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Abstract

Here we examine the multivariate quantitative approximations of Ba-
nach space valued continuous multivariate functions on a box or RN ;
N 2 N, by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We research also the
case of approximation by iterated operators of the last four types, that
is multi hidden layer approximations. These approximations are achieved
by establishing multidimensional Jackson type inequalities involving the
multivariate modulus of continuity of the engaged function or its high or-
der Fréchet derivatives. Our multivariate operators are de�ned by using a
multidimensional density function induced by a parametrized arctangent
sigmoid function. The approximations are pointwise and uniform. The
related feed-forward neural networks are with one or multi hidden layers.

2020 AMSMathematics Subject Classi�cation: 41A17, 41A25, 41A30,
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Keywords and Phrases: parametrized arctangent sigmoid function, mul-

tivariate neural network approximation, quasi-interpolation operator, Kantorovich
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the �rst to establish neural net-
work approximations to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliagnet-Euvrard and �Squashing�types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The de�ning these operators
�bell-shaped� and �squashing� functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.
For this article the author is motivated by the article [16] of Z. Chen and F.

Cao, also by [4]-[12], [17], [18].
The author here performs multivariate parametrized arctangent sigmoid

function based neural network approximations to continuous functions over
boxes or over the whole RN , N 2 N. Also he does the iterated multlayer
approximation. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its high order Fréchet
derivative and given by very tight multidimensional Jackson type inequalities.
The author here comes up with the �right� precisely de�ned multivariate

normalized, quasi-interpolation neural network operators related to boxes or
RN , as well as Kantorovich type and quadrature type related operators on RN .
Our boxes are not necessarily symmetric to the origin. In preparation to prove
our results we establish important properties of the basic multivariate density
function induced by a parametrized arctangent sigmoid function and de�ning
our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental network
models the activation function is the arctangent sigmoid function. About neural
networks read [19]-[21].

2 Background

We consider the function

arctanx =

Z x

0

dz

1 + z2
, x 2 R: (1)

We will be using the following parametrized function with a parameter � > 0:

h� (x) :=
2

�
arctan

��
2
�x
�
=
2

�

Z ��x
2

0

dz

1 + z2
; x 2 R: (2)
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We have that

h� (0) = 0, h� (�x) = �h� (x) , h� (+1) = 1, h� (�1) = �1;

and

h0� (x) =
2

�

 
1

1 + �2�2x2

4

!
��

2
=

4�

4 + �2�2x2
> 0 (3)

all x 2 R:
So that h� is a strictly increasing function from R into [�1; 1], with horiza-

ontal asymptotes y = �1.
Furthermore we get that

h00� (x) = �
 

8�2�3�
4 + �2�2x2

�2
!
x; x 2 R: (4)

Clearly then

h00� (x) < 0, for x 2 (0;+1) ;
and

h00� (x) > 0, for x 2 (�1; 0) ;

with h00� (0) = 0:
That is h� is strictly concave over [0;+1) and h� is strictly convex over

(�1; 0]. Obviosly h00� 2 C (R) :
Therefore h� is a sigmoid function ful�lling exactly all the properties of the

general sigmoid function described in [13].
When 0 < � < 1, h� is expected to outperform the ReLu and Leaky ReLu

activation functions.
We consider the activation function

 � (x) :=
1

4
(h� (x+ 1)� h� (x� 1)) , x 2 R; (5)

As in [11], p. 285, we get that  � (�x) =  � (x) ; thus  � is an even function.
Since x+ 1 > x� 1, then h� (x+ 1) > h� (x� 1), and  � (x) > 0, all x 2 R.
We see that

 � (0) =
h� (1)

2
=
arctan

�
�
2�
�

�
: (6)

Let x > 1, we have that

 0� (x) =
1

4
(h0� (x+ 1)� h0� (x� 1)) < 0;

by h0� being strictly decreasing over [0;+1):
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Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds
h0� (x� 1) = h0� (1� x) > h0� (x+ 1), so that again  

0
� (x) < 0: Consequently

 � is stritly decreasing on (0;+1) :
Clearly,  � is strictly increasing on (�1; 0), and  0� (0) = 0:
See that

lim
x!+1

 � (x) =
1

4
(h� (+1)� h� (+1)) = 0; (7)

and
lim

x!�1
 � (x) =

1

4
(h� (�1)� h� (�1)) = 0: (8)

That is the x-axis is the horizontal asymptote on  �.
Conclusion,  � is a bell symmetric function with maximum

 � (0) =
h� (1)

2
=
arctan

�
��
2

�
�

:

We need

Theorem 1 We have that
1X

i=�1
 � (x� i) = 1, 8 x 2 R: (9)

Proof. As exactly the same as in [11], p. 286 is omitted.

