TENSORIAL UPPER AND LOWER BOUNDS FOR TAYLOR’S
EXPANSION OF FUNCTIONS OF SELFADJOINT OPERATORS
IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space. In this paper we show among others
that, if f is of class C2™ on the open interval I and such that ~,,, < Fem) <
2y, for some constants vs,,,'2m, A and B are selfadjoint operators with
Sp(A), Sp(B) C I, then we have the inequalities

1 2m
(Zm)' (A®1_1®B) Y2m

2m—1 1
<fA@e1- > —(A®1-1@B)* <1®f(k)(B))

k!
k=0
1

< -
— (2m)!

Some examples for logarithm and exponential functions are also provided.

(A®1—-1Q B) Ty

1. INTRODUCTION

The following theorem is well known in the literature as Taylor’s formula or Tay-
lor’s theorem with the integral remainder.

Theorem 1. Let I C R be a closed interval, ¢ € I and let n be a positive integer.
If f : I — C s such that the n-derivative f™) is absolutely continuous on I, then
foreachy el

(1.1) fW) =T, (f;¢,9) + R (f0,9),

where T,, (f;¢,y) is Taylor’s polynomial, i.e.,

(y— o

(12) T (fiey) = S U0 (o),
k=0 ’
Note that f(© := f and 0! := 1 and the remainder is given by
LY n p(n
(13) Ra(ficw)i= = [ =07 10 0 at.

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.

In order to extend this result for tensorial products of selfadjoint operators and
norms, we need the following preparations.
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Let Iy, ..., I be intervals from R and let f : I; X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hy, ..., Hx such that
the spectrum of A; is contained in I; for i = 1,..., k. We say that such a k-tuple is
in the domain of f. If

A = / MdE; ()
I;

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
I Iy

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [5] for functions of two
variables and have the property that

f (Al, ,Ak) = fl(Al) ®..Q fk(Ak),

whenever f can be separated as a product f(t1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) > (<) f(s)f(t) for all s,¢ € [0,00)
and if f is continuous on [0,00), then [8, p. 173]
(1.5) f(A®B)>(L)f(A)® f(B) forall A, B>0.
This follows by observing that, if

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
(1.6) f(A® B) :/ / £ (st)dE () @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0, 00).
Recall the geometric operator mean for the positive operators A, B > 0

A#,B = AV2(AV2BA-V/2)t AY/2,
where t € [0, 1] and
A4B = A1/2(A_1/2BA_1/2)1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A)=(A®B)#(B® A).
In 2007, S. Wada [11] obtained the following Callebaut type inequalities for ten-

sorial product

(1.7)  (A#B) @ (A#B) < 3 [(A#aB) © (A#1-aB) + (A#1-aB) @ (A#aB)]

IN
N[ =

1
B (A® B+B®A)
for A, B >0 and « € [0,1]. For other similar results, see [1], [3] and [6]-]9].
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Motivated by the above results, in this paper we show among others that, if f
is of class C?™ on the open interval I and such that Yom < f (m) < 1, for some
constants 7s,,, [om, A and B are selfadjoint operators with Sp (4), Sp (B) C 1,
then we have the inequalities

1 2
2m—1

<fAWel- > %(A@l—l@B)k (1®f(’f)(B))
k=0

2m

1 2m
< ——(A®1-1®B Lo
_(Qm)!( ® ® B) 2

Some examples for logarithm and exponential functions are also provided.

2. MAIN RESULTS
Recall the following property of the tensorial product
(2.1) (AC)® (BD)=(A® B)(C ® D)

that holds for any A, B,C,D € B(H).
If we take C = A and D = B, then we get

A’@ B? = (A® B)®.

By induction and using (2.1) we derive that

(2.2) A" ® B" = (A® B)" for natural n > 0.
In particular
(2.3) A"®1=(A®1)" and 1® B" = (1® B)"
for all n > 0.

We also observe that, by (2.1), the operators A ® 1 and 1 ® B are commutative
and

(2.4) (A1) (1eB)=(1®B)(A®1)=A® B.
Moreover, for two natural numbers m, n we have
(2.5) (A1)"(1e®B)"=(1®B)"(A®1)" =A™ @ B".

