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Abstract

Here we examine the multivariate quantitative approximations of Ba-
nach space valued continuous multivariate functions on a box or RV,
N € N, by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We research also the
case of approximation by iterated operators of the last four types, that
is multi hidden layer approximations. These approximations are achieved
by establishing multidimensional Jackson type inequalities involving the
multivariate modulus of continuity of the engaged function or its high or-
der Fréchet derivatives. Our multivariate operators are defined by using a
multidimensional density function induced by a parametrized arctangent
sigmoid function. The approximations are pointwise and uniform. The
related feed-forward neural networks are with one or multi hidden layers.
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliagnet-Euvrard and ” Squashing” types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The defining these operators
"bell-shaped” and ”squashing” functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.

For this article the author is motivated by the article [16] of Z. Chen and F.
Cao, also by [4]-[12], [17], [18].

The author here performs multivariate parametrized arctangent sigmoid
function based neural network approximations to continuous functions over
boxes or over the whole RV, N € N. Also he does the iterated multlayer
approximation. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its high order Fréchet
derivative and given by very tight multidimensional Jackson type inequalities.

The author here comes up with the ”right” precisely defined multivariate
normalized, quasi-interpolation neural network operators related to boxes or
R, as well as Kantorovich type and quadrature type related operators on RV.
Our boxes are not necessarily symmetric to the origin. In preparation to prove
our results we establish important properties of the basic multivariate density
function induced by a parametrized arctangent sigmoid function and defining
our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

N,L(m)zz:cja((aj-@—!—bj), zeR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models the activation function is the arctangent sigmoid function. About neural
networks read [19]-[21].

2 Background

We consider the function

*od
arctanx = / 722, z € R. (1)
o 1+z2
We will be using the following parametrized function with a parameter A > 0:
AL
2 T 2 [ dz
hy (z) := p arctan (5/\1‘) = ;A 1122 z e R (2)



We have that
hx(0) =0, ha (=z) = —hx (z), hy(+00) =1, hy(-00) = —1,

and
2 1 A ZD
y =—|——m3 | ="—"—5=>0 3
)\(x) T <1+7r2);12;p2> 92 4+7T2)\2$2 ( )
all x € R.
So that h) is a strictly increasing function from R into [—1, 1], with horiza-
ontal asymptotes y = £1.
Furthermore we get that

8r23
Ry (z) = — (2> r, x€R. (4)
( )

44 m2\%g2
Clearly then

Ry (z) <0, for z € (0,+00),
and

Ry (z) >0, for z € (—00,0),

with R% (0) = 0.

That is hy is strictly concave over [0,+00) and hy is strictly convex over
(—00,0]. Obviosly Ay € C' (R).

Therefore h)y is a sigmoid function fulfilling exactly all the properties of the
general sigmoid function described in [13].

When 0 < A < 1, hy is expected to outperform the ReLu and Leaky RelLu
activation functions.

We consider the activation function

Ua@) = 7@+ 1) —ha (- 1), sER, Q

As in [11], p. 285, we get that ¢, (—z) = ¢, (z), thus ¢, is an even function.
Since x +1 >z — 1, then hy (x + 1) > hy (z — 1), and ¥, (z) > 0, all x € R.

We see that
hx (1) arctan (g)\)

pa(0) = 22 - EEEET (6)

Let x > 1, we have that

(h\ (x+1) = k) (x — 1)) <0,

A~ =

Uh () =

by R, being strictly decreasing over [0, +00).



Let now 0 < z < 1, then 1 —2z >0and 0 < 1 —2 < 1+ z. It holds
R\ (z —1) = b} (1 —2) > R (z +1), so that again ¢ (z) < 0. Consequently
1y, is stritly decreasing on (0, +00) .

Clearly, 1, is strictly increasing on (—o0,0), and ) (0) = 0.