Theorem 2 It holds Z 1

�1
 � (x) dx = 1: (10)

Proof. Similar to [11], p. 287. It is omitted.
Thus  � (x) is a density function on R:
We give

Theorem 3 Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 � (nx� k) <
�
1� h�

�
n1�� � 2

��
2

: (11)

Notice that

lim
n!+1

�
1� h�

�
n1�� � 2

��
2

= 0:

Proof. By [13].
Denote by b�c the integral part of the number and by d�e the ceiling of the

number.
We further give
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Theorem 4 Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  � (nx� k)

<
1

 � (1)
=

2�

arctan (��)
; 8 x 2 [a; b] : (12)

Proof. As similar to [11], p. 289 is omitted.

Remark 5 We have that

lim
n!1

bnbcX
k=dnae

 � (nx� k) 6= 1; (13)

for at least some x 2 [a; b] :
See [11], p. 290, same reasoning.

Note 6 For large enough n we always obtain dnae � bnbc. Also a � k
n � b, i¤

dnae � k � bnbc. In general it holds (by (9))

bnbcX
k=dnae

 � (nx� k) � 1: (14)

We introduce

Z� (x1; :::; xN ) := Z� (x) :=
NY
i=1

 � (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (15)

It has the properties:
(i) Z� (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z� (x� k) :=
1X

k1=�1

1X
k2=�1

:::

1X
kN=�1

Z� (x1 � k1; :::; xN � kN ) = 1;

(16)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z� (nx� k) = 1; (17)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z� (x) dx = 1; (18)
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that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(19)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Z� (nx� k) =
bnbcX

k=dnae

 
NY
i=1

 � (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

 � (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

 � (nxi � ki)

1A :

(20)
For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z� (nx� k) =

bnbcX
8<: k = dnae

 k

n � x



1 � 1

n�

Z� (nx� k) +
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n�

Z� (nx� k) : (21)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition



 k
n � x




1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :
(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae

 k

n � x



1 > 1

n�

Z� (nx� k)
(11)
<
1� h�

�
n1�� � 2

�
2

, 0 < � < 1; (22)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :

(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z� (nx� k)
<

1

( � (1))
N
=

�
2�

arctan (��)

�N
; (23)
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8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z� (nx� k) <
1� h�

�
n1�� � 2

�
2

; (24)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN :
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z� (nx� k) 6= 1; (25)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k


�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z� (nx� k)Pbnbc

k=dnae Z� (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1  � (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie  � (nxi � ki)

� : (26)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When g 2 C

�QN
i=1 [ai; bi]

�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z� (nx� k)Pbnbc

k=dnae Z� (nx� k)
: (27)

Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:
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Furthermore it holds

kAn (f; x)k
 �
Pbnbc

k=dnae


f � kn�


 Z� (nx� k)Pbnbc

k=dnae Z� (nx� k)
= eAn �kfk
 ; x� ; (28)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk
 2 C
�QN

i=1 [ai; bi]
�
:

So, we have that

kAn (f; x)k
 � eAn �kfk
 ; x� ; (29)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (30)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (31)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z� (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

 � (nxi � ki)
!
; (32)

8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z� (nx� k)
; (33)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z� (nx� k)

�
Pbnbc

k=dnae Z� (nx� k)
: (34)
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Consequently we derive

kAn (f; x)� f (x)k

(23)
�
�

2�

arctan (��)

�N 





A�n (f; x)� f (x)
bnbcX

k=dnae

Z� (nx� k)











;

(35)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (35).
For the last and others we need

