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Abstract

Here we present the univariate quantitative approximation of Banach
space valued continuous functions on a compact interval or all the real line
by quasi-interpolation Banach space valued neural network operators. We
perform also the related Banach space valued fractional approximation.
These approximations are derived by establishing Jackson type inequal-
ities involving the modulus of continuity of the engaged function or its
Banach space valued high order derivative or fractional derivaties. Our
operators are de�ned by using a density function induced by a parame-
trized arctangent sigmoid function. The approximations are pointwise
and with respect to the uniform norm. The related Banach space valued
feed-forward neural networks are with one hidden layer. We �nish with a
convergence analysis.
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1 Introduction

The author in [1] and [2], see Chapters 2-5, was the �rst to establish neural net-
work approximation to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliagnet-Euvrard and �Squashing�types,
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by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The de�ning these operators �bell-
shaped�and �squashing�functions are assumed to be of compact suport. Also
in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chapters 4-5 there.
The author inspired by [15], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8].
In this article we are greatly inspired by the related works [16], [17].
The author here performs general a parametrized arctangent function based

neural network approximations to continuous functions over compact intervals
of the real line or over the whole R with values to an arbitrary Banach space
(X; k�k). Finally he treats completely the related X-valued fractional approx-
imation. All convergences here are with rates expressed via the modulus of
continuity of the involved function or its X-valued high order derivative, or X-
valued fractional derivatives and given by very tight Jackson type inequalities.
Our compact intervals are not necessarily symmetric to the origin. Some of

our upper bounds to error quantity are very �exible and general. In prepara-
tion to prove our results we establish important properties of the basic density
function de�ning our operators which is induced by a parametrized arctangent
sigmoid function.
Feed-forward X-valued neural networks (FNNs) with one hidden layer, the

only type of networks we deal with in this article, are mathematically expressed
as

Nn (x) =

nX
j=0

cj� (haj � xi+ bj) , x 2 Rs, s 2 N;

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 X are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental neural
network models, the activation function is derived from a parametrized arctan-
gent sigmoid function. About neural networks in general read [18], [19], [21].
See also [9] for a complete study of real valued approximation by neural network
operators.
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2 Basics

We consider the function

arctanx =

Z x

0

dz

1 + z2
, x 2 R: (1)

We will be using the following parametrized function with a parameter � > 0:

h� (x) :=
2

�
arctan

��
2
�x
�
=
2

�

Z ��x
2

0

dz

1 + z2
; x 2 R: (2)

We have that

h� (0) = 0, h� (�x) = �h� (x) , h� (+1) = 1, h� (�1) = �1;

and

h0� (x) =
2

�

 
1

1 + �2�2x2

4

!
��

2
=

4�

4 + �2�2x2
> 0 (3)

all x 2 R:
So that h� is a strictly increasing function from R into [�1; 1], with horiza-

ontal asymptotes y = �1.
Furthermore we get that

h00� (x) = �
 

8�2�3�
4 + �2�2x2

�2
!
x; x 2 R: (4)

Clearly then

h00� (x) < 0, for x 2 (0;+1) ;
and

h00� (x) > 0, for x 2 (�1; 0) ;

with h00� (0) = 0:
That is h� is stroitly concave over [0;+1) and h� is stritly convex over

(�1; 0]. Obviosly h00� 2 C (R) :
Therefore h� is a sigmoid function ful�lling exactly all the properties of the

general sigmoid function described in [14].
When 0 < � < 1, h� is expected to outperform the ReLu and Leaky ReLu

activation functions.
We consider the activation function

 � (x) :=
1

4
(h� (x+ 1)� h� (x� 1)) , x 2 R; (5)

As in [13], p. 285, we get that  � (�x) =  � (x) ; thus  � is an even function.
Since x+ 1 > x� 1, then h� (x+ 1) > h� (x� 1), and  � (x) > 0, all x 2 R.
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We see that

 � (0) =
h� (1)

2
=
arctan

�
�
2�
�

�
: (6)

