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Abstract

Here we examine the univariate quantitative approximation, ordinary
and fractional, of Banach space valued continuous functions on a compact
interval or all the real line by quasi-interpolation Banach space valued
neural network operators. These approximations are derived by estab-
lishing Jackson type inequalities involving the modulus of continuity of
the engaged function or its Banach space valued high order derivative
or fractional derivatives. Our operators are defined by using a density
function generated by a parametrized Gudermannian sigmoid function.
The approximations are pointwise and of the uniform norm. The related
Banach space valued feed-forward neural networks are with one hidden
layer.
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1 Introduction

The author in [1] and [2], see Chapters 2-5, was the first to establish neural net-
work approximation to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliagnet-Euvrard and ”Squashing”types,
by employing the modulus of continuity of the engaged function or its high order
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derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The defining these operators ”bell-
shaped”and ”squashing”functions are assumed to be of compact suport. Also
in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chapters 4-5 there.
The author inspired by [15], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8].
In this article we are greatly inspired by the related works [16], [17].
The author here performs parametrized Gudermannian function based neural

network approximations to continuous functions over compact intervals of the
real line or over the whole R with values to an arbitrary Banach space (X, ‖·‖).
Finally he treats completely the related X-valued fractional approximation. All
convergences here are with rates expressed via the modulus of continuity of the
involved function or its X-valued high order derivative, or X-valued fractional
derivatives and given by very tight Jackson type inequalities.
Our compact intervals are not necessarily symmetric to the origin. Some of

our upper bounds to error quantity are very flexible and general. In preparation
to prove our results we establish important properties of the basic density func-
tion defining our operators which is induced by a parametrized Gudermannian
sigmoid function.
Feed-forward X-valued neural networks (FNNs) with one hidden layer, the

only type of networks we deal with in this article, are mathematically expressed
as

Nn (x) =

n∑
j=0

cjσ (〈aj · x〉+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection
weights, cj ∈ X are the coeffi cients, 〈aj · x〉 is the inner product of aj and x,
and σ is the activation function of the network. In many fundamental neural
network models, the activation function is derived by the Gudermannian sigmoid
functions. About neural networks in general read [18], [19], [21]. See also [9] for
a complete study of real valued approximation by neural network operators.
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2 Background

Here we consider the Gudermannian function ([23]) gd (x) which is defined as
follows

gd (x) :=

∫ x

0

dt

cosh t
= 2 arctan

(
tanh

(x
2

))
, ∀ x ∈ R. (1)

Let λ > 0, then

gd (λx) =

∫ λx

0

dt

cosh t
= 2 arctan

(
tanh

(
λx

2

))
. (2)

We will use the following normalized and parametrized function

fλ (x) :=
2

π
gd (λx) =

4

π
arctan

(
tanh

(
λx

2

))
= (3)

2

π

∫ λx

0

dt

cosh t
=

4

π

∫ λx

0

dt

et + e−t
, x ∈ R

We will prove that fλ is a generator sigmoid function with the general properties
as in [14]. When 0 < λ < 1, fλ is expected to outperform ReLu and Leaky ReLu
activation functions.
We notice that (

2

π
gd (x)

)′
=

2

π coshx
> 0,

and

f ′λ (x) =

(
2

π
gd (λx)

)′
=

2λ

π coshλx
> 0, ∀ x ∈ R. (4)

Hence fλ is strictly increasing on R.
Furthermore we have

f ′′λ (x) = −2λ2

π

sinhλx

(coshλx)
2 , ∀ x ∈ R. (5)

Notice that
f ′′λ (x) > 0 for x < 0, and

f ′′λ (x) < 0 for x > 0, and

f ′′λ (0) = 0.

Therefore fλ is stritly concave up for x < 0, and fλ is striclty concave down for
x > 0, and fλ (0) = 0, with (0, 0) the inflection point.
Let x → +∞, then tanh

(
λx
2

)
→ 1 and arctan

(
tanh

(
λx
2

))
→ π

4 . Let x →
−∞, then tanh

(
λx
2

)
→ −1 and arctan

(
tanh

(
λx
2

))
→ −π4 .