De�nition 7 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k


�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k
 , 0 < � � diam (M) : (36)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (37)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 8 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),

where M is a convex compact subset of
�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (36). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Z� (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

 � (nxi � ki)
!
; (38)

n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z� (nx� k) =

9



1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

 � (nxi � ki)
!
; (39)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=
�X
r=0

wrf

�
k

n
+

r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+

r1
n�1

;
k2
n
+

r2
n�2

; :::;
kN
n
+

rN
n�N

�
; (40)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z� (nx� k) = (41)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

 � (nxi � ki)
!
;

8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate Parametrized Arctangent Neural
Network Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give
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Theorem 9 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, x 2

�QN
i=1 [ai; bi]

�
;

N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k
 ��
2�

arctan (��)

�N �
!1

�
f;
1

n�

�
+
�
1� h�

�
n1�� � 2

�� 


kfk



1
�
=: �1 (n) ;

(42)
and
2) 


kAn (f)� fk



1 � �1 (n) : (43)

We notice that lim
n!1

An (f)
k�k

= f , pointwise and uniformly.

Above !1 is with respect to p =1 and the speed of convergnece is
max

�
1
n�
;
�
1� h�

�
n1�� � 2

���
:

Proof. As similar to [12] is omitted. See also [14].
We make

Remark 10 ([11], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the Lp-

norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j
denotes the j-fold product

space RN�:::�RN endowed with the max-norm kxk(RN )j := max
1���j

kx�kp, where

x := (x1; :::; xj) 2
�
RN
�j
:

Let
�
X; k�k


�
be a general Banach space. Then the space Lj := Lj

��
RN
�j
;X
�

of all j-multilinear continuous maps g :
�
RN
�j ! X, j = 1; :::;m, is a Banach

space with norm

kgk := kgkLj := sup�
kxk

(RN )j
=1

� kg (x)k
 = sup kg (x)k

kx1kp ::: kxjkp

: (44)

Let M be a non-empty convex and compact subset of Rk and x0 2M is �xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a continuous

function, whose Fréchet derivatives (see [22]) f (j) : O ! Lj = Lj

��
RN
�j
;X
�

exist and are continuous for 1 � j � m, m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2

�
RN
�j
, x 2M .

We will work with f jM :
Then, by Taylor�s formula ([15]), ([22], p. 124), we get

f (x) =

mX
j=0

f (j) (x0) (x� x0)j

j!
+Rm (x; x0) , all x 2M; (45)
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where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

�
f (m) (x0 + u (x� x0))� f (m) (x0)

�
(x� x0)m du;

(46)
here we set f (0) (x0) (x� x0)0 = f (x0) :

We consider

w := !1

�
f (m); h

�
:= sup

x;y2M :

kx�ykp�h




f (m) (x)� f (m) (y)


 ; (47)

h > 0:

We obtain


�f (m) (x0 + u (x� x0))� f (m) (x0)� (x� x0)m





�


f (m) (x0 + u (x� x0))� f (m) (x0)


 � kx� x0kmp �

w kx� x0kmp
�
u kx� x0kp

h

�
; (48)

by Lemma 7.1.1, [1], p. 208, where d�e is the ceiling.
Therefore for all x 2M (see [1], pp. 121-122):

kRm (x; x0)k
 � w kx� x0kmp
Z 1

0

�
u kx� x0kp

h

�
(1� u)m�1

(m� 1)! du

= w�m

�
kx� x0kp

�
(49)

by a change of variable, where

�m (t) :=

Z jtj

0

l s
h

m (jtj � s)m�1
(m� 1)! ds =

1

m!

0@ 1X
j=0

(jtj � jh)m+

1A , 8 t 2 R;
is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

�m (t) �
 

jtjm+1

(m+ 1)!h
+
jtjm

2m!
+

h jtjm�1

8 (m� 1)!

!
; 8 t 2 R; (50)

with equality true only at t = 0.
Therefore it holds

kRm (x; x0)k
 � w

 
kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
; 8 x 2M:

(51)
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We have found that 





f (x)�
mX
j=0

f (j) (x0) (x� x0)j

j!