See that

i vy (@) = 7 (s (+90) — B (+00)) = 0, (7
and 1
iy () = § (ha (—00) = ha (—50)) =0, Q

That is the z-axis is the horizontal asymptote on ;.
Conclusion, v, is a bell symmetric function with maximum

_hx(1) arctan (’B—A)
2 T '

‘We need

Theorem 1 We have that
Y ds@-i)=1, VareR (9)
Proof. As exactly the same as in [11], p. 286 is omitted. m

Theorem 2 It holds -
/ ¥y (z)de = 1. (10)

Proof. Similar to [11], p. 287. It is omitted. m
Thus 9, (z) is a density function on R.
We give

Theorem 3 Let 0 < a < 1, and n € N with n' =% > 2. It holds

> by o -y < LZMETEZZ) gy

Notice that

Proof. By [13]. m

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

We further give



Theorem 4 Let x € [a,b] C R and n € N so that [na] < |nb|. It holds

1 1 2m
< = , Vaelab]. (12)
ZIEZana] ¥y (nz —k) (1) arctan(m)
Proof. As similar to [11], p. 289 is omitted. m
Remark 5 We have that
[nb]
lim Y 4y (nw—k) # 1, (13)

k=[na]

for at least some x € [a, b].
See [11], p. 290, same reasoning.

Note 6 For large enough n we always obtain [na] < |nb|. Also a < % <b, iff
[na] < k < |nb|. In general it holds (by (9))

[nb]

Y ez —k)<1. (14)
k=[na]
We introduce
N
Zx (21, 2N) = 2y (2) = HT/JA (), == (z1,...,2n) €RY, NeN. (15)
i=1

It has the properties:
(i) Zx(z) >0, Vo €RY,
(i)

Yo Zn@—k)y= > > Y Zi(m—k ey —ky) =1,

k=—o00 ki=—00 ko=—c kny=—00
(16)
where k := (k1,....,k,) € ZN, ¥ 2 € RV,
hence
(iii)
> Zi(nz—k)=1, (17)
k=—o0
VzeRN:neN,
and
(iv)
/ Zy (z)dz =1, (18)
RN



that is Z is a multivariate density function.
Here denote ||z||_ := max {|z1], ..., |zn|}, 2 € RV, also set 00 := (00, ..., 0),
—00 := (=00, ..., —00) upon the multivariate context, and

[na] := ([na1],..., [nan]),

(19)
[nb] := (|nb1], ..., [nbN]),
where a := (ay, ...,an), b := (b1, ...,bn) .
We obviously see that
[nb] |nb] N
Z Zy\ (nx — k) = Z <H1/)A (nx; — kl)> =
k=[na] k=[na] \i=1
Lnb1 ] [nbw ] N N [nbs]
SIS S | RN S 1D oA
ki=[na1] kn=[nan] \i=1 =1 \k;=[na;]
(20)
For 0 < 8 <1andn €N, afixed z € RY, we have that
[nd]
Z Zy\(nx — k) =
k=[na]

|nb] [nb]

Z Zx(nx —k)+ Z Zy(nx — k). (21)

{ k = [na] { k = [na)
15

I~ all, < 2

0o = nf

— 2l > 7

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition ||% - 1:||oo > niﬁ implies that there exists at least one |% — zr| > n—l,a,
where r € {1,..., N}.

(v) As in [10], pp. 379-380, we derive that

[nb] 1-8
1-— -2
> Zy (nx — k) 2 h*(z ), 0<pB<1, (22
{ k = [na)
15—l > 77

withn e N:n!=F >2 =z ¢ Hf\il [a, b;] .
(vi) By Theorem 4 we get that

1 1 2w N
S N S AT (arctan <m>> I



Vae (HiN:l [ai,bi]), neN.
It is also clear that
(vii)
> 1—hy(nt=P =2
> Z (nz — k) < A(’; ), (24)

{ k= —o0
12— 2l > 75

0<B<l,neN:n'"#>2 zecRVN.
Furthermore it holds

|nb|
lim Y Zy(naz—k)#1, (25)
k=[na]

for at least some x € (Hf\;l [a;, bi]) .

Here (X, ||||7> is a Banach space.

Let f € C (Hf;l (@i, bi] ,X) , = (T1,...,ZN) € vazl [ai, bi], n € N such
that [na;] < |nb;],7i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (z := (z1,...,xN) € (Hf\il [@;, bl]))

S £ (£) 2y (nz — )
An (f, 21, xn) = Ap (fyx) := k anb]j —
Zk‘:(na] Z/\ (’n‘x - k)
nb nbs | [nb N

Sy S Dy (55 (I (o~ )
nb; .

T1 (S0 v (1 — k)

<

For large enough n € N we always obtain [na;]
a; < % < by, iff [na;] < ki < [nbi),i=1,..,N.