Let x > 1, we have that

 0� (x) =
1

4
(h0� (x+ 1)� h0� (x� 1)) < 0;

by h0� being strictly decreasing over [0;+1):
Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds

h0� (x� 1) = h0� (1� x) > h0� (x+ 1), so that again  
0
� (x) < 0: Consequently

 � is stritly decreasing on (0;+1) :
Clearly,  � is strictly increasing on (�1; 0), and  0� (0) = 0:
See that

lim
x!+1

 � (x) =
1

4
(h� (+1)� h� (+1)) = 0; (7)

and
lim

x!�1
 � (x) =

1

4
(h� (�1)� h� (�1)) = 0: (8)

That is the x-axis is the horizontal asymptote on  �.
Conclusion,  � is a bell symmetric function with maximum

 � (0) =
h� (1)

2
=
arctan

�
��
2

�
�

:

We need

Theorem 1 We have that
1X

i=�1
 � (x� i) = 1, 8 x 2 R: (9)

Proof. As exactly the same as in [13], p. 286 is omitted.

Theorem 2 It holds Z 1

�1
 � (x) dx = 1: (10)

Proof. Similar to [13], p. 287. It is omitted.
Thus  � (x) is a density function on R:
We give

Theorem 3 Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 � (nx� k) <
�
1� h�

�
n1�� � 2

��
2

: (11)
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Notice that

lim
n!+1

�
1� h�

�
n1�� � 2

��
2

= 0:

Proof. By [14].
Denote by b�c the integral part of the number and by d�e the ceiling of the

number.
We further give

Theorem 4 Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  � (nx� k)

<
1

 � (1)
=

2�

arctan (��)
; 8 x 2 [a; b] : (12)

Proof. As similar to [13], p. 289 is omitted.

Remark 5 We have that

lim
n!1

bnbcX
k=dnae

 � (nx� k) 6= 1; (13)

for at least some x 2 [a; b] :
See [13], p. 290, same reasoning.

Note 6 For large enough n we always obtain dnae � bnbc. Also a � k
n � b, i¤

dnae � k � bnbc. In general it holds (by (9))

bnbcX
k=dnae

 � (nx� k) � 1: (14)

Let (X; k�k) be a Banach space.

De�nition 7 Let f 2 C ([a; b] ; X) and n 2 N : dnae � bnbc. We introduce and
de�ne the X-valued linear neural network operators

An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
 � (nx� k)Pbnbc

k=dnae  � (nx� k)
; x 2 [a; b] : (15)

Clearly here An (f; x) 2 C ([a; b] ; X). For convenience we use the same An
for real valued function when needed. We study here the pointwise and uniform
convergence of An (f; x) to f (x) with rates.
For convenience also we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
 � (nx� k) ; (16)
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(similarly A�n can be de�ned for real valued function) that is

An (f; x) =
A�n (f; x)Pbnbc

k=dnae  � (nx� k)
: (17)

So that

An (f; x)� f (x) =
A�n (f; x)Pbnbc

k=dnae  � (nx� k)
� f (x)

=
A�n (f; x)� f (x)

�Pbnbc
k=dnae  � (nx� k)

�
Pbnbc

k=dnae  � (nx� k)
: (18)

Consequently we derive

kAn (f; x)� f (x)k �
2�

arctan (��)







A�n (f; x)� f (x)
0@ bnbcX
k=dnae

 � (nx� k)

1A





 :
(19)

That is

kAn (f; x)� f (x)k �
2�

arctan (��)








bnbcX

k=dnae

�
f

�
k

n

�
� f (x)

�
 � (nx� k)







 :
(20)

We will estimate the right hand side of (20).
For that we need, for f 2 C ([a; b] ; X) the �rst modulus of continuity

!1 (f; �)[a;b] := !1 (f; �) := sup

x; y 2 [a; b]
jx� yj � �

kf (x)� f (y)k ; � > 0: (21)

Similarly, it is de�ned !1 for f 2 CuB (R; X) (uniformly continuous and bounded
functions from R into X), for f 2 CB (R; X) (continuous and bounded X-
valued) and for f 2 Cu (R; X) (uniformly continuous).
The fact f 2 C ([a; b] ; X) or f 2 Cu (R; X), is equivalent to lim

�!0
!1 (f; �) = 0,

see [11].