�

!1

�
f (m); h

� kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
<1; (52)

8 x; x0 2M:

Here 0 < !1
�
f (m); h

�
<1, by M being compact and f (m) being continuous

on M .
One can rewrite (52) as follows:





f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!











�

!1

�
f (m); h

� k� � x0km+1p

(m+ 1)!h
+
k� � x0kmp
2m!

+
h k� � x0km�1p

8 (m� 1)!

!
; 8 x0 2M; (53)

a pointwise functional inequality on M .
Here (� � x0)j maps M into

�
RN
�j
and it is continuous, also f (j) (x0) maps�

RN
�j
into X and it is continuous. Hence their composition f (j) (x0) (� � x0)j

is continuous from M into X.

Clearly f (�)�
Pm

j=0
f(j)(x0)(��x0)j

j! 2 C (M;X), hence



f (�)�Pm

j=0
f(j)(x0)(��x0)j

j!







2

C (M).

Let
neLNo

N2N
be a sequence of positive linear operators mapping C (M) into

C (M) :

Therefore we obtain0@eLN
0@





f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!











1A1A (x0) �

!1

�
f (m); h

�24
�eLN �k� � x0km+1p

��
(x0)

(m+ 1)!h
+

�eLN �k� � x0kmp �� (x0)
2m!

+
h
�eLN �k� � x0km�1p

��
(x0)

8 (m� 1)!

35 ; (54)

8 N 2 N, 8 x0 2M .
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Clearly (54) is valid when M =
NQ
i=1

[ai; bi] and eLn = eAn, see (27).
All the above is preparation for the following theorem, where we assume

Fréchet di¤erentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An; eAn ful�ll its assumptions, see (26), (27), (29), (30) and (31).
We present the following high order approximation results.

Theorem 11 Let O open subset of
�
RN ; k�kp

�
, p 2 [1;1], such that

NQ
i=1

[ai; bi] �

O � RN , and let
�
X; k�k


�
be a general Banach space. Let m 2 N and f 2

Cm (O;X), the space of m-times continuously Fréchet di¤erentiable functions

from O into X. We study the approximation of f j NQ
i=1

[ai;bi]
: Let x0 2

�
NQ
i=1

[ai; bi]

�
and r > 0. Then
1) 





(An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)











�

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (55)

2) additionally if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k
 �

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(56)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

3)

k(An (f)) (x0)� f (x0)k
 �
mX
j=1

1

j!




�An �f (j) (x0) (� � x0)j�� (x0)





+

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(57)
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�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

and
4) 


kAn (f)� fk



1;

NQ
i=1

[ai;bi]
�

mX
j=1

1

j!








�An �f (j) (x0) (� � x0)j�� (x0)









1;x02

NQ
i=1

[ai;bi]

+

!1

0@f (m); r 


� eAn �k� � x0km+1p

��
(x0)




 1
m+1

1;x02
NQ
i=1

[ai;bi]

1A
rm!


� eAn �k� � x0km+1p

��
(x0)




( m
m+1 )

1;x02
NQ
i=1

[ai;bi]
(58)

�
1

(m+ 1)
+
r

2
+
mr2

8

�
:

We give

Corollary 12 (to Theorem 11, case of m = 1) Then
1)

k(An (f)) (x0)� f (x0)k
 �



�An �f (1) (x0) (� � x0)�� (x0)






+

1

2r
!1

�
f (1); r

�� eAn �k� � x0k2p�� (x0)� 1
2

��� eAn �k� � x0k2p�� (x0)� 1
2

(59)�
1 + r +

r2

4

�
;

and
2) 


k(An (f))� fk



1;

NQ
i=1

[ai;bi]
�








�An �f (1) (x0) (� � x0)�� (x0)









1;x02

NQ
i=1

[ai;bi]

+

1

2r
!1

0@f (1); r 


� eAn �k� � x0k2p�� (x0)


 1
2

1;x02
NQ
i=1

[ai;bi]

1A



� eAn �k� � x0k2p�� (x0)


 1

2

1;x02
NQ
i=1

[ai;bi]

�
1 + r +

r2

4

�
; (60)

r > 0:
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We make

Remark 13 We estimate (0 < � < 1, m;n 2 N : n1�� > 2),

eAn �k� � x0km+11

�
(x0) =

Pbnbc
k=dnae



 k
n � x0



m+1
1 Z� (nx0 � k)Pbnbc

k=dnae Z� (nx0 � k)
(23)
<

�
2�

arctan (��)