We have the following representation results for continuous functions:

Lemma 1. Assume A and B are selfadjoint operators with Sp (A) C I and Sp (B) C
J. Let f, h be continuous on I, g, k continuous on J and ¢ and v continuous on
an interval K that contains the product of the intervals f (I) g (J), k(I)k (J),then
(2.6)

o (F(A) @ g (B)) v (h(A) ® k(B)) = / /J o (F (£)9() % (h (1) k (5)) dE, @ dF,

where A and B have the spectral resolutions

(2.7) A= /ItdE (t) and B = /Jde (s).
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Proof. By Stone-Weierstrass, any continuous function can be approximated by a
sequence of polynomials, therefore it suffices to prove the equality for the power
function ¢ (t) = t™ and ¢ (t) = t"™ with n and m any natural numbers.

‘We have
// F() g ()™ (h(8) k ()" dEs @ dF,

/ / [F O] [g &)™ [ ()] [k (s)]" dE; ® dF,
/ / " [ (O] lg ()™ [k (5)]" dEy @ dF,

[

=(f(A)@g(B)" (h(A) ek (B))"

and the equality (2.6) is that proved. |
The additive version is as follows:

Lemma 2. Assume A and B are selfadjoint operators with Sp (A) C I, Sp(B) C
J and having the spectral resolutions (2.7). Let f, h be continuous on I, g, k
continuous on J and ¢ and ¢ continuous on an interval K that contains the sum

of the intervals f( ) g(J), k(I)+k(J),then
(2.8) AR1+1gB)yY(h(A)®1+11k(B))

// W (h(t) + k (s)) dE; @ dF.

Proof. Let a, b, ¢ and d positive continuous functions such that f (¢) = Ina(t),
h(t)=Inc(t) fort € I and g(s) =1nb(s), k(s) =Ind(s) for s € J. Then

29 // ¥ (h(t) + k(5)) dEy ® dF;
- / () 1 0 e 1)+ Il )l & 0
// woln)( (s)) (Y oln) (c(t)d(s)) dE; @ dF.

If we use Lemma 1 for the functions ¢ oln and (¢ o ln), we get

(2.10) // po028In)(a(t)b(s)) (¢Yoln)(c(t)d(s))dE; ® dFy

= (poln)(a(4) @b(B)) (¥ oln)(c(4) @ d(B))
= ¢[n(a(A)@b(B))]¢[In(c(4) ©d(B))].
Now, observe that, by the commutativity of the operators a (4) ® 1 and 1 ® b (B),
In(a(A)®@b(B))=In[(a(A)®1)(1b(B))]
=In(a(A)®1)+In(1®b(B))
=[na(A)]®1+1®Inb(B) (by (2.6))
=f(A®1+1®g(B)
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and, similarly
In(c(A)®d(B)=h(A)@1+1k(B).
By utilising (2.9) and (2.10) we then get the desired representation (2.8) O
We have the following Taylor representation:

Lemma 3. Assume that f is of class C"t! on the open interval I, A and B are
selfadjoint operators with Sp (A), Sp (B) C I, then we have the representation

(2.11) fWe1=Y Lel-10B)" (16 /¥ ()
k=0
+%(A®1—1®B)"+1

1
X/ (1—w)" f" ) (1 —u)1®B+uA®1)du.
0

Proof. Using Taylor’s representation with the integral remainder (1.1) we can write
the following two identities

n

@) @)=Y Y @ e -0+ [ ) ey dy

k=0

for z,a € I.
For any integrable function h on an interval and any distinct numbers ¢, d in
that interval, we have, by the change of variable y = (1 — u) ¢ + ud, u € [0, 1] that

d 1
/ h(y)dy:(d—c)/0 h((1—u)c+ ud)du.