De�nition 8 When f 2 CuB (R; X), or f 2 CB (R; X), we de�ne

An (f; x) :=
1X

k=�1
f

�
k

n

�
 � (nx� k) , n 2 N; x 2 R; (22)

the X-valued quasi-interpolation neural network operator.
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Remark 9 We have that



f �kn
�



 � kfk1;R < +1,

and 



f �kn
�



 � (nx� k) � kfk1;R  � (nx� k) ; (23)

and
�X

k=��





f �kn
�



 � (nx� k) � kfk1;R

0@ �X
k=��

 � (nx� k)

1A ;

and �nally
1X

k=�1





f �kn
�



 � (nx� k) � kfk1;R ; (24)

a convergent in R series.
So the series

P1
k=�1 f

�
k
n

�
 � (nx� k) is absolutely convergent in X, hence

it is convergent in X and An (f; x) 2 X.

We denote by kfk1 := sup
x2[a;b]

kf (x)k, for f 2 C ([a; b] ; X), similarly is

de�ned for f 2 CB (R; X) :

3 Main Results

We present a series of X-valued neural network approximations to a function
given with rates.
We �rst give

Theorem 10 Let f 2 C ([a; b] ; X), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b] :
Then
i)

kAn (f; x)� f (x)k �
2�

arctan (��)

�
!1

�
f;
1

n�

�
+
�
1� h�

�
n1�� � 2

��
kfk1

�
=: �;

(25)
and
ii)

kAn (f)� fk1 � �: (26)

We notice lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� h�

�
n1�� � 2

���
:

Proof. As similar to [13], p. 293 is omitted.
Next we give
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Theorem 11 Let f 2 CB (R; X), 0 < � < 1, n 2 N : n1�� > 2, x 2 R: Then
i)



An (f; x)� f (x)

 � !1

�
f;
1

n�

�
+
�
1� h�

�
n1�� � 2

��
kfk1 =: �; (27)

and
ii) 

An (f)� f

1 � �: (28)

For f 2 CuB (R; X) we get lim
n!1

An (f) = f , pointwise and uniformly.

The speed of convergence is max
�
1
n� ;
�
1� h�

�
n1�� � 2

���
:

Proof. As similar to [13], p. 294 is omitted.
In the next we discuss high order neural network X-valued approximation

by using the smoothness of f .

Theorem 12 Let f 2 CN ([a; b] ; X), n;N 2 N, 0 < � < 1, x 2 [a; b] and
n1�� > 2. Then
i)

kAn (f; x)� f (x)k �
2�

arctan (��)

8<:
NX
j=1



f (j) (x)


j!

"
1

n�j
+

�
1� h�

�
n1�� � 2

��
2

(b� a)j
#
+

(29)"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h�

�
n1�� � 2

�� 

f (N)

1 (b� a)N
N !

#)
ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

kAn (f; x0)� f (x0)k �
2�

arctan (��)(
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h�

�
n1�� � 2

�� 

f (N)

1 (b� a)N
N !

)
; (30)

and
iii)

kAn (f)� fk1 � 2�

arctan (��)

8<:
NX
j=1



f (j)

1
j!

"
1

n�j
+

�
1� h�

�
n1�� � 2

��
2

(b� a)j
#
+

"
!1

�
f (N);

1

n�

�
1

n�NN !
+

�
1� h�

�
n1�� � 2

�� 

f (N)

1 (b� a)N
N !

#)
: (31)

Again we obtain lim
n!1

An (f) = f , pointwise and uniformly.
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Proof. As similar to [13], pp. 296-301 is omitted.
All integrals from now on are of Bochner type [20].
We need

De�nition 13 ([12]) Let [a; b] � R, X be a Banach space, � > 0; m = d�e 2 N,
(d�e is the ceiling of the number), f : [a; b] ! X. We assume that f (m) 2
L1 ([a; b] ; X). We call the Caputo-Bochner left fractional derivative of order �:

(D�
�af) (x) :=

1

� (m� �)

Z x

a

(x� t)m���1 f (m) (t) dt; 8 x 2 [a; b] : (32)

If � 2 N, we set D�
�af := f (m) the ordinary X-valued derivative (de�ned similar

to numerical one, see [22], p. 83), and also set D0
�af := f:

By [12], (D�
�af) (x) exists almost everywhere in x 2 [a; b] and D�

�af 2
L1 ([a; b] ; X).
If


f (m)