Clearly, then fλ (+∞) = 1 and fλ (−∞) = −1, so that y = ±1 are horizontal
asymptotes for fλ.
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Also it is fλ (x) ≥ 0 for x ≥ 0, and fλ (x) < 0 for x < 0. Obviously then
fλ : R→ [−1, 1], with f ′′λ ∈ C (R) .

Notice that tanh (−x) = − tanhx and arctan (−x) = − arctanx, x ∈ R.
We have that

fλ (−x) =
4

π
arctan

(
tanh

(
−λx

2

))
=

4

π
arctan

(
− tanh

(
λx

2

))
=

− 4

π
arctan

(
tanh

(
λx

2

))
= −fλ (x) ,

proving
fλ (−x) = −fλ (x) , ∀ x ∈ R. (6)

So, indeed, fλ is a sigmoid function as in [14].
So, all the theory of [14] applies here for fλ, etc.
We consider the activation function

ψ (x) :=
1

4
(fλ (x+ 1)− fλ (x− 1)) , x ∈ R, (7)

As in [13], p. 285, and [14], we get that ψ (−x) = ψ (x) , thus ψ is an even
function. Since x + 1 > x − 1, then fλ (x+ 1) > fλ (x− 1), and ψ (x) > 0, all
x ∈ R.

We see that

ψ (0) =
fλ (1)

2
=
gd (λ)

π
. (8)

Let x > 1, we have that

ψ′ (x) =
1

4
(f ′λ (x+ 1)− f ′λ (x− 1)) < 0,

by f ′λ being strictly decreasing over [0,+∞).

Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds
f ′λ (x− 1) = f ′λ (1− x) > f ′λ (x+ 1), so that again ψ′ (x) < 0. Consequently ψ
is stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.

See that
lim

x→+∞
ψ (x) =

1

4
(fλ (+∞)− fλ (+∞)) = 0, (9)

and
lim

x→−∞
ψ (x) =

1

4
(fλ (−∞)− fλ (−∞)) = 0. (10)

That is the x-axis is the horizontal asymptote on ψ.
Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
gd (λ)

π
.

We need
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Theorem 1 (by [14]) We have that

∞∑
i=−∞

ψ (x− i) = 1, ∀ x ∈ R. (11)

Theorem 2 (by [14]) It holds∫ ∞
−∞

ψ (x) dx = 1. (12)

Thus ψ (x) is a density function on R.
We give

Theorem 3 (by [14]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
k = −∞

: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1− fλ

(
n1−α − 2

))
2

=

(
π − 2gd

(
λ
(
n1−α − 2

)))
2π

.

(13)
Notice that

lim
n→+∞

(
π − 2gd

(
λ
(
n1−α − 2

)))
2π

= 0.

Denote by b·c the integral part of the number and by d·e the ceiling of the
number.
We further give

Theorem 4 (by [14]) Let x ∈ [a, b] ⊂ R and n ∈ N so that dnae ≤ bnbc. It
holds

1∑bnbc
k=dnae ψ (nx− k)

<
1

ψ (1)
=

4

fλ (2)
=

2π

gd (2λ)
, ∀ x ∈ [a, b] . (14)

Remark 5 (by [14]) We have that

lim
n→∞

bnbc∑
k=dnae

ψ (nx− k) 6= 1, (15)

for at least some x ∈ [a, b] .

See also [13], p. 290, same reasoning.

Note 6 For large enough n we always obtain dnae ≤ bnbc. Also a ≤ k
n ≤ b, iff

dnae ≤ k ≤ bnbc. In general it holds (by (11))

bnbc∑
k=dnae

ψ (nx− k) ≤ 1. (16)
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Let (X, ‖·‖) be a Banach space.

