A TRAPEZOID TYPE TENSORIAL NORM INEQUALITY FOR
CONTINUOUS FUNCTIONS OF SELFADJOINT OPERATORS IN
HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a Hilbert space. Assume that f is continuously differ-
entiable on I with [|f'[|; o, := supey [f' (t)| < oo and A, B are selfadjoint
operators with Sp (4), Sp (B) C I, then

'(17/\)f(A)®1+)\1®f(B)7/1f((17u)A®1+u1®B)du
0

1 1\?
Z -
4+( 2)

for A € [0,1]. In particular, we have the midpoint inequality

Hf(A)®1+1®f(B
2

<7l es-ael

) 1
_/0 F(1—u)A®1+ul ® B)du

1
§7||f’}|1’oo||1®B—A®1||.

1. INTRODUCTION

Assume that the function f : [a,b] — R is absolutely continuous on [a,b], then
we have the generalized trapezoid inequality, see for instance [4, p. 90]

(b—2)f () +(@—a) f (@ —bia/:f(”‘“

(1.1) L

1 _ a+b

2
< - 2 / _
< |3+ b_a) £ (b= a).

for all z € [a,b] and the constant 1 is the best possible.
For x = GT—HJ we get the trapezoid inequality

a b
GRS IOy

1 !/
<71l b-a),

with % as best possible contstant.

In order to extend this result for tensorial products of selfadjoint operators and
norms, we need the following preparations.

Let Iy,..., Ix be intervals from R and let f : I; X ... Xx I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
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be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hy such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A= / MdE: (M)
I;

is the spectral resolution of A; for i = 1,..., k; by following [2], we define
Iy Iy

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [7] for functions of two
variables and have the property that

[ (A1, Ag) = fi(AD) @ @ fro(Ak),

whenever f can be separated as a product f(¢1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

F(st) > (<) £ (s) £ (t) for all 5, € [0,00)
and if f is continuous on [0, c0), then [10, p. 173]

(1.3) f(A®B) > (L) f(A)® f(B) forall A, B>0.
This follows by observing that, if

A= / tdE (t) and B = / sdF (s)
[0,00)

[0,00)

are the spectral resolutions of A and B, then
(1.4) F(A®B) :/ / f(st)dE (t) @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0,00) .
Recall the geometric operator mean for the positive operators A, B > 0

A# B = AV2(AY2BAY2)AL2,
where t € [0, 1] and
A#B = AV2(A~V2BA-V2)1/2 12,
By the definitions of # and ® we have
A#B = B#A and (A#DB) @ (B#A)=(A®B)#(B® A).
In 2007, S. Wada [14] obtained the following Callebaut type inequalities for ten-

sorial product

(1.5)  (A#B) @ (A#B) < 5 [(A#aB) @ (A#1-aB) + (A#1-a B) ® (A#aB)]

=N

§§M®B+B®m
for A, B >0 and « € [0,1]. For other similar results, see [1], [3] and [8]-[11].
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Motivated by the above results, if f is continuously differentiable on I with
I f Nl oo = supser |f (t)] < oo and A, B are selfadjoint operators with Sp (4),
Sp (B) C I, then

H(l—A)f(A)@l—i—Al@f(B)—/1f((1—u)A®1+u1®B)du
0

1 1\?
4+(A‘2)

for A € [0,1]. In particular, we have the midpoint inequality

Hf(A)®1+1®f
2

< AN o e B-Axlf

(B) —/Olf((l—u)A®l+u1®B)du

1
<l @B -A1].

2. MAIN RESULTS
Recall the following property of the tensorial product
(2.1) (AC)® (BD)=(A® B) (C® D)

that holds for any A, B,C,D € B(H).
If we take C' = A and D = B, then we get

A’® B> = (A® B)%.
By induction and using (2.1) we derive that

(2.2) A" ® B" = (A® B)" for natural n > 0.
In particular
(2.3) A"®1=(A®1)" and 1® B" = (1® B)"
for all n > 0.

We also observe that, by (2.1), the operators A® 1 and 1 ® B are commutative
and

(2.4) (A1) (1®B)=(1®B)(A®1)=A® B.
Moreover, for two natural numbers m, n we have
(2.5) A1)"(1eB)"=1@B)"(Ae1)™ =A™ @ B".

We have the following representation results for continuous functions:

Lemma 1. Assume A and B are selfadjoint operators with Sp (A) C I and Sp (B) C
J. Let f,h be continuous on I, g,k continuous on J and ¢ continuous on an interval
K that contains the sum of the intervals h (I) + k (J), then

(2.6) (fAAe1+1®g(B))e(h(A)®@1+1®k(B))

N /I/J“ () +9(5) ¢ (h(t) + K (s) dE; @ dFL,

where A and B have the spectral resolutions

(2.7 A= /ItdE (t) and B = /Jde (s).