�N bnbcX
k=dnae





kn � x0




m+1
1

Z� (nx0 � k) = (61)

�
2�

arctan (��)

�N
8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:


 k
n � x0




1 � 1

n�





kn � x0




m+1
1

Z� (nx0 � k)+

bnbcX
8<: k = dnae
:


 k
n � x0




1 > 1

n�





kn � x0




m+1
1

Z� (nx0 � k)

9>>>>>>=>>>>>>;
(24)
�

�
2�

arctan (��)

�N (
1

n�(m+1)
+

 
1� h�

�
n1�� � 2

�
2

!
kb� akm+11

)
; (62)

(where b� a = (b1 � a1; :::; bN � aN )).

We have proved that (8 x0 2
NQ
i=1

[ai; bi])

eAn �k� � x0km+11

�
(x0) <�

2�

arctan (��)

�N (
1

n�(m+1)
+

 
1� h�

�
n1�� � 2

�
2

!
kb� akm+11

)
=: '1 (n)

(63)
(0 < � < 1, m;n 2 N : n1�� > 2).
And, consequently it holds


 eAn �k� � x0km+11

�
(x0)





1;x02

NQ
i=1

[ai;bi]
<

�
2�

arctan (��)

�N (
1

n�(m+1)
+

 
1� h�

�
n1�� � 2

�
2

!
kb� akm+11

)
= '1 (n)! 0; as n! +1:

(64)
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So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1;1], from
Theorem 11 we have the convergence to zero in the right hand sides of parts (1),
(2).

Next we estimate



� eAn �f (j) (x0) (� � x0)j�� (x0)






:

We have that

� eAn �f (j) (x0) (� � x0)j�� (x0) = Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z� (nx0 � k)Pbnbc

k=dnae Z� (nx0 � k)
:

(65)
When p =1, j = 1; :::;m; we obtain




f (j) (x0)

�
k

n
� x0

�j








�



f (j) (x0)






kn � x0





j
1
: (66)

We further have that


� eAn �f (j) (x0) (� � x0)j�� (x0)






(23)
<

�
2�

arctan (��)

�N 0@ bnbcX
k=dnae






f (j) (x0)
�
k

n
� x0

�j








Z� (nx0 � k)

1A �

�
2�

arctan (��)

�N 0@ bnbcX
k=dnae




f (j) (x0)






kn � x0




j
1
Z� (nx0 � k)

1A = (67)

�
2�

arctan (��)

�N 


f (j) (x0)



0@ bnbcX
k=dnae





kn � x0




j
1
Z� (nx0 � k)

1A =

�
2�

arctan (��)

�N 


f (j) (x0)



8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:


 k
n � x0




1 � 1

n�





kn � x0




j
1
Z� (nx0 � k)

+

bnbcX
8<: k = dnae
:


 k
n � x0




1 > 1

n�





kn � x0




j
1
Z� (nx0 � k)

9>>>>>>=>>>>>>;
(24)
� (68)

�
2�

arctan (��)

�N 


f (j) (x0)


( 1

n�j
+

 
1� h�

�
n1�� � 2

�
2

!
kb� akj1

)
! 0, as n!1:
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That is 


� eAn �f (j) (x0) (� � x0)j�� (x0)





! 0, as n!1:

Therefore when p =1, for j = 1; :::;m, we have proved:


� eAn �f (j) (x0) (� � x0)j�� (x0)





<

�
2�

arctan (��)

�N 


f (j) (x0)


( 1

n�j
+

 
1� h�

�
n1�� � 2

�
2

!
kb� akj1

)
�

(69)�
2�

arctan (��)

�N 


f (j)



1

(
1

n�j
+

 
1� h�

�
n1�� � 2

�
2

!
kb� akj1

)
=: '2j (n) <1;

and converges to zero, as n!1:

We conclude:
In Theorem 11, the right hand sides of (57) and (58) converge to zero as

n!1, for any p 2 [1;1].
Also in Corollary 12, the right hand sides of (59) and (60) converge to zero

as n!1, for any p 2 [1;1] :

Conclusion 14 We have proved that the left hand sides of (55), (56), (57),
(58) and (59), (60) converge to zero as n ! 1, for p 2 [1;1]. Consequently
An ! I (unit operator) pointwise and uniformly, as n ! 1, where p 2 [1;1].
In the presence of initial conditions we achieve a higher speed of convergence,
see (56). Higher speed of convergence happens also to the left hand side of (55).

