TENSORIAL AND HADAMARD PRODUCTS INTEGRAL
INEQUALITIES FOR CONTINUOUS FIELDS OF OPERATORS
IN HILBERT SPACES VIA KANTOROVICH RATIO

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space and 2 a locally compact Hausdorff space
endowed with a Radon measure p with [, 1du (t) = 1. In this paper we show
among others that, if (A7) cq and (Br),cq are continuous fields of positive
operators in B (H) such that Sp(A-), Sp(B-) C [m,M] C (0,00) for each
7 € Q, then for all v € [0,1] we have the tensorial inequality

(e (e
<(-v) (/QA-,-du('r)) ®1+vl® (/QBTd/L(T))
< KR (%) (/Q ALvdy (r)) ® (/Q BYdy (r)) ,

where R = max {1 —v,v} and K (-) is Kantorovich’s ratio. We also have the
following inequalities for the Hadamard product

(fan)e (], prancn)

g/ (1= v) Ay + vB,]dp(r) o1

() ([ o) )

for all v € [0,1].

1. INTRODUCTION

The famous Young inequality for scalars says that if ¢, b > 0 and v € [0, 1], then
(1.1) a7y < (1—v)a+uvb
with equality if and only if @ = b. The inequality (1.1) is also called v-weighted

arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by

— I _if hoe (0,1) U (1,00)
eln(hm)
S(h) =

1if h=1.

It is well known that lim,_; S (h) =1, S(h) = S(+) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and i 1ncrea51ng on (1, 00) .
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Tominaga [14] had proved a multiplicative reverse Young inequality with the
Specht’s ratio [13] as follows:

(1.2) I-v)a+vb< S (%) a'=vp”

for a, b > 0 and v € [0, 1].
He also obtained the following additive reverse

(1.3) (1—v)a+vb—a b < L(a,b)lnS(%)
for a, b > 0 and v € [0, 1], where L (-,) is the logarithmic mean defined by
In Z:ilna for b # a,
L(a,b) :=
a if b= a.
If 0 <m < a,b< M, then also [14]
1-viv M 1—vpv
(1.4) (a'"b” <) (l—u)a+ub<5’(>a b
m
and
M M
(1.5) 0<)(1—-v)a+wvb—a"b <al (1,) InS <)
m m
for v € [0,1].
We consider the Kantorovich’s ratio defined by
h+1)°
(1.6) K (h) = % h> 0.

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s ratio holds

(1.7) KT (%) a"W < (1-v)a+uvb< KR (%) al=p?,

where a, b >0, v € [0,1], r =min {1 — v,v} and R = max{l —v,v}.

The first inequality in (1.7) was obtained by Zuo et al. in [16] while the second
by Liao et al. [12].

We can give a simple direct proof for (1.7) as follows.

Recall the following result obtained by the author in 2006 [4] that provides a
refinement and a reverse for the weighted Jensen’s discrete inequality:

! 1
1.8 0< . ‘ 1 PN |
e - njé{{gl?.,n} {ps} n Z (z;) - ij
j=1 J=1
1 <& 1 &
Sizqu)(xj)_q) 7219]1']
n ]:1 n J:1
1 n 1 n
: nJG{TQ.).(.,n} {p} n O (z;) — @ ~2.%
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where ® : C' — R is a convex function defined on convex subset C of the linear space
X, {z; }je{1 5.} are vectors in C' and {p;} are nonnegative numbers

with P, = Z?lej > 0.
For n = 2, we deduce from (1.8) that

(1.9) 0 < 2min{r,1- v} [‘I’(ﬂﬁ)“l’(y) _(D(aﬂry)]

j€{1,2,...,n}

2 2
<vd(z)+(1—v)®(y) — @[z + (1 —v)y]

a1 1) [fb(x);—q)(y) s (m+y)]

2

for any z, y € R and v € [0, 1].

Now, if we write the inequality (1.9) for the convex function ® (z) = —Inx, and
for the positive numbers a and b we get (1.7).