Therefore,

/ " () (@ — )" dy

a

(x—a / O (1 —w)a4uz) (z— (1 —u)a—uz)" du
= (x — n+1/ FOH (1 —w)a+uz) (1 —u)" du
and the identity (2.12) becomes

213 f0) =Y V6 -9
k=0 "

1 n+1 ! (n+1) n
+m(t—s) /Of (1 —u)s+ut) (1 —u)" du,

for all ¢, s € I.
If A and B have the spectral resolutions

A:/ItdE(t) andB:/Ide(s)
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then by taking the integral [, [, over dE; ® dF,, we get

(2.14) / / f(t)dE; ® dF,
//(Zk|f t—s))dEt®dFs
// )"t (/ f<"+1>((1u)s+ut)(1u)"du) dE, ® dF.

/I/If(t)dEt@)dFs:f(A)@l

/ / (Z al 5>’“> dE; @ dF,

k=0

_Z // f(k)())dEt®dFs

(4e1-19B)* <1®f(k>(B)).

We have

and, by (2.8)

Il
M: i
=

=~
Il

0

By Fubini’s theorem and (2.8) we also get

/I/(t—s)”ﬂ (/1f(n+1) (1 —w)s+ut)(1 _u)ndu> dE, © dF.
:/o (- (// 5" n+l)((1—u)8+ut)>dEt®dFs>du

:(A®1—1®B)"“/ (1—u)" (f<n+1>((1—u)1®3+u,4®1))du
0

and by (2.14) we obtain the desired result (2.11). O

Our first main result is as follows:

Theorem 2. Assume that f is of class C*™ on the open interval I and such that
Yom < fC™) < Ty, for some constants y,,,, Tom, A and B are selfadjoint operators
with Sp (A), Sp (B) C I then we have the inequalities

(2.15) (A®1-1®B)*"y

2m

1
(2m)!
2m—1

<sfWel- Y si-1e8) (1050 (B)

k=0

1
(A®1—-1® B)*" Tom

(2m)!

<
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Proof. For n=2m — 1 with m > 1 in (2.11), we have

(2.16) fA) @1
2m—11
- k;) qAel-1eDB) (1®f(’“)(B))
+m(,4®1—1®3)2m

1
x/ (1—w)®" e (1 -u)1® B+ud®1)du.
0

From the assumption of boundedness, we have that
(2.17) Yom < L™ (1 —w) s +ut) <Tap,

forallt,se I and u € [0,1].
Now, if we multiply the inequality (2.17) by (£ — s)*™ > 0 with ¢, s € I, then we
get

(218) o (= 5™ < (1 — )™ £ (1 u)s 4 ut) < T (£ — )
By taking the integral [, [, over dE; ® dF, in (2.18) we obtain

(2.19) Yom / / (t — s)°™ dE, @ dF,
I1JI
_g)2m £(2m) (1 _
g/I/I(t s f (1 —u)s+ut)dE: @ dF

< Tom / / (t —s)*" dE, @ dF,.
1JI
By using Lemma 2 we derive
Yom (A®1—18 B)*"
<(A®1-19B)"™ e (1-u)1@B+uAd®1)
<Tom(A®1—-1® B)*™.

2m—1

Further, if we multiply this inequality by (1 — ) >0, u € [0,1] and integrate,

then we get

1
72m/ (1 _ u)27n—1 du (A ® 1.1 ® B)2m
0

1
</ 1—w)""(A21-10B)*" f) (1-u)1®B+uA®1)du
0

1
< Fzm/ (1—w)’"'du(A®1-1® B>,
0

which gives that

Yom 2m
T (AR1-1®B
2m( ® ® B)

1
g(A®1_1®B)2m/ (1—w)*" ™ (1 —u) 1@ B+uAd®1)du
0

1_‘2771 2m
— (A®1-1® B
Qm( © @ B)™,

IN
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namely
Yam 2m
AR1-1® B
om)y A®L1-18D5)
<¥(A®171®B)2m
~ (2m—1)!
1
></ (1—w)® ' e (1—u) 1@ B+uAd®1)du
0
Tr

< (2;;’;! (A®1-1®B)*™.