4 S.S. DRAGOMIR
Proof. By Stone-Weierstrass, any continuous function can be approximated by a
sequence of polynomials, therefore it suffices to prove the equality for the power

function ¢ (t) = t™ with n any natural number.
For natural number n > 1 we have

(2.8) // t)+k(s)" dE; @ dF,
:/I/J(f (t) + Zcm ™ [k (s)]" ™ dE, ® dF,

m=0

-y / (F (@) + 9 ) IO (6 ()" By & dF.
—ZC’”U/f ™ [k ()" ™ dE, ® dF,

/ / I""™dE; ® dF, }
Observe that

//f ™ [k ()] dE, © dF,

V(A" @ (B = (F (A) @ 1) ([ ()" @ [k (B)]"™)
—(f(A e @ en (1e k@B ")
—(fWeh@e )" 1ekB)" "

and
[ [ o ke e s,
= ()" @ (g(B)R(B)"™) = (1@ g (B)) (Ih (A" & k(B)]"")

= (1@g(B) (h )" 1) (12 k@B )
=(1eg(B) (h(A)e )" (1ekB)" ",

with h (A) ® 1 and 1 ® k (B) commutative.
Therefore

K=(f(A)®l+1®g(B zn:C "(1ek(B)"™
=(f(A®1+1®g(B)) Th(A)®1+1®k(B))",

for which the commutativity of h (A) ® 1 and 1 ® k (B) has been employed. O

We have the following representation result:
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Theorem 1. Assume that f is continuously differentiable on I, A and B are
selfadjoint operators with Sp (A), Sp (B) C I, then

(2.9) (1—/\)1®f(B)+/\f(A)®1—/1f((1—u)A®1+u1®B)du
0

:(1®B—A®1)/1(u—A)f’((l—u)A®1+u1®B)du
0

for all X € [0,1].
In particular, we have the trapezoid identity

1of(B)+f(Ael

(2.10) 5

1
/ f(l-uw)A®1+ul® B)du
0
! 1
:(1®BfA®1)/ (u 2) f(1-uw)A®1+ul ® B)du
0
Proof. Integrating by parts in the Lebesgue integral, we have
b b

eu) [ e-af@d=-orol- [ 1o

b
:<b—x>f<b>+<x—a>f<a>—/ £ (t)dt

for a <z < b and f absolutely continuous on [a, b] .
If we take x = (1 — X) a+Ab, A € [0, 1] and change the variable ¢ = (1 — u) a+ub,
then dt = (b — a) du and by (2.11) we derive

1
(17)\)(b7a)f(b)+/\(b7a)f(a)7(1)7(1)/) f((1—u)a+ ub)du

b
:(b—a)Q/ (w—N) f (1 = u)a+ ub) du,

namely
(2.12) (1—)\)f(b)+>\f(a)—/0 F((1=u)a+ ub)du

1
:(bfa)/0 (u =) f (1 —u)a+ ub) du,

foralla,be I and A € [0,1].
Assume that A and B have the spectral resolutions

A:/ItdE(t) andB:/Ide(s).

If we take the integral [, [, over dE; ® dF in (2.12), then we get

(2.13) /I/I[(1—)\)f(s)+)\f(t)—/Olf((l—u)t+us)du] dE;  dF,

=/I/I[<s—t>/01(u—A)f'<<1—u>t+us>] dE, © dF,.
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By utilizing Fubini’s theorem and Lemma 1 we derive

(2.14) /I/I{(l)\)f(s)Jr)\f(t)/Olf((lu)tJrus)du} dE, ® dF,
:(1—)\)/I/If(s)dEtQ@dFs+>\/I/If(t)dEt®dFs

/01 (/I/I(f((lu)t+us))dEt®dFs>du

(1)\)1®f(B)+>\f(A)®1/1f((1u)A®1+u1®B)du
0

and

(2.15) /I/I[(s—t) 1(u—)\)f’((1—u)t+us)du} dE, ® dF,

0

:/Ol(u—)\) /I/I(s—t)f’((l—u)t+us)dEt®dFs]du

:/ W= NASB-Ae D) f (1-u)A®1+ul ® B)du
0

1
:41®B—A®U/(u—Mful—MA®1+M®Bﬁm
0
Therefore, by (2.13)-(2.15) we get the desired identity (2.9). O

We have the following generalized trapezoid inequality:

Theorem 2. Assume that f is continuously differentiable on I with ||f'|; ., =
sup,er |f' (t)] < o0 and A, B are selfadjoint operators with Sp (A), Sp(B) C
then

~

(2.16) H(l—)\)1®f(B)+)\f(A)®1—/01f((1—u)A®1+u1®B)du

1 0N,
1+(r-3) ] 11
for all X € [0,1].