Let Iy,..., Ix be intervals from R and let f : I; x ... Xx I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hx such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; = / NdE; (A)
I;

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
(1.10) f(Al,...,Ak) ::/ f()\l,...,)\k)dEl ()\1)®®dEk ()\k)
n Ji

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [11] for functions of two
variables and have the property that

f(AL, o A) = f1(A1) @ ... ® fir.(Ak),

whenever f can be separated as a product f(¢1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) = (L) f(s) f(t) for all s,t € [0,00)
and if f is continuous on [0, 00), then [6, p. 173]
(1.11) f(A®B) > (L) f(A)® f(B) forall A, B>0.
This follows by observing that, if

A:/ tE (£) andB:/ sdF (s)
[0,00)

[0,00)

are the spectral resolutions of A and B, then
(1.12) f(A® B) :/ / £ (st)dE (t) ® dF (s)
[0,00) J/[0,00)

for the continuous function f on [0, 00).
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Recall the geometric operator mean for the positive operators A, B > 0
A#tB — A1/2(A71/2BA71/2)tA1/2
where t € [0, 1] and
14##13::: /11/2(/171/213[171/2)1/2141/2.
By the definitions of # and ® we have
A#B = B#A and (A#B) @ (B#A)=(A®B)#(B® A).
In 2007, S. Wada [15] obtained the following Callebaut type inequalities for ten-

sorial product

(1.13)  (A#B) ® (A#B) <  [(A#aB) ® (A#1-aB) + (A#1-aB) ® (A#qB)]

N | =

S%M®B+B®m

for A, B> 0 and « € [0,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,€;) = (Aej €;) (Bej, €5)

for all j € N, where {e; }j cn 1s an orthonormal basis for the separable Hilbert space
H.
It is known that, see [5], we have the representation

(1.14) AoB=U"(A®B)U
where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [6, p. 173]
(1.15) f(AoB) > (L) f(A)o f(B) forall A, B > 0.

We recall the following elementary inequalities for the Hadamard product
AUQOBUQS<A?;B>olbrA,BZO

and Fiedler inequality
Ao A~ >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
2 1/2 2 1/2
AOBS(A ol) (B ol) for A, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (A%0B%)"? for A, B >0,

It has been shown in [10] that (A2 o 1)1/2 (B*01) 2 and (A?o 32)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Let 2 be a locally compact Hausdorff space endowed with a Radon measure pu.
A field (A¢),c(, of operators in B (H) is called a continuous field of operators if the
parametrization ¢ — A; is norm continuous on B (H). If, in addition, the norm
function ¢ — || A¢|| is Lebesgue integrable on €2, we can form the Bochner integral
Joy Aedpe (t), which is the unique operator in B (H) such that ¢ ([, Aedp(t)) =
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Jo @ (Ay) dp (t) for every bounded linear functional ¢ on B (H) . Assume also that,

Jo ldp(t) = 1.

Motivated by the above results, in this paper we show among others that, if
(A7), cq and (B;), . are continuous fields of positive operators in B (H) such that
Sp(A,), Sp(B;) C [m, M] C (0,00) for each 7 € Q, then for all v € [0, 1] we have
the tensorial inequality

(/Al Y (1 ) (/B”du )
<(1-v) </QA,,-d,u,(T)> ®1+vl® (/QBrdu(T)>
<xm (3 ([ ) e ([ i),

where R = max{l —v,v} and K () is Kantorovich’s ratio. We also have the
following inequalities for the Hadamard product

(/9’41 Y (T ) (/B"dﬂ ) /[(1—1/)A +uB,]dp () o
1 (2 (o) L)

2. MAIN RESULTS

for all v € [0,1].