Definition 7 Let f ∈ C ([a, b] , X) and n ∈ N : dnae ≤ bnbc. We introduce and
define the X-valued linear neural network operators

An (f, x) :=

∑bnbc
k=dnae f

(
k
n

)
ψ (nx− k)∑bnbc

k=dnae ψ (nx− k)
, x ∈ [a, b] . (17)

Clearly here An (f, x) ∈ C ([a, b] , X). For convenience we use the same An
for real valued function when needed. We study here the pointwise and uniform
convergence of An (f, x) to f (x) with rates.

For convenience also we call

A∗n (f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
ψ (nx− k) , (18)

(similarly A∗n can be defined for real valued function) that is

An (f, x) =
A∗n (f, x)∑bnbc

k=dnae ψ (nx− k)
. (19)

So that

An (f, x)− f (x) =
A∗n (f, x)∑bnbc

k=dnae ψ (nx− k)
− f (x)

=
A∗n (f, x)− f (x)

(∑bnbc
k=dnae ψ (nx− k)

)
∑bnbc
k=dnae ψ (nx− k)

. (20)

Consequently we derive

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)

∥∥∥∥∥∥A∗n (f, x)− f (x)

 bnbc∑
k=dnae

ψ (nx− k)

∥∥∥∥∥∥ . (21)

That is

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)

∥∥∥∥∥∥
bnbc∑

k=dnae

(
f

(
k

n

)
− f (x)

)
ψ (nx− k)

∥∥∥∥∥∥ . (22)

We will estimate the right hand side of (22).
For that we need, for f ∈ C ([a, b] , X) the first modulus of continuity

ω1 (f, δ)[a,b] := ω1 (f, δ) := sup

x, y ∈ [a, b]

|x− y| ≤ δ

‖f (x)− f (y)‖ , δ > 0. (23)
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Similarly, it is defined ω1 for f ∈ CuB (R, X) (uniformly continuous and bounded
functions from R into X), for f ∈ CB (R, X) (continuous and bounded X-
valued) and for f ∈ Cu (R, X) (uniformly continuous).

The fact f ∈ C ([a, b] , X) or f ∈ Cu (R, X), is equivalent to lim
δ→0

ω1 (f, δ) = 0,

see [11].

Definition 8 When f ∈ CuB (R, X), or f ∈ CB (R, X), we define

An (f, x) :=

∞∑
k=−∞

f

(
k

n

)
ψ (nx− k) , n ∈ N, x ∈ R, (24)

the X-valued quasi-interpolation neural network operator.

Remark 9 (by [14]) We have that the series
∑∞
k=−∞ f

(
k
n

)
ψ (nx− k) is ab-

solutely convergent in X, hence it is convergent in X and An (f, x) ∈ X.

We denote by ‖f‖∞ := sup
x∈[a,b]

‖f (x)‖, for f ∈ C ([a, b] , X), similarly is

defined for f ∈ CB (R, X) .

3 Main Results

We present a series of X-valued neural network approximations to a function
given with rates.
We first give

Theorem 10 Let f ∈ C ([a, b] , X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] .

Then
i)

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)

[
ω1

(
f,

1

nα

)
+
(
1− fλ

(
n1−α − 2

))
‖f‖∞

]
=: ρ,

(25)
and
ii)

‖An (f)− f‖∞ ≤ ρ. (26)

We notice lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(
1
nα ,
(
1− fλ

(
n1−α − 2

)))
.

Proof. As similar to [13], p. 293 is omitted, see also [14].
Next we give
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Theorem 11 Let f ∈ CB (R, X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ R. Then
i)

∥∥An (f, x)− f (x)
∥∥ ≤ ω1(f, 1

nα

)
+
(
1− fλ

(
n1−α − 2

))
‖f‖∞ =: µ, (27)

and
ii) ∥∥An (f)− f

∥∥
∞ ≤ µ. (28)

For f ∈ CuB (R, X) we get lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(
1
nα ,
(
1− fλ

(
n1−α − 2

)))
.

Proof. As similar to [13], p. 294 is omitted, see also [14].
In the next we discuss high order neural network X-valued approximation

by using the smoothness of f .