When geC (]_L 1 lai, bl]) we define the companion operator

|nb;|, i = 1,...,N. Also

I (g0 1o Dbt 9 () 23 (n = )
m T ZL"bJ Zy(nz—k)
k=[na] <A

Clearly ﬁn is a positive linear operator. We have that

Avn (1,3’,‘) =1, Vz e (H [ai,bi}> .

Notice that An(f)GC(Hl 1[al,b],X> and A, (g )EC’(]_L 1[az,b]>.



Furthermore it holds

Sl VDL 500205 o )

[An (f,2)Il, < o (28)
V ZIE:ana] Zx (TL(ﬂ - k)
Yz eI, [aibi].
N
Clearly |||, € C (Hi:1 (s, bi]) .
So, we have that
1A (£,2)1, < An (111, 2) (29)
Vo e 1L, fabl, ¥ n e N,V f e C (T, [as,bi], X)
Let ce X and ge C (Hi:l [ai,bi]> then cg € C (H2 1 laq, by ,X) .
Furthermore it holds
A, (eg, )—cAn g,x), Ve H a;, b (30)
Since A, (1) = 1, we get that
Ap(c)=¢, VceX. (31)

We call /Nln the companion operator of A,,.
For convinience we call

|nb]

= Y f( )ZA (nz — k) =

k=[na]

[nby] [nb2 ] |nbn |

N
DD D f(%?) <H1/}/\(n:ziki)>, (32)

ki=[nai| ka=[naz] kn=[nan|

Vae (HL [ai,bi]).

That is A (f.)
A, (f,x) := n i/, T , 33
M P »
Ve (Hl 1[al,b]), n e N.
Hence
A (F,2) = £ @) (S 22 (2 = 1))
Ay (fox) = f(2) = [1b] . (34)

2 kena] Zx (@ — k)



Consequently we derive

(23) o N |nb]
| An (f7$)—f($)H7 < (arctan(ﬂ'/\)) AY (f,x) — f(x) Z Zy (nx = k)| ,
k=[na] -

(35)
Ve (I lasb])

We will estimate the right hand side of (35).
For the last and others we need

Definition 7 ([11], p. 274) Let M be a convex and compact subset of (RN, ||~Hp>,

p € [1,00], and (X, H||,y) be a Banach space. Let f € C(M,X). We define the
first modulus of continuity of f as

wi (f,6):= " sup  |[f(z)=F@,, 0<0<diam(M). (36)
z,y € M :
o —yll, <0

If 6 > diam (M), then
w1 (f,9) = w1 (f,diam (M)). (37)

Notice wy (f,d) is increasing in 6 > 0. For f € Cp (M, X) (continuous and
bounded functions) ws (f,d) is defined similarly.

Lemma 8 ([11], p. 27}) We have wy (f,0) — 0 asd | 0, iff f € C(M,X),

where M is a convex compact subset of (RN, H-||p), p € [l,].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),
iff wy(f,6) — 0 as § | 0, where w; is defined similarly to (36). The space
Cp (RN , X ) denotes the continuous and bounded functions on RY.

When f € Cp (RY, X) we define,

By (f.2) := By (fy@1, o ay) 1= i f(i) Zy (nx — k) :=

k=—o0

PEDIIND'S f<k1 % kN) (ﬂw (na k)) (33)
Sy ey i ) ]
k1=—00 ka=—00 kn=—00 non n i=1 g
n €N,V azeRY, N eN, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RV, X) we define the multivariate Kantorovich type neural
network operator

k

Con(fyx):=Cyh(f,21,....,xN) := Z (nN/nf(t)dt> Zx(nx—k) =

k=—o00 n



POED IS -

00 00 . < k1+1 ko41 ky+1
kl 7{)0]62 — 00 k‘N — 00

. f(tl,...,tN) dtl...dtN>
L) kEn

: (H Wy (nz; — ka-)) : (39)

neN, VaeRN,

Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D, (f,z), n € N, as follows.