We have the following result for the tensorial product:

Lemma 1. Assume that A and B are selfadjoint operators with 0 < m < A,
B < M for some constants m < M, then for all v € [0,1]

(21)  ATVeB <(1-v)A0l+vle@B< K" (M> A" ® BY
m

and, in particular

(2.2) ATV @A <(1-v)AR1+vI® A< KR M Al @ A,
m

where R = max{l —v,v}.
For v =1/2 we derive that

M4+m
2.3 AV2@BY? < S (A®1+1®B) < ———=AY2@ B/?
(2.3) 2( )< ST
and, in particular
1 M
(2.4) AV @A < S(AnltleA)< 2™ g2 g 412,
-2 mM
Proof. Let t,s € [m,M] C (0,00), then % <L <M ogith <1< M pfle
[, )thenK()<K(%):K( ). 1 ( %]thenalsoK(% SK(%)
Therefore for any ¢, s € [m, M| we have from ) that
M
(2.5) s <(1—-v)t+vs < KE () 1=vgy,
m

where R = max {1 —v,v}.
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If
M M
A= / tdE (t) and B = / sdF (s)

m m

are the spectral resolutions of A and B, then by taking the integral ff ff over
dE (t) ® dF (s) in (2.5), we derive that

M M
(2.6) / / (1= 1)t + vs] dE (t) @ dF (s)

m m

<K (%) /mM /mM t17Vs"dE (t) @ dF (s).

Observe, by (1.10), that

/ / [(1—v)t+vs|dE (t) @ dF (s)

1—y/ / tdE () ® dF (s) + /M/mMsdE(t)®dF(s)

=(1-v)A®1+v1®B

and
M M
/ / 1Y/ dE (£) @ dF (s) = A1 @ BY
and by (2.6) we derive (2.1). O
Corollary 1. With the assumptions of Theorem 1 we have
(2.7) A" oB" <[1-v)A+vB]ol < K" (M> A"V o BY
m
and, in particular
1—-v v R M 1—v v
(2.8) AT 0 AV < Aol <K ()A o A”.
m
For v =1/2 we derive that
(2.9) A2 0 BY2 < A+Bol§ MEm g gy
2 2vVmM
and, in particular
M+m
2.10 AY20AY2 < Aol < ——=AY20 AY2.
( ) B 2vmM

Proof. We have the representation
XoY=U"(XY)U

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.
If we take U* at the left and U at the right in (2.1), then we get

U (A" @B U< (1-vU (A U +vU* (1® B)U

<K% <Z> U (A~ e B")U,
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which gives

M
A" oB"<(1-v)Aol+vloB< K" <) A"V o BY
m
that is equivalent to (2.7). O

In what follows we assume that [, 1du () = 1.

Theorem 1. Let (A;)..q and (B:), cqbe continuous fields of positive operators in
B (H) such that Sp (A;), Sp(B;) C [m, M] C (0,00) for each T € Q. Then for all
v € [0,1] we have

(2.11) </Q Al Vdu (r)) ® (/Q BZdp (T)>
<(1-v) (/QATdu(T)> ®1+vl® (/QBTd,u(T)>
<K (Z) (/Q Al vau (r)> ® (/Q BYdu (7)) :
In particular,

(2.12) (/Q Avdp (T)) ® (/Q Ardp (T)>
<(1-v) (/QATdu(TO ®1+v1® (/QATdu(T)>
<K <Aﬂf) </Q Al7vdy (r)) ® (/Q AVdy (r)> )

Proof. From (2.1) we get

—v v M —v v
(2.13) Al ®B,Y§(1y)AT®1+u1®BW§KR(m>Ai ® BY
for all 7, v € Q. If we take the integral [, over du (7), then we get
(2.14) / (ALY @ BY) dp (1) < / (1-v)A, ®1+v1® B, du(r)

Q Q

M
R 1—v v
<K (m)/Q(AT ®Bv) du (7).