Theorem 12 Let f ∈ CN ([a, b] , X), n,N ∈ N, 0 < α < 1, x ∈ [a, b] and
n1−α > 2. Then
i)

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)


N∑
j=1

∥∥f (j) (x)
∥∥

j!

[
1

nαj
+

(
1− fλ

(
n1−α − 2

))
2

(b− a)
j

]
+

(29)[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− fλ

(
n1−α − 2

)) ∥∥f (N)∥∥∞ (b− a)
N

N !

]}
,

ii) assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

‖An (f, x0)− f (x0)‖ ≤
2π

gd (2λ){
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− fλ

(
n1−α − 2

)) ∥∥f (N)∥∥∞ (b− a)
N

N !

}
, (30)

and
iii)

‖An (f)− f‖∞ ≤
2π

gd (2λ)


N∑
j=1

∥∥f (j)∥∥∞
j!

[
1

nαj
+

(
1− fλ

(
n1−α − 2

))
2

(b− a)
j

]
+

[
ω1

(
f (N),

1

nα

)
1

nαNN !
+

(
1− fλ

(
n1−α − 2

)) ∥∥f (N)∥∥∞ (b− a)
N

N !

]}
. (31)

Again we obtain lim
n→∞

An (f) = f , pointwise and uniformly.
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Proof. As similar to [13], pp. 296-301 is omitted, see also [14].
All integrals from now on are of Bochner type [20].
We need

Definition 13 ([12]) Let [a, b] ⊂ R, X be a Banach space, α > 0; m = dαe ∈ N,
(d·e is the ceiling of the number), f : [a, b] → X. We assume that f (m) ∈
L1 ([a, b] , X). We call the Caputo-Bochner left fractional derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a

(x− t)m−α−1 f (m) (t) dt, ∀ x ∈ [a, b] . (32)

If α ∈ N, we set Dα
∗af := f (m) the ordinary X-valued derivative (defined similar

to numerical one, see [22], p. 83), and also set D0
∗af := f.

By [12], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈
L1 ([a, b] , X).
If
∥∥f (m)∥∥

L∞([a,b],X)
<∞, then by [12],Dα

∗af ∈ C ([a, b] , X) , hence ‖Dα
∗af‖ ∈

C ([a, b]) .

Definition 14 ([10]) Let [a, b] ⊂ R, X be a Banach space, α > 0, m := dαe.
We assume that f (m) ∈ L1 ([a, b] , X), where f : [a, b]→ X. We call the Caputo-
Bochner right fractional derivative of order α:

(
Dα
b−f

)
(x) :=

(−1)
m

Γ (m− α)

∫ b

x

(z − x)
m−α−1

f (m) (z) dz, ∀ x ∈ [a, b] . (33)

We observe that
(
Dm
b−f

)
(x) = (−1)

m
f (m) (x) , for m ∈ N, and

(
D0
b−f

)
(x) =

f (x) .

By [10],
(
Dα
b−f

)
(x) exists almost everywhere on [a, b] and

(
Dα
b−f

)
∈ L1 ([a, b] , X).

If
∥∥f (m)∥∥

L∞([a,b],X)
< ∞, and α /∈ N, by [10], Dα

b−f ∈ C ([a, b] , X) , hence∥∥Dα
b−f

∥∥ ∈ C ([a, b]) .

We present the following X-valued fractional approximation result by neural
networks.

Theorem 15 Let α > 0, N = dαe, α /∈ N, f ∈ CN ([a, b] , X), 0 < β < 1,
x ∈ [a, b], n ∈ N : n1−β > 2. Then
i) ∥∥∥∥∥∥An (f, x)−

N−1∑
j=1

f (j) (x)

j!
An

(
(· − x)

j
)

(x)− f (x)

∥∥∥∥∥∥ ≤
2π

gd (2λ) Γ (α+ 1)


(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+
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(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

,

(34)
ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ) Γ (α+ 1)
(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

,

(35)
iii)

‖An (f, x)− f (x)‖ ≤ 2π

gd (2λ)
N−1∑
j=1

∥∥f (j) (x)
∥∥

j!