We give

Corollary 15 (to Theorem 11) Let O open subset of
�
RN ; k�k1

�
, such that

NQ
i=1

[ai; bi] � O � RN , and let
�
X; k�k


�
be a general Banach space. Let m 2 N

and f 2 Cm (O;X), the space of m-times continuously Fréchet di¤erentiable
functions from O into X. We study the approximation of f j NQ

i=1

[ai;bi]
: Let x0 2�

NQ
i=1

[ai; bi]

�
and r > 0. Here '1 (n) as in (63) and '2j (n) as in (69), where

n 2 N : n1�� > 2, 0 < � < 1, j = 1; :::;m: Then
1) 





(An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)











�

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (70)
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2) additionally, if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k
 �

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (71)

3) 


kAn (f)� fk



1;
NQ
i=1

[ai;bi]
�

mX
j=1

'2j (n)

j!
+

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 ) (72)�

1

(m+ 1)
+
r

2
+
mr2

8

�
=: '3 (n)! 0, as n!1:

We continue with

Theorem 16 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k
 � !1

�
f;
1

n�

�
+
�
1� h�

�
n1�� � 2

�� 


kfk



1 =: �2 (n) ;

(73)
2) 


kBn (f)� fk



1 � �2 (n) : (74)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly. The speed of convergence above is max
�
1
n�
;
�
1� h�

�
n1�� � 2

���
:

Proof. As similar to [12] is omitted.
We give

Theorem 17 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
�
1� h�

�
n1�� � 2

�� 


kfk



1 =: �3 (n) ;

(75)
2) 


kCn (f)� fk



1 � �3 (n) : (76)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.
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Proof. As similar to [12] is omitted.
We also present

Theorem 18 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
�
1� h�

�
n1�� � 2

�� 


kfk



1 = �4 (n) ;

(77)
2) 


kDn (f)� fk






1
� �4 (n) : (78)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. As similar to [12] is omitted.
Next we perform multi layer neural network approximations.
We make

De�nition 19 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k


�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z� (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(79)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k
 �


kfk



1 :

Hence Fn (f) is a bounded linear operator with



kFn (f)k



1 �




kfk



1.
We need

Theorem 20 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Very lengthy and as similar to [12] is omitted.

Remark 21 By (26) it is obvious that



kAn (f)k



1 �




kfk



1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:

20



Clearly then




L2n (f)





1 =



kLn (Ln (f))k



1 �




kLn (f)k



1 �



kfk



1 ; (80)

etc.
Therefore we get




Lkn (f)





1 �




kfk



1 , 8 k 2 N, (81)

the contraction property.
Also we see that




Lkn (f)





1 �






Lk�1n (f)










1
� ::: �




kLn (f)k



1 �



kfk



1 : (82)

Here Lkn are bounded linear operators.

Notation 22 Here N 2 N, 0 < � < 1: Denote by

cN :=

8<:
�

2�
arctan(��)

�N
, if Ln = An;

1, if Ln = Bn; Cn; Dn;
(83)

' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(84)


 :=

8<:C

�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(85)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:

(86)

We give the condensed

Theorem 23 Let f 2 
, 0 < � < 1, x 2 Y ; n; N 2 N with n1�� > 2. Then
(i)

kLn (f; x)� f (x)k
 � cN

h
!1 (f; ' (n)) +

�
1� h�

�
n1�� � 2

�� 


kfk



1i =: �� (n) ;
(87)

where !1 is for p =1;
and
(ii) 


kLn (f)� fk



1 � �� (n)! 0, as n!1: (88)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.
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Proof. By Theorems 9, 16, 17, 18.
Next we do iterated multilayer neural network approximation (see also [9]).
We make