Using the properties of the Bochner’s integral and the tensorial product we have

[ aun = ([ avaun) o sy

and

/[(1—V)AT®1+V1®BW]CZM(T)

—(1-v) (/QATCJM(T))®1+1/1®B7

for all v € Q.
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From (2.14) we then get

(2.15) (/A e )>®B
(/A dp (v )®1+ V1@ B,
cxr (B e
for all v € Q.
If we take the integral [, over du (7), then we get
(2.16) L[ i) o m] aue
s/@[(l— )(/Adu( >>®1+ 1®B}du()

() ([ a) o
Sin
/Q K/Q AVdp (T)) ®BZ] dps ()
— ([ ara) e ([ Brane)
and
/[ o ([ i) o1 o5ty
</Adu >®1+1/1®(/S23ﬂ,du(7)>,
hence by (2.16) we derive (2.11).
Remark 1. If we take in (2.11) v = 1/2, then we get
(2.17) ( A/du > ( B/du()>
<

() o110 ()]

< vt (2250 0)) @ ([, 5220 ).
In particular,

(2.18) ( A/du ) ( A/dm))
<3 [(frar) erere ([ amo)

st a2samo) o (]

< Al2q ®( [ AV :
s ([ e ([ ava
We have the following result for the Hadamard product:
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Corollary 2. With the assumptions of Theorem 1, we have

n ([aan)- ([

/9«1— V) Ar +vB,) dp (1) 0 1

< KR (?}f) (/ﬂ Alvdp (7’)) o (/ﬂ BYdu (T)) :
In particular,

) (e
o (2) () ()

Proof. If we use the identity (1.14) and apply U* to the left and U to the right of
inequality (2.1), we get

(2.21) u* K/Q Al vdu (7')> ® (/Q BYdp, (7))} u
<u {(1 _ 1) </QATd,u(T)> ©1+v1® </QB.Yd,u(’y)>} u
o2 () o

and

u* [(1y) (/QATdu(T)> ©14vle (/QBydu('y))]Z/{
_ (- v)u [(/QATdu(T)> @1}1,1
o [1@ </QBvdu(7)>}u,

hence by (2.21), we derive (2.19). O
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Remark 2. If we take v =1/2 in (2.19), then we get

(2.22) (A;ﬁ“muﬂ)o<43y%u@0
SA;Csz%>W”ﬂ01

M+m / 1/2 ) (/ 1

< AY2dp (1)) o BY2du(r) ).

e ([ ) o ([ B
In particular,

(2.23) ( /Q AV (T)) 0 ( /Q A2y, (T))

3. RELATED RESULTS
‘We have:

Lemma 2. Let I and J be two intervals and f, g defined and continuous on an
interval containing I U J. Assume that

@)
3.1 0 < <T tel
(3.1) SnE gy S 1 forte
and
f(s)
3.2 0<yy < <T eJ
( ) 72—9(8) —= QfO’V'S
Define
K(2) i
Iy iy
U(y1,T1,72,T2) = max{K (722’K( 2>}
if 4 <1<t
1 y Fl
and

u(’Ylarla’YQvFQ): L
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If A and B are selfadjoint operators with Sp (A) C I and Sp (B) C J, then
(3.3) u” (71,7172, Fa) [F177 (A) ¢” (A)] @ [f* (B) g' =" (B)]
<A-v)f(A)@g(B)+vg(A) o f(B)
< UM (71,7172, ) [f177 (A) g7 (A)] @ [£7(B) g' 7 (B)]
forv e 0,1], where r = min{l — v,v} and R = max{l —v,v}.
In particular,
(84) (9, Tum,Ta) [F2(4) g2 ()| @ [ £1/2(B) g2 (B)]

< U@ egB) +9(4)e (B
< U1/2 (717F17,Y27F2) {fl/Q (A) gl/2 (A)} ® {fl/Q (B)gl/Q (B):| )

Proof. If a € [y1,T1] C (0,00) and b € [y4, 2] C (0, 0), then
a " Fl}
e |22 c(0,00).
b {Fz V2 (9, 0)