{
1

nβj
+ (b− a)

j

(
1− fλ

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)


(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}}

,

(36)
∀ x ∈ [a, b] ,

and
iv)

‖Anf − f‖∞ ≤
2π

gd (2λ)
N−1∑
j=1

∥∥f (j)∥∥∞
j!

{
1

nβj
+ (b− a)

j

(
1− fλ

(
n1−β − 2

)
2

)}
+

1

Γ (α+ 1)



(
sup
x∈[a,b]

ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+
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(
1− fλ

(
n1−β − 2

)
2

)
(b− a)

α

(
sup
x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x] + sup

x∈[a,b]
‖Dα
∗xf‖∞,[x,b]

)}}
.

(37)
Above, when N = 1 the sum

∑N−1
j=1 · = 0.

As we see here we obtain X-valued fractionally type pointwise and uniform
convergence with rates of An → I the unit operator, as n→∞.

Proof. It is very lengthy, as similar to [13], pp. 305-316, is omitted, see also
[14].

Next we apply Theorem 15 for N = 1.

Theorem 16 Let 0 < α, β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2.

Then
i)

‖An (f, x)− f (x)‖ ≤

2π

gd (2λ) Γ (α+ 1)


(
ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

,

(38)
and
ii)

‖Anf − f‖∞ ≤
2π

gd (2λ) Γ (α+ 1)

(
sup
x∈[a,b]

ω1
(
Dα
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1
(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(
1− fλ

(
n1−β − 2

)
2

)
(b− a)

α

(
sup
x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x] + sup

x∈[a,b]
‖Dα
∗xf‖∞,[x,b]

)}
.

(39)

When α = 1
2 we derive

Corollary 17 Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2.

Then
i)

‖An (f, x)− f (x)‖ ≤

11



4
√
π

gd (2λ)


(
ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ ω1

(
D

1
2∗xf,

1
nβ

)
[x,b]

)
n
β
2

+

(
1− fλ

(
n1−β − 2

)
2

)(∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

√
(x− a) +

∥∥∥D 1
2∗xf
∥∥∥
∞,[x,b]

√
(b− x)

)}
,

(40)
and
ii)

‖Anf − f‖∞ ≤
4
√
π

gd (2λ)

(
sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2∗xf,

1
nβ

)
[x,b]

)
n
β
2

+

(
1− fλ

(
n1−β − 2

)
2

)√
(b− a)

(
sup
x∈[a,b]

∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥∥∥D 1
2∗xf
∥∥∥
∞,[x,b]

)}
<∞.

(41)

We finish with

Remark 18 Some convergence analysis follows:
Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2. We elaborate

on (41). Assume that

ω1

(
D

1
2
x−f,

1

nβ

)
[a,x]

≤ K1

nβ
, (42)

and

ω1

(
D

1
2∗xf,

1

nβ

)
[x,b]

≤ K2

nβ
, (43)

∀ x ∈ [a, b], ∀ n ∈ N, where K1,K2 > 0.
Then it holds[

sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2∗xf,

1
nβ

)
[x,b]

]
n
β
2

≤

(K1+K2)
nβ

n
β
2

=
(K1 +K2)

n
3β
2

=
K

n
3β
2

, (44)

where K := K1 +K2 > 0.
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The other summand of the right hand side of (41), for large enough n, con-

verges to zero at the speed
(
1−fλ(n1−β−2)

2

)
.

Then, for large enough n ∈ N, by (41) and (44) and the last comment, we
obtain that

‖Anf − f‖∞ ≤M max

(
1

n
3β
2

,

(
1− fλ

(
n1−β − 2

)
2

))
, (45)

where M > 0.

If 1

n
3β
2

≥
(
1−fλ(n1−β−2)

2

)
, then 1

nβ
≥
(
1−fλ(n1−β−2)

2

)
, and consequently

‖Anf − f‖∞ in (45) converges to zero faster than in Theorem 10. This because
the differentiability of f .
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