Let 0 = (0y,....,05) € NV r = (ry,...,7x) € Zf, Wy = Wy, ry,..ry = 0, such

0 01 02 On
that > w,= Y > . > Wy pgen =1; k€ ZYN and
r=0 r1=07r2=0 rny=0

0
Onk (f) = On by koo ken (f) = Zw,,,f (:i + r) _

nb
r=0

91 62
k k k
DD IID SR o (BB e B ) )
T1= 0T2 0 TN= =0 2 N
where 7 := (%, (%’ e (%) .
We set
D, (f,x) =Dy (f,x1,....xN Z Ok (f) Zx (nx — k) = (41)
k=—oc0
¥ 3 e 3 s ) ([T 0).
ki1=—00 ko=—00 kn=—o0
vV eRY,

In this article we study the approximation properties of A,, B,,C,, D,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate Parametrized Arctangent Neural
Network Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

10



Theorem 9 Let f € C(Hg\il [ai,bi],X>, 0< B <1, zc€ (vazl [ai,bi]),
N,n € N with n*=% > 2. Then
1)
[An (f, @) = f @), <

(%)N [M (f’ nlﬁ) (1= hy (077~ 2)) Hufn,yHm] =\ (),

and
2)
140 () =11, <2 (43)
We notice that lim A, (f) ”iw f, pointwise and uniformly.

Above wy is with respect to p = oo and the speed of convergnece is
max (niﬁ, (1 — hy (nl_ﬁ — 2))) .

Proof. As similar to [12] is omitted. See also [14]. m
We make

Remark 10 ([11], pp. 263-266) Let (RN, H~||p), N € N; where ||-[|,, is the Ly,-

norm, 1 < p < oco. RY is a Banach space, and (RN)J denotes the j-fold product

space RN x ... xRN endowed with the max-norm [zl (gays == max |[2xl],, where
1<A<; p

z = (T1,...,z;) € (]RN)j.
Let (X, ||||ﬂ/) be a general Banach space. Then the space L; := L; ((RN)J ;X)

of all j-multilinear continuous maps g : (RN)j — X, 7=1,...,m, is a Banach
space with norm

llg (@)l

_ 44
Y R

gl ==1llgll., == suwp llg(@)ll, =sup

loll vy =1

Let M be a non-empty convex and compact subset of R¥ and xo € M is fized.

Let O be an open subset of RN : M C O. Let f : O — X be a continuous
function, whose Fréchet derivatives (see [22]) f9) : O — L; = L; ((RN)J ;X)
exist and are continuous for 1 <j <m, m € N.

Call (z — x0) = (& — xg, ..., & — x0) € RV, 2 € M.

We will work with f|a.

Then, by Taylor’s formula ([15]), ([22], p. 124), we get

O (o) (= 2o)?
f(m)zzfj ( O)j(' o)’ + Ry (x,20), allz € M, (45)
3=0 '

11



where the remainder is the Riemann integral

Rin (2, 20) = /0 % (£ (0 + u (@ = 20)) = £ (20)) (& = 20)" du,

(m—1)
(46)
here we set fO) (z0) (x — 20)° = f ().
We consider
wimwr (f00) = swp £ (@) - £ ()| (47)
zr,yeM:
lz—yll,<h
h > 0.
We obtain
| (7 oo = w0)) = £ ) (& = 20)"| <
70 (@0 + 1 (@ = w0)) = £ (o) |- llz = 2ol <
m [ullz = ol
w ||z — zol|, [hp—‘ ) (48)
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
1 UH.’,U*ZQH (l_u)m—l
< _ m p
I (o0l < vl =zl [ [0 | G
= w®y (Jlz = ol (49)

by a change of variable, where
It - g (It| — S)mfl 1 0o .

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

2 A 17 e
q)NL(t)S<M+2W+M 5 VtGR, (50)

with equality true only at t = 0.
Therefore it holds

B (oo, <o (120l el Rl —oly )
O (m+1)'h 2m) 8(m—1)! )’
(51)

12



We have found that

- @) Zo l‘—xoj
TR P LICHICETA

il
i=0 I ,
m—+1 m m—1
- - h|z — x|
(m) h) [z — zoll, lz — o, » 5
wl(f ’ ((m—l—l)!h T T sy ) < (92)

YV x,xg € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f(™) being continuous
on M.

One can rewrite (52) as follows:

m ) (20) (- — me )

1l
i=0 I ,
m+1 m m—1
- —wlly A=l
(m) h, H xo”p || xo”p P M
w1 (f ’ )( (m+1)h T 8(m —1)! ) Va0 € M, (53)

a pointwise functjonal wnequality on M.

Here (- — z0)? maps M into (RN)] and it is continuous, also fU) (xo) maps
(RN)j into X and it is continuous. Hence their composition fU) (z) (- — xq)’
s continuous from M into X.

Clearly f (-)=>"5~ W € C (M, X), hence Hf () =20 W
C(M).