By utilising the identity (2.16) we derive the desired double inequality (2.15). O

As a particular case, we have:

Corollary 1. Assume that f is of class C? on the open interval I and such that
Vo < f" < T, for some constants v4,T2, A and B are selfadjoint operators with
Sp(A), Sp(B) C I, then we have the inequalities

(2.20) %(A®1—1®B)272
<fA1-12f(B)-(A®1-1®B)(1® f (B))
g%(A@l—l@Bng.

We also have:

Theorem 3. Assume that f is of class C*™ on the open interval I and such that
f@m) s convex (concave) on I, A and B are selfadjoint operators with Sp (A),
Sp (B) C I then we have the inequality

2m—1

1 k

(221) fA)@1- Y —(4®1-19B) (1®f(’f) (B))

k=0
2m (1@ f2™) (B)) + fCm) (A) ® 1

2m+1

§(2)®(A®1—1®B)2m

)

Proof. Since f(*™) is convex on I, then
(2.22) FE™ (1 —u) s +ut) < (1—u) fO™ (s) +ufm™ (1)
for all ¢, s € I and u € [0,1].

Now, if we multiply the inequality (2.22) by (¢t — s)2m >0 with ¢, s € I, then we
get

(2.23) (t—s)>™ £ (1 —u) s + ut)
< (L—u) (t—8)"" fO™ (s) +ut — )" fO™ (1)
for all ¢, s € I and u € [0,1].
By taking the integral [, [, over dE; ® dF in (2.23) we obtain
(2:24) // (t—s)*" fO™ (1 —u) s + ut) dE, @ dF,
1Jr

—u) (t— )2 FO™ (s) +u(t —s)>™ fO™ + s
< [ [la=we= 1 ) v ute= 9 1o 0)] abi o iF
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for all u € [0,1].
By using Lemma 2 we derive that

// 27n 2m) ((1 _ U,) s + ut) dEt & dFs

—(A21-1@B)*" f®) (1-u)1®B+uA®1)

and

// (1—u)(t—s)gmf@m)(s)+u(t—8)2mf(2m) (t)] dE; @ dF
1—U, // 2rrLf(2m,)( )dEt®dFS
+u// s)*™ fOm™) (t) dE, © dF,

1—u)(A®1—1®B)2m(l®f(2m)( ))

w(A®1-1® B)*™ (f@m) (4)® 1)
and by (2.24) we obtain

(A1 -1 B)*™ f®) (1-u)1®B+uA®1)
<(l-w(A®1-18B)*™" (1®f<2m> (B))
w(A®1—1® B)*" (f<2m> (A)®1)

for all u € [0,1].

If we multiply by (1 — u)2m—1

and integrate, then we get

(A®1—1®B)2m/1(1—u)gm_lf@m)((1—u)1®B+uA®1)du
0
1

i Zmd A _ B2m (2m) B

g/o(l u)’™du(A®1—1® B) (1®f ())

1
2m—1 2m m
+/0 u(l—w)" du(A®1—1® B) (f<2 >(A)®1)
1

T om+1
1

T omen

(A®1-1® B)*" (1 ® F@m) (B))

(A®1-1® B)*" (f(2m> (A)® 1)

m 1
o A®1-18 B)® [1 ® ™ (B) + %f@’”) (4)® 1]

- L o1 rop [FISS B I Wy

2m 2m+1
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If we multiply by m we derive

(2m_1)‘ (A®1—1®B)2m

1
></ (1—w)® e (1 —uw)1®@ B+uAd®1)du
0

(2m) (2m)
< ! (A®1—-1® B)*™ 2ml @ f (B) + [P (4) @1
(2m)! om + 1
and by (2.16) we derive (2.21). 0

Corollary 2. Assume that f is of class C? on the open interval I and such that f"
is convex (concave) on I, A and B are selfadjoint operators with Sp (A), Sp (B) C I,
then we have the inequality

(2.25) fAA®1-1®f(B)—(A®1-1®B) (1 f (B))
1o f"(B)+f"(A)®1

<(>)=(A®1-1® B)’ 2( 3

1
- 2

We recall that the function g : I — R is quasi-conver, if

(&) +9(s)+1g(t) —g(s)])

DO =

g((L=N)t+As) <max{g(t),g(s)} =
for all ¢, s € I and A € [0, 1].