L1([a;b];X)
<1, then by [12],D�

�af 2 C ([a; b] ; X) ; hence kD�
�afk 2

C ([a; b]) :

De�nition 14 ([10]) Let [a; b] � R, X be a Banach space, � > 0, m := d�e.
We assume that f (m) 2 L1 ([a; b] ; X), where f : [a; b]! X. We call the Caputo-
Bochner right fractional derivative of order �:

�
D�
b�f

�
(x) :=

(�1)m

� (m� �)

Z b

x

(z � x)m���1 f (m) (z) dz; 8 x 2 [a; b] : (33)

We observe that
�
Dm
b�f

�
(x) = (�1)m f (m) (x) ; for m 2 N, and

�
D0
b�f

�
(x) =

f (x) :

By [10],
�
D�
b�f

�
(x) exists almost everywhere on [a; b] and

�
D�
b�f

�
2 L1 ([a; b] ; X).

If


f (m)



L1([a;b];X)
< 1, and � =2 N; by [10], D�

b�f 2 C ([a; b] ; X) ; hence

D�
b�f



 2 C ([a; b]) :
We present the following X-valued fractional approximation result by neural

networks.

Theorem 15 Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b] ; X), 0 < � < 1,
x 2 [a; b], n 2 N : n1�� > 2: Then
i) 





An (f; x)�

N�1X
j=1

f (j) (x)

j!
An

�
(� � x)j

�
(x)� f (x)







 �
2�

arctan (��) � (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

9



 
1� h�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(34)
ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

kAn (f; x)� f (x)k �
1

� (�+ 1)

2�

arctan (��)
;

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(35)
iii)

kAn (f; x)� f (x)k �
2�

arctan (��)8<:
N�1X
j=1



f (j) (x)


j!

(
1

n�j
+ (b� a)j

 
1� h�

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�))

;

(36)
8 x 2 [a; b] ;
and
iv)

kAnf � fk1 � 2�

arctan (��)8<:
N�1X
j=1



f (j)

1
j!

(
1

n�j
+ (b� a)j

 
1� h�

�
n1�� � 2

�
2

!)
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+
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1� h�

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
:

(37)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain X-valued fractionally type pointwise and uniform
convergence with rates of An ! I the unit operator, as n!1:

Proof. It is very lengthy, as similar to [13], pp. 305-316, is omitted.
Next we apply Theorem 15 for N = 1:

Theorem 16 Let 0 < �; � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2:
Then
i)

kAn (f; x)� f (x)k �

2�

arctan (��)

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

 
1� h�

�
n1�� � 2

�
2

!�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

;

(38)
and
ii)

kAnf � fk1 � 1

� (�+ 1)

2�

arctan (��)8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

 
1� h�

�
n1�� � 2

�
2

!
(b� a)�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!)
:

(39)

When � = 1
2 we derive

Corollary 17 Let 0 < � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2:

Then
i)

kAn (f; x)� f (x)k �

11



4
p
�

arctan (��)

8>><>>:
�
!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ !1

�
D

1
2�xf;

1
n�

�
[x;b]

�
n
�
2

+

 
1� h�

�
n1�� � 2

�
2

!�


D 1
2
x�f





1;[a;x]

p
(x� a) +




D 1
2�xf




1;[x;b]

p
(b� x)

�)
;

(40)
and
ii)

kAnf � fk1 � 4
p
�

arctan (��)8>>>><>>>>:

 
sup
x2[a;b]

!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1

�
D

1
2�xf;

1
n�

�
[x;b]

!
n
�
2

+

 
1� h�

�
n1�� � 2

�
2

!p
(b� a)

 
sup
x2[a;b]




D 1
2
x�f





1;[a;x]

+ sup
x2[a;b]




D 1
2�xf




1;[x;b]

!)
<1:

(41)

We �nish with

Remark 18 Some convergence analysis follows:
Let 0 < � < 1, f 2 C1 ([a; b] ; X), x 2 [a; b], n 2 N : n1�� > 2: We elaborate

on (41). Assume that

!1

�
D

1
2
x�f;

1

n�

�
[a;x]

� K1

n�
; (42)

and

!1

�
D

1
2�xf;

1

n�

�
[x;b]

� K2

n�
; (43)

8 x 2 [a; b], 8 n 2 N, where K1;K2 > 0.
Then it holds"

sup
x2[a;b]