Let {EN} be a sequence of positive linear operators mapping C (M) into
). NEN

Therefore we obtain

S
N

~ ™) () (- — 20)
=0 '

™)) (= L —xo||7) ) (z
o (70 (Ex (I (mjnl,,) : )) o) (I (1 zmo!u,, )) (@)
(B (1=l »

8(m —1)! ’

VNeN,Vaxye M.

13



Clearly (54) is valid when M = ﬁ [a;,b;]) and L, = A,, see (27).

All the above is preparation fo;_tlhe following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,, A, fulfill its assumptions, see (26), (27), (29), (30) and (31).

We present the following high order approximation results.

N
Theorem 11 Let O open subset of (RN» ||‘||p), p € [1,00], such that ] [as,b;] C
i=1

O C RY, and let (X, ||H7) be a genmeral Banach space. Let m € N and f €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

N
from O into X. We study the approximation of f| x ol Let xg € (H [a;, bl]>
L1lai,0; i=1
andr > 0. Then 1
1)
(An (D) @0) = > = (An (FP (@0) (- = w0)) ) (a0)|| <
=0
.

wi ( F,r (A (11 = zoll™)) (o) T "
( (- — ) ) )((A;(w-—mm$*0)<xw)(”“)

Lmin+;+@jy (55)

2) additionally if f9) (z¢) =0, j = 1,...,m, we have

1(An (£)) (zo) = [ (o)l <

-rm! ((Zn (|| — xo”?“)) (xo))(m“)

(56)
1 r  mr?
Lm+n+2+gg}
3)
mﬂwnuw—fmmu_ffiMm4ﬂﬂmw<—mV»@mm+

14



R S
(m+1) 2 8 |’

and
4)
— A<
H[ 1bi
1
Sl (o ee—ael |
— 4! R 00,20 € [] [ai,bi]
o H N T
w1 (f , T (An (H xO”p )) (‘TO) oo,foelﬁl[a“bi]
rm)!
’< (” B 0Hm+l>) (z0) (MLH)N (58)
00,Z0 e_];[l[ai,bi]
1 me?
(m+1) 2 8 |
We give

Corollary 12 (to Theorem 11, case of m = 1) Then
1)

< (4n (5 @) (. = 20)) ) )|+

g (10 (1= 083)) ) ) (B (1= l)) )" 69

7,,2
1 _
[ +r+ 4}7
and
2)
I(An (£) = £1,| <
H ’1‘1511[%71”]
HH f(1 (z0) (- — o) )330) . +
Y oo,zoevl:[l[ai,bi]
1 _ 1
1 ) H A1 — 2ol H
S (f [ (A (1 = woll2)) (o) e o
=1
- ) 3 r?
| (A, (1 = 20l2)) (@) oo.z0 [1 o101 [1 et 4} 7 (60)
r > 0.

15



‘We make

Remark 13 We estimate (0 < a <1, m,n € N:nl=% > 2),

n m—+1
- " S at 1 = w20 2 (n0 — K) 29
Ay (11 = woll ™) (o) = == <

o ZLan Z)\ (nx() — k)

k=[na]
N [nb] m+1
2m k
_— - — Z — k)= 61
(manm)) ;]]]n v 2o b (61)
N [nb] m+1
2m k
_— - — Z —k
<arctan (77)\)) Z ” n 0 - r (nao — )+
{ k= [na]
% =@l < 7w
[nb] m+1
k (24)
Z on Zy (nxo — k) p <
n oo

{- Ei:[na] 1
= ol >

2 N 1 1—hy (n'= —2) il
- 2
(arctan (7r)\)) {na(m+1) + ( 9 16— all5 . (62)

(where b—a = (b —ay,....by —an)).

N
We have proved that (V xo € [] [ai, bi])

=1

A (Il = ol (o) <

2 N 1 1—hy (nl_o‘ — 2) mal
(arctan (7‘(’)\)) {na(m+1) + ( 9 [b—alls =t 1 (n)

(63)

O<a<l,mneN:nl=>2)
And, consequently it holds

[ EESRIED]

<

N
00,z0€ [] [ai,bi]
i=1

N -«
27 1 1—hy (nt7>—2) et
<arctan (77)\)) {na(m+1) + < 9 1b—all =¢(n) =0, asn— +oo.

(64)

16



So, we have that ¢1 (n) — 0, as n — +oo. Thus, when p € [1,00], from