,z) +t (Bz,z)) (t (Az,z) + (1 —t) (Bz,z))
> ; [(In((1—=t)A+tB)z,z) + (In(tA+ (1 —t) B) z,z)]
> In <mM<Ajgix'z> M<A;;z,:l>m) :

for any ¢ € [0,1] and each x € H with |z| = 1.
If we take the exponential in (3.3), we get

A+ B

(557e)

> /(1 —t)(Az, z) + t (Bx, z)) (t (Az, z) + (1 — t) (Bz, )
> exp(In((1—t) A+tB)z,z)exp (In(tA+ (1 —t)B)z,x)

M- (AL ALB
Z m <1V17m >M< 21%—771> -

)

which proves (3.1). O
Theorem 4. Assume that A, B > 0, then
(3.4) (Az, z) ; BYY) 5 exp (/01 In ((1 - t) (Az, z) + ¢ (By,y)) dt)
> exp<[/011n((1 — ) A+t (By,y) I)dt] xx>
> VA, (A) (By.y) > /A, (4) A, (B)
ZZ) (Az, z) ;r (By:v) o A, (A+ <Jzy,y>1)

1
2exp<[/ 1n((1t)A+t<By,y>I)dt] :c,:c>
0
for each x, y € H with ||z|| = |ly|]| = 1.

Proof. Let A and B selfadjoint operators on the Hilbert space H and assume that
Sp(A), Sp(B) CI.1If f is a convex function on I, then

oy g (BRI < [ g () + o By a

<L/Olf((l—t)A-i-t<By,y>[)dt:| $x>

[(f (A)z,z) + f ((By,y))]
[(f (A)z,z) +(f (B)y,v)]

IN

IN

IN
N = N =
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(37) f ((Azr,@ ;r <By,y>> < <f (A+ <J§y,y>1) ME>

< <{/01f((1t)A+t<By,y>I)dt} ”>

for each z,y € H with ||z| = ||y|]| = 1.
If we write the inequality (3.6) for the convex function f (t) = —Int, we get

(3.8) 1n<<Az’x>+<By’y>> 2/0 In (1 —#) (Az, z) + ¢ (By, y)) dt

2
> <{/Olln((l—t)A—|—t<By,y>I)dt] x,m>
)
1
2
1

v

[(In Az, z) + In (By, y)]

Y

[(In Az, z) + (In By, )],

for each z,y € H with ||z|| = ||y||
If we take the exponential in (3.8), then we get

(Az,z) + (By,y)

(3.9)

and the inequality (3.4) is proved.
The inequality (3.5) follows by (3.7). O

Corollary 5. Assume that A > 0, then

A+<A:c,x>]>

(3.10) (Az,z) > A, < 5

1
> exp<{/ In ((1 t)Ath(Ax,:c)I)dt} x,:c>
0
>V (Az,z) Ay (A) > Ay (4),
for all x € H with ||z| = 1.
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