!1

�
D

1
2
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1

�
D

1
2�xf;

1
n�

�
[x;b]

#
n
�
2

�

(K1+K2)
n�

n
�
2

=
(K1 +K2)

n
3�
2

=
K

n
3�
2

; (44)

where K := K1 +K2 > 0:
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The other summand of the right hand side of (41), for large enough n, con-

verges to zero at the speed
�
1�h�(n1���2)

2

�
:

Then, for large enough n 2 N, by (41) and (44) and the last comment, we
obtain that

kAnf � fk1 �M max

 
1

n
3�
2

;

 
1� h�

�
n1�� � 2

�
2

!!
; (45)

where M > 0:

If 1

n
3�
2

�
�
1�h�(n1���2)

2

�
, then 1

n�
�
�
1�h�(n1���2)

2

�
, and consequently

kAnf � fk1 in (45) converges to zero faster than in Theorem 10. This because
the di¤erentiability of f .

References

[1] G.A. Anastassiou, Rate of convergence of some neural network operators
to the unit-univariate case, J. Math. Anal. Appl, 212 (1997), 237-262.

[2] G.A. Anastassiou, Quantitative Approximations, Chapman & Hall / CRC,
Boca Raton, New York, 2001.

[3] G.A. Anastassiou, Univariate hyperbolic tangent neural network approxi-
mation, Mathematics and Computer Modelling, 53 (2011), 1111-1132.

[4] G.A. Anastassiou, Multivariate hyperbolic tangent neural network approxi-
mation, Computers and Mathematics, 61 (2011), 809-821.

[5] G.A. Anastassiou, Multivariate sigmoidal neural network approximation,
Neural Networks, 24 (2011), 378-386.

[6] G.A. Anastassiou, Inteligent Systems: Approximation by Arti�cial Neural
Networks, Intelligent Systems Reference Library, Vol. 19, Springer, Heidel-
berg, 2011.

[7] G.A. Anastassiou, Univariate sigmoidal neural network approximation, J.
of Computational Analysis and Applications, Vol. 14, No. 4, 2012, 659-690.

[8] G.A. Anastassiou, Fractional neural network approximation, Computers
and Mathematics with Applications, 64 (2012), 1655-1676.

[9] G.A. Anastassiou, Intelligent Systems II: Complete Approximation by
Neural Network Operators, Springer, Heidelberg, New York, 2016.

[10] G.A. Anastassiou, Strong Right Fractional Calculus for Banach space val-
ued functions, �Revista Proyecciones, Vol. 36, No. 1 (2017), 149-186.

13



[11] G.A. Anastassiou, Vector fractional Korovkin type Approximations, Dy-
namic Systems and Applications, 26 (2017), 81-104.

[12] G.A. Anastassiou, A strong Fractional Calculus Theory for Banach space
valued functions, Nonlinear Functional Analysis and Applications (Korea),
22(3)(2017), 495-524.

[13] G.A. Anastassiou, Intelligent Computations: Abstract Fractional Calculus,
Inequalities, Approximations, Springer, Heidelberg, Neq York, 2018.

[14] G.A. Anastassiou, General sigmoid based Banach space valued neural net-
work approximation, J. of Computational Analysis and Applications, ac-
cepted, 2022.

[15] Z. Chen and F. Cao, The approximation operators with sigmoidal functions,
Computers and Mathematics with Applications, 58 (2009), 758-765.

[16] D. Costarelli, R. Spigler, Approximation results for neural network opera-
tors activated by sigmoidal functions, Neural Networks 44 (2013), 101-106.

[17] D. Costarelli, R. Spigler, Multivariate neural network operators with sig-
moidal activation functions, Neural Networks 48 (2013), 72-77.

[18] S. Haykin, Neural Networks: A Comprehensive Foundation (2 ed.), Pren-
tice Hall, New York, 1998.

[19] W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysis, 7 (1943), 115-133.

[20] J. Mikusinski, The Bochner integral, Academic Press, New York, 1978.

[21] T.M. Mitchell, Machine Learning, WCB-McGraw-Hill, New York, 1997.

[22] G.E. Shilov, Elementary Functional Analysis, Dover Publications, Inc.,
New York, 1996.

14