Remark 24 Let r 2 N and Ln as above. We observe that

Lrnf � f =
�
Lrnf � Lr�1n f

�
+
�
Lr�1n f � Lr�2n f

�
+�

Lr�2n f � Lr�3n f
�
+ :::+

�
L2nf � Lnf

�
+ (Lnf � f) :

Then


kLrnf � fk



1 �





Lrnf � Lr�1n f











1
+





Lr�1n f � Lr�2n f











1
+




Lr�2n f � Lr�3n f











1
+ :::+






L2nf � Lnf





1 +



kLnf � fk



1 =




Lr�1n (Lnf � f)











1
+





Lr�2n (Lnf � f)











1
+





Lr�3n (Lnf � f)











1

+:::+



kLn (Lnf � f)k



1 +




kLnf � fk



1 � r



kLnf � fk



1 : (89)

That is 


kLrnf � fk



1 � r



kLnf � fk



1 : (90)

We give the following multilayer neural network approximation.

Theorem 25 All here as in Theorem 23 and r 2 N, �� (n) as in (87). Then


kLrnf � fk



1 � r�� (n) : (91)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. By (90) and (88).
We make

Remark 26 Let m1; :::;mr 2 N : m1 � m2 � ::: � mr, 0 < � < 1, f 2 
.
Then ' (m1) � ' (m2) � ::: � ' (mr), ' as in (84).
Therefore

!1 (f; ' (m1)) � !1 (f; ' (m2)) � ::: � !1 (f; ' (mr)) : (92)

Assume further that m1��
i > 2, i = 1; :::; r. Then

1� h�
�
m1��
1 � 2

�
2

�
1� h�

�
m1��
2 � 2

�
2

� ::: �
1� h�

�
m1��
r � 2

�
2

: (93)
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Let Lmi as above, i = 1; :::; r; all of the same kind.
We write

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f =

Lmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
� Lmr

�
Lmr�1 (:::Lm2f)

�
+

Lmr

�
Lmr�1 (:::Lm2

f)
�
� Lmr

�
Lmr�1 (:::Lm3

f)
�
+

Lmr

�
Lmr�1 (:::Lm3

f)
�
� Lmr

�
Lmr�1 (:::Lm4

f)
�
+ :::+ (94)

Lmr

�
Lmr�1f

�
� Lmrf + Lmrf � f =

Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f) + Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)+

Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f) + :::+ Lmr

�
Lmr�1f � f

�
+ Lmr

f � f:

Hence by the triangle inequality property of



k�k



1 we get




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�




Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f)










1
+




Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)










1
+




Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f)










1
+ :::+




Lmr

�
Lmr�1f � f
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1
+



kLmr

f � fk





1

(repeatedly applying (80))

�



kLm1

f � fk





1
+



kLm2

f � fk





1
+



kLm3

f � fk





1
+ :::+






Lmr�1f � f










1
+



kLmr

f � fk





1
=

rX
i=1




kLmi
f � fk






1
: (95)

That is, we proved




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmi
f � fk






1
: (96)

We give the following multi layer neural network general approximation re-
sult.
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Theorem 27 Let f 2 
; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1

; :::; Lmr
) as (Am1

; :::; Amr
)

or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p =1: Then

Lmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
(x)� f (x)






�




Lmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
� f











1
�

rX
i=1




kLmif � fk





1
�

cN

rX
i=1

h
!1 (f; ' (mi)) +

�
1� h�

�
m1��
i � 2

��


kfk



1i �
rcN

h
!1 (f; ' (m1)) +

�
1� h�

�
m1��
1 � 2

��


kfk



1i : (97)

Clearly, we notice that the speed of convergence to the unit operator of the iter-
ated multilayer neural network operator is not worse than the speed of Lm1 :

Proof. Using (96), (92), (93) and (87), (88).
We continue with

Theorem 28 Let all as in Corollary 15, and r 2 N. Here '3 (n) is as in (72).
Then 


kArnf � fk



1 � r




kAnf � fk



1 � r'3 (n) : (98)

Proof. By (90) and (72).

Application 29 A typical application of all of our results is when
�
X; k�k


�
=

(C; j�j), where C are the complex numbers.
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