Theorem 4. Assume that f is of class C*™ on the open interval I and such
that fC™) s quasi-convex on I, A and B are selfadjoint operators with Sp (4),
Sp (B) C I then we have the inequality

) fWel- Y ~(Uel-1e8) (1010 (B)
2 7

o

1
(2m)!

< [1e™ (o1 416 10 (B) + e () o110 o (B)]].

<

(A®1-1® B)*™

Proof. Since f®™) is quasi-convex on I, then

FOm (=) s+ ut) < 5 (£ (@) 4+ £ () + | £ (1) — £ ()

)

for all ¢, s € I and u € [0,1].
If we multiply by (¢ — s)°™ , we get

(2.27) (t— )™ O™ (1= u) s + ut)
< % (t _ S)Qm (f(Qm) (t) + f(2m) (S) + f(2m) (f) _ f(2m) (S)D

for all t, s € I and u € [0,1].
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By taking the integral [, [, over dE; ® dF in (2.27) we obtain
(2.28) / / FE™ (1 = u) s+ ut) dE; @ dF,

/ / 97 (£ (@) 4 7 () + [ £ (1) = 12 (5)])
x dE; @ dF.

Since, by Lemma 2,

// FC™ (1 —u) s+ ut) dE; ® dF,
A®171®B)2mf<2m>(( —u)1® B+uA®1)

and

[ [ = sre (s8m @+ £ )+ 107 ()= 12 (5)]) abv @ ap,

= [ [e=smsem wamsar+ [ -9 1o s ap o dr.
+f - 2’”]f2'" () = 1) (s)| dE; © dF,
—(A®1—-1@ B )(A)®1+(A®1*1®B)2m(1®f(2m)(3)>

FA®1-1® B> |fem (4) o1 -1 FCm (B)‘

—(A®1-1®B)*™
x [fP (A)@1+10 fC(B)+ [fC™ (A o1 -1 fE™(B)

then by (2.28) we get

(A1 -1 B)*" f) (1-u)1®B+uA®1)
<(A®1-1®B)™
X [ FC™ (A) @1+ 1@ fC™ (B) + ™ (A) o1 -1 FC™ (B)H

for u € [0,1].
If we multiply by (1 — u)2m71 and integrate, then we get

1
(A®1-1® B)Qm/ (1—w)" e (1 —u) 1@ B+uAd®1)du
0
2 (A®1-1®B)*™
x £ ()@ 1+ 1@ fE (B) + | () @1 - 10 fo (B))].
Finally, if we use (2.16) we derive the desired result (2.26). O

Corollary 3. Assume that f is of class C* on the open interval I and such that f”
is quasi-conver on I, A and B are selfadjoint operators with Sp (A), Sp(B) C I,
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then we have the inequality

(2.29) fA®1-1®f(B)—-(A®1-1® B)(1® f'(B))
é%(A@l—l@Bﬁ
<[f"(A)el+le f"(B)+|f"(A)@1-1a " (B)]

3. SOME EXAMPLES
We consider the function f (t) =1Int, ¢ > 0. Then

f(k) (t) — (_l)k_l (k — 1)'

Ck>1,t>0.
tk
From (2.16) we then get for m > 1 that
2m—1 (71)]@71
(3.1) n(A)@l=10mB+ Y - (A®1-1@B)" (1@ B™*)
k=1

—(A®1—1®B)2m

1
x/(17g%“Wafm1®B+uA®u”m&
0
for all A, B > 0.
For m = 1 we obtain
(3.2) h(A®l=1mB+A®B ' -1
—(A®1-1® B)?

1
></ (1-s)[(1-uw)1®B+ud®1] *ds.