The function K is decreasing on (0,1) and increasing on [1,00), then we observe
that

max K(T) = U(717F1772ar2)

and

min K(T) =u (’7171—‘17"/2’1—‘2) .
'rE[’Ll F71]

Ty 72
By (1.7) we then get
(3.5) u” (71,11, 79, T2) ' V0"
< K" (%) al Y < (1-v)a+vwvd
S KR (%) al—ybu S UR (717 F1772?F2) al—l/bl/7

where 7 = min {1 — v,v} and R = max {1 —v,v}.
Now, if we take

_& an :f(s) s
EPTO M T R
n (3.5), then we get
(3.6) w” (y1, 11,72, 2><£Ez))) <£E3>
B IUINIC)
<( )g(t)+ g(s)

<U ’717]:‘17727]:‘2 <£ i) ( 23) )

fort eI and s € J.



12 S.S. DRAGOMIR

This is equivalent to

(3.7) u" (v1,T1,79,T2) F177 (8) g (£) f¥ (s) 9" 77 (s)
S(A=v)f#)g(s)+vg(t)f(s)
S U™ (71, 01,79, T2) f177 (1) g7 () £ () 9" 7 (s),

fort eI and s € J.
If

A:/tdE(t) andB:/de(s)

I J

are the spectral resolutions of A and B, then by taking the integral [ I / ; over
dE (t) @ dF (s) in (3.7), we derive that

(38) " (11.T1,75.T2) / / P () g7 (8) 17 () 9" () dE (t) ® dF (s)
// (1—-v)f 8)+vg(t) f(s)]dE (t) ® dF (s)
< U™ (1,T1,79,T2) //f1 v fv Y (s)dE (t) @ dF (s).

By utilizing (1.10) we get

/ / £ £ (s) g (s) dE () ® dF (s)
="V (A)g" (A )] [fu( )9V (B)]

// (A=) F(t)g(s) +vg(t) f(s)|dE (1) © dF (s)

1—1///]‘ s)dE (t) ® dF (s +1/// t) @ dF (s)

=(1-v)f(A)@g(B)+vg(4)®f(B)
Therefore, by (3.8) we obtain the desired result (3.3). O

Corollary 3. With the assumptions of Lemma 2,
(39) (31,0, T) [ (A)g” (4)] o [f* (B) g~ (B)]
<A=v)f(A)eg(B)+vrg(A)of(B)
S UM (71, T172,Ta) [ (A) 9" (A)] o [f7(B) g' 7" (B)]
forv e [0,1].

In particular,

(810) w2 (3, L1070 T2) [£/2(4) g2 (A)] o [£/2 (B) g/ (B)]
< S 1f(A)og(B) +g(A)o f(B)]
< UM (7, D170, T2) [ 12 (4) g2 ()] o [ 1172 (B) g/ (B)]
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Proof. We have the representation

XoY=U"(X®Y)U,

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.

If we take U* at the left and U at the right in (3.3), then we get

u (v, L1, y9, Do) U ([f177 (A) g” (A)] @ [f7 (B) g ™" (B)]) U
SU[(1-v)f(A)®g(B)+vg(A) e f(B)U
S U™ (71, Dy, D) U ([ (A) 9" (A)] @ [f7 (B) g (B)]) U,

namely

)]
<SA=v)U[f(A)@g(B)]U+vU [g(A)
< UR (7171117727112)[/[* ([fl_u (A) gu

which is equivalent to

and the inequality (3.9) is obtained.

Corollary 4. Assume that f, g are continuous on I and

0<7§&§Ffortel.
g(t)
If A and B are selfadjoint operators with Sp (A), Sp (B) C I, then
(3.11) [F77 (A g (A e [f7(B) g™ (B)]

<I-v)f(A)eg(B)+vg(4) e f(B)

_ |+

R
| e @l e[ @ s).

In particular,

(3.12) Y2 (A) g2 ()| @ [ £12(B) g2 (B)]
1

<P @egB) +g(d)ef(B)

< g [ @] e [ s o).