In particular, we have the trapezoid inequality

<1®@B-A®1]|

(2.17) H 1@ f(B)+f(A

1
: )®1—/0 F(l—wA®1+ul®B)du

1
< Il ll®B—-A@1].



A TRAPEZOID TYPE TENSORIAL NORM INEQUALITY 7

Proof. If we take the norm in the identity (2.9) and use the properties of the integral,
then we get

(2.18) H(l—A)l@f(B)—i—)\f(A)®1—/01f((1—u)A®1—|—u1®B)du

:H(l@B—A@l)/Ol(u—)\)f’((l—u)A®1+u1®B)du

1
<|leB-As1| / (=) (1 —uw) A2 1 +ul @ B) du
0

1
§||1®B—A®1||/ = A f (1 —w) A1+l ® B)| du
0

for all A € [0,1].
Observe that, by Lemma 1

\f’((l—u)A®l+ul®B)|:/I/I|f’((1—u)A®1+ul®B)|dEt®dFs

for u, A € [0,1].
Since

(- w) A1+ ul @ B)| < [|f'll} 4

for u, A € [0,1] and ¢, s € I.
If we take the integral [, [, over dE; ® dFs, then we get

(2.19) [f' (1 —u)A®1+ul® B)|
:/I/I\f’((lfu)A®1+u1®B)|dEt®dFsSHf/Hz,oo/I/IdEt®dFs
= ||f/||l,oo

for w, A € [0,1]. This implies that

I (1-—w)A®1+ul @ B)|| < [If'll}

for u, A € [0, 1] which gives

1
/ lu— Al f (1 —u)A®1+ul ® B)| du
0

1 2 2
(1— N2+ A
e [ = M= 177 o S

1 0N, .,
4+(A—2>]Hfmm7

which proves (2.16). O

=lleB-Al|

3. RELATED RESULTS

We start by the following result:
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Theorem 3. Assume that [ is continuously differentiable on I with |f’| is convex
on I, A and B are selfadjoint operators with Sp (A), Sp (B) C I, then

(3.1) (1)\)1®f(B)+)\f(A)®1/lf((lu)A®1+u1®B)du
0

<leB-AclpA =N A@I+pMIf B,
for A € [0,1], where

1
¢\ =5 (22% —3X +2).
In particular, we have the trapezoid inequality

1o f(B)+f(Ael
2

1
(3.2) /0 f(l-u)A®1+ul® B)du

< %I|1®B—A®1H(I|f’(/1)||+||f'(B)||)'
Proof. Since |f’| is convex on I, then
(A —w)t+us)| < @ —w)[f &) +ulf (s)]

for all t,s € I and u € [0,1].
If we take the integral [, [, over dE; ® dFs, then we get

/I/I|f’((17u)t+us)|dEt®dFs
g/I/I[afu>|f'<t>|+u|f’<s>udEt®dFs
:(1—u)/1/1|f’(t)|dEt®dFs+u/1/1|f'(s)|dEt®dFs,

namely
(3-3) I (A-wAel+ul@B)| < (1-u)|f (A el+ulf (B)@1

for all w € [0,1].
If we take the norm in (3.3), then we get

B4) [ ((-wAl+ul@B)| < [1-w)lf (Alel+ulf (B)e1]
<A-w)lff (Wl +ullf (B) 1]
= (=) If Al +ullf (B

for all w € [0,1].
By (2.18) and (3.4) we derive

(3.5) H(l)\)1®f(B)+)\f(A)®1/Olf((lu)A®1+u1®B)du

1
< ||1®B7A®1||/ lu— Al f (1 —u)A®1+ul ® B)| du
0

1
<lteB-A® 1II/0 = A =) [Lf" (A + w £ (B)] du
=[1®B-A®1]|

x [IIf’(A)/Ol |u—A|<1—u>du+f'(B)/Olum—Adu},
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for A € [0,1].
Observe that

1
/ wlu — A du = % (2)0° = 3X+2) =q())
0
and
1
/‘O—uﬂu—Mdu:pO—A)
0
for A € [0,1].
By utilising (3.5) we derive (3.1). O

We recall that the function g : I — R is quasi-convex, if

g((1 =Nt 2) Smax g(1),9 ()} = 5 (9(0) +9() +lg (1) ~ 9 &)
for all t,s € I and A € [0,1].

Theorem 4. Assume that f is continuously differentiable on I with |f’| is quasi-
conver on I, A and B are selfadjoint operators with Sp (A), Sp (B) C I, then

(3.6) Wl—Ml@fuﬂ+AfM)®1—%?f«y—mA®1+u1®Bﬁm

1 1\?
4+<A‘2) ]
< ([If (Dl e1+1[f B+ (ADlel-1e|f (BI)

In particular,

(37) )1®f(B)+f(A

1
<;lteB-4e1]

1
: )®IA(HO10A®1+UD®BMU

§%||1®B—A®1||

<(Ff @let+1af (Bl + I (Dle1-1af (B)).
Proof. Since |f’| is quasi-convex on I, then we get

(1= u)t+us)| < %(lf’ @1+ 1 S+ O =1 (9)1])

for all for u € [0,1] and ¢,s € I.
If we take the integral [, [, over dE; ® dF}, then we get

[ [ - wisusias oar.
S%zzOﬁwhwf@mum@ﬂ_W@mmﬁ®d&

namely

1-uw)A®1+ul® B)|

| —

|
<s(fA@el+1e|f (B +|f(Alel-1a|f (B))
0,1].

— DN

for all for u €
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If we take the norm, then we get
(3.8) I (1—u)A®1+ul @ B)|

< % 10 (Dle1+1e|f (B)+I1f (Aol -1 (B

< %(Illf’ (Al1+1a[f (Bl + I (Aol -1 (B

for all for u € [0,1].
By (2.18) and (3.8)

Wl—Ml@fuﬂ+AfM)®1—/df«L—wA@d+u1®Bﬁm

IN

1
\u®B_A®w/ﬁu—MW%u—mA®1+M®Bmm
0

N

1
slieB-41|

x /0 lu= AL (D@ 1+ 1@ [f (B +II1f (Aol -1 |f (B)])

1 1\*

it (A‘ 2)
(I A1+ (Bl+IIf (Alel-1e|f (B))

for all A € [0,1] and the inequality (3.6) is proved. O

1
= heB-4s1]

4. EXAMPLES

It is known that if U and V' are commuting, i.e. UV = VU, then the exponential
function satisfies the property

exp(U)exp (V) =exp(V)exp(U) =exp (U +V).
Also, if U is invertible and a,b € R with a < b then
b
/ exp (tU) dt = U™ [exp (bU) — exp (all)] .

Moreover, if U and V' are commuting and V' — U is invertible, then

1 1
/ exp (1 —s)U + sV) ds:/ exp (s (V —=U))exp (U)ds
0 0

= (/ exp (s (V—U))ds) exp (U)

0
=(V - U)f1 lexp(V —U) — I]exp (U)
=(V-U)"exp (V) —exp (U)].

Since the operators U = A®1 and V = 1® B are commutative and if 1 B—A®1
is invertible, then

1
/ exp((1-u)A®1+ul® B)du
0

=(1®B-A®1) "exp(1® B) —exp(A®1)].
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If A, B are selfadjoint operators with Sp (A), Sp(B) C [m,M]and 1@ B— A® 1
is invertible, then by (2.16)

(4.1) [(1=X)exp(4A) ®1+ Al ®exp(B)
—(1®B-A®1) exp(1®B) —exp(A® 1)]”

2
1 1
- A— =

exp(A)®@1+1R®expB
2

_(1®B-A®1)" [exp(l@B)—exp(A@l)]H

< exp (M) lleB-As1l,

for A € [0,1].
In particular,

(4.2)

<jep(M)1eB-Aal].
Since for f (t) = expt, t € R, |f’| is convex, then by Theorem 3 we get
(4.3) |(1=A)exp(A) ® 14+ Al ®exp(B)
—(1®B-A®1) exp(l® B) _exp(A®1)]H
1

2

1 1

< |z _Z
<311+(*-3)

X (lexp(A) @ 1+ 1R exp (B)|| + |lexp(4) @ 1 — 1 @ exp (B)]])

for A € [0,1].
In particular,
exp(A)®1+1®expB
2

_(1®B_A®1)—1[exp(1®B)_exp(A®1)]H

Il B-—A1|

(4.4)

1
< §||1®B—A®1H
X (lexp(A) @ 1+ 1 ®@exp (B)|| + |lexp(4) @ 1 — 1 @ exp (B)]])
provided that 1 ® B — A ® 1 is invertible.
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