0

We observe that

o2m — 1)!
ﬂmwﬂz—L%ﬁlymth>o
If0<~v<t<T, then
(2m — 1)! om (2m —1)!
s SIS
and by (2.15) we get for 0 < v < A, B <T that
(3.3) —i—%A®1—1®Bfm
’ 2mry2m
>1®@ImB-In(4)®1
2m—1 (_1)k71 k .
A1-19B)" (19 B~
+ ; — (Ael1-10B)" (188"

1

> (A®1-1® B)*™
_'%nf%l( ® ® B)

for m > 1.
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For m = 1, we derive
1 2
4 —(A®1-1® B
(3.4) 53 (A91-195)
>1@mB-ln(A)e1+AxB -1
1 2
>—(A®R1-1®B
Z 912 (A® ® B)
for0<y< A, B<T.
The function f™) (t) = — (27;;,]1)! is concave on (0, 00) and by (2.21) we get for
A, B > 0 that

(3.5) 1@lnB-In(A)®1

2m71(_1)k71 X
+ ~ 7 (A®1-19B)" (1 B7*
> S (1o B

2m (1 ® B—2m,> + A—27n ® 1

1 2m
< —(A®R1-1®B
2m( ® ® B)

- 2m + 1
For m = 1 we derive
(3.6) I@mB-m(A)®1+AeB -1
1 2(l1® B2 A?2®1
§§(A®1—1®B)2 (1o 2),+ 210

Consider the exponential function f (t) = exp (t), then by (2.16) we get

(3.7) exp(A)®1 = i E(A®1_1®B)’f(1®exp(3))
k=0
+ﬁ@4®171®3)2’”

1
x/ (1—u)?" lexp(1—u)1®@B+uA®1)du
0

for any selfadjoint operators A, B.
If v < A, B <T, then by (2.15) we get

(3.8) ﬁ exp(7) (A®1—1® B)*™"
<exp(A)®1— i_: E(A®1—1®B)k(1®exp(3))
k=0
< ﬁexp(r) (A®1—-1® B)*™.
From (2.21) we also get
2m—1
(39)  epA)el- Y %(A@ 1= 1% B)* (1@ exp (B))
k=0

2m (1 ®@exp(B)) +exp(4)®1
2m+1

<

1
— (2m)!

)

(A®1—1®B)2m[



14 S.S. DRAGOMIR

for any selfadjoint operators A, B.
If C, D > 0 and if we take in (3.7) A =1InC, B =1n D, then we get

2m—1
(3.10) C®l= ZH(lnCQ@l—l@lnD)k(l@D)
k=0
1 2m

1
X / (1—u)*" exp(1—u)1®@mD+ulnC®1)du
0

and for m =1,

(3.11) Col=(19D)+(ImC®1-1®InD)(1® D)
+(InC®1—1®InD)>?

1
X / (I-uw)exp(1—uw)l®@mD+ulnC®1)du.
0
If 0 <4 <C, D <, then by (3.8) we derive

(3.12) ! W (InC®1-1wnD)>"

(2m)
2m711
k
<C®l- Y H(InCel-18mD)" (1@ D)
k=0
1 2m
< vl 1-1®InD
= @) (InC® ®1n D)
and for m =1,
1
(3.13) ¢ Cel-18n D)?

<C®1-19D—-(C@1-1®nD)(1e D)

1
< 5\If(mC@l —1®InD)>.
From (3.9) we also get

2m—1

(3.14) Col- > l,(ln0®1—1®1np)’“(1®p)
k|
1 om [2m (1@ D) +C® 1
< _
= Gl (InC®1-1®InD) [ o 1 }

and for m =1,

(3.15) C®1-19D-(InC®1-1®InD)(1® D)

2 [2(1®D;+C®1}

<-(InC®1-1®InD

N =

for all C, D > 0.
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If we take in (3.13) (1® D)_l/2 both sides and use the commutativity of C ® 1
with 1 ® D we derive from (3.13) that

(3.16) %w(lnC@é 1-1®WD)* (1@ D7)
<1@ImD-1-InC®1+C®D™!
< UmCo1-1emD) (15 D)
provided that 0 < ¢ < C, D < V.
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