We also have for B = A that

(3.13) [ (A)g" (A)] @ [ (A) g7 (4)]
<A-v)f(A)®g(A)+vg(A)® f(A)

2
< | +D)
44T

R
77 (A)g" (A e [ (A4) g (4)].

13
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In particular,

(3.14) PR g2 ()] @ [£12 (4) g2 ()]

<lireg)+a@ e fa)

< I [ e @] e [ ()0 )]

The proof follows by taking v, = v, =~ and I'y =I's =I" in Lemma 2.

[\)

Remark 3. With the assumptions of Corollary 4 we have the following inequalities
for the Hadamard product

(8.15) [ ()" ()] o [ (B) g (B)]
= (1_V)f(A)09(B)+Vg(A) £(B)
51 R
S (’74—;1{‘) [fl—V (A) i (A)] o [fu (B) gl—y (B)] .
In particular,
(3.16) [f1/2 (A)gl/z (A)} o {fl/z (3)91/2 (B)}
1

< 5 1f(A)og(B)+g(4)o f(B)

< g [ @] e [ s @)
We also have for B = A that
(3.17) £ (A) g7 (A)] o[£ (A) g~ ()]
< f(4)og(A)
7R
< |TEE L (e @e [ (g ()
In particular,
(3.18) [£172(4) g2 ()] o [11/2 (4) g2 (a)]
< f(A)og(4)
< e @) o [ (g2 ().

We also have the following result for two functions and two fields of operators:

Theorem 2. Let (A;) .o and (B;)_cqbe continuous fields of positive operators
in B (H) such that Sp (A;) C I, Sp(B;) C J C (0,00) for each T € Q. Assume
that f, g are defined and continuous on an interval containing I U J and satisfy the
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boundedness conditions (3.1) and (3.2), then for all v € [0, 1] we have

(3.19) u" (v1,T'1,72,T2)

X [/fl_”(AT)g (A, } {/ Y (Br)g ™" (Br)du(r)
<(1-v) /f / (Br)dp (T)
+V/Q /f

SUR(%Flﬁz’F?)
x [/Qfl‘”(AT)g (A } U B g Be) dye (1)

forv € [0,1], where r = min {1 — v, v} and R = max {1l —v,v}.
In particular, for v=1/2

(320) 717F17’Y27F2)

[ [ 1/2<Af>du<f>}®[/ﬂ 712 (BL) g2 (B.) du (7)
<L

[/f /g<BT>du<T>
i/“ /f i )
|

Y2 (41,T1,7,,T2)

712 (AL) g2 (A, dum}@[/ﬂ 12 (B.) g (BL) du (7))

Proof. From (3.3) we get

u (71, T1,790,T2) [f177 (A7) g7 (AD)] @ [f¥ (By) 97" (By)]
<(1-v)f(A;)®g(B,y) +vg(A;) @ f(B,)
S U (v, 1,79, T2) [f177 (A7) g% (A7)] @ [f¥ (By) g7 (B,)]

for all 7, v € Q.

If we take the integral [, over du (7), then the integral [, over du (7y) and using

15

the properties of the tensorial product versus the integral fQ, we deduce the desired

result (3.19).

]

Corollary 5. Let (A;) cq be a continuous field of positive operators in B (H)

such that Sp(A;) C I C (0,00) for each 7 € Q. Assume that f, g are defined
and continuous on an interval containing I and satisfy the boundedness conditions
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(8.1), then for all v € [0,1] we have

(3:21) [/ﬂ”( ][/ﬂ (A du ()
< Lﬂ/Af ) dp (T) Agbhwuﬁ)

+y/gMﬁmuﬂ® £ (A dp(r)
Q Q

(v+1I)
44T

e [fron]

for v € 0,1], where R = max {1 —v,v}.
In particular, for v =1/2

Bz | [ @0 Aanm] | [ 240672 (40 du(n)
giMﬁM)@U /(AMM)

o [ 1o

7+I‘
2\/

<[ a0 e | [ 22002 a0 )|
Q Q
We also have the following results for the Hadamard product:

Corollary 6. With the assumptions of Theorem 2, we have

(3.23) " (71, 71,72, T2)

[l o i [ man-ma
g1quf TuroAg(ﬁwﬁ)
+ngMﬁWMﬂowa»mM)

S UR (717F17727F2)

x [/;f1”<A¢>g”<Af>du<r>}o [Slf”<BT>91”<BT>du<r>

forv € [0,1], where r = min {1 — v, v} and R = max {1l —v,v}.
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In particular, for v =1/2

(324) ’U,l/2 (71711177271‘2)

y [ [ #2402 (A <r>] o [ [ 5B (B dutr)

<;[/Qf(AT)dM(T)o/Qg(BT)du(T)

[ atnaee [ f(B»dum}
S U1/2 (717 F17’727P2)

<[ ang aoaue] e [ [ 7200 @]

Remark 4. From (8.28) we derive for v € [0,1] that

(3.25) [/ﬂfl”(AT) ] [/ P (A g (7)}
g/ﬂf(AT)du T o/ﬂg(AT)du(T)
R

2
PRNCERY)
44T

<[ rrang aoaun|e | [ 1 @ang 4 e

and, in particular,

320 |[ PP @ae]o | [ 120 e " 4 )]

/ fa / (A,) dp (7)

’y+1“
_2\/

| [ 120 o] o | [ 12408 A du )]

4. SOME EXAMPLES

Consider the functions f (t) = #? and g (t) = t? for ¢ > 0 and p,q # 0. Then

ch(g =tP79 for t > 0.
Therefore
mP~9 < ;g; < MP~ 9 for t € [m, M] and p > q
and
MP~1 < A0 <mP~? for t € [m, M] and p < q.
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Now, assume that (A.), . and (B;), .o are continuous fields of positive operators
in B (H) such that Sp (A;), Sp (B.) C [m, M] for each 7 € Q. From Theorem 2 we
get for p > ¢ that

(41) /AQ(l D)p+2yqdﬂ /B21/p+2(1 ”)qd,u( )

< (l—u)/ﬂAzpd,u(T)@/Qqudﬂ (7)

v [ Adpr)e [ B )
Q Q

M 2(p—q)
< KFE () / A2 F2vag, (1) @ / B2vp+2(=viaq, (1),
m Q Q

In particular, for v = 1/2,

an [ i [ B
< ([ arame [ B [ s / B2 (7))
s ((Aﬂf) (v ) / Ay (r / Brtidu (s

We also have the inequalities for the Hadamard product

(43) AAQ(l y)p+2uqd'u /BZVp+2(1 Il)qdu( )

<=0 [ Adu(ryo [ Brau(r)
v [ a2du(eyo [ B
M (1) ‘I)
< KR () /Af(l—”)f’””qdp(T)O/Bz"P”(l_”)qdu(T)-
- m Q Q

In particular, for v = 1/2,

(4.4) /Ap+qdu /B’H'qd,u
2p 2q 2q 2p
§2(/A dp (1 /B dp (1 /AT du(T)O/BT du(T))
Q Q
12 M 2P " -
<K — APTadp () o | BPY9du (7).
m Q Q



(4.

In
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Moreover, if we take B, = A, 7 € Q in (4.3)-(4.4), then we get

5) /Af(l”’)p“”qdﬂ(T)o/AEVP”(l”’)qu(T)
Q Q
< [ 4Zdu(ryo [ A2du(r)
Q Q

M 2(p—q)
< KR () /AE(I*”)erz”qdp(T)o/AE”P*z(I*”)qd,u(T).
m Q Q

particular, for v = 1/2,

(4.6) [ arranmyo [ Azt

(1]

< [ AZdu(r)o | A2vdu(r)
Q Q

1/2 AN p+q pt+aq
<K — QAT du(r)o QAT dp (7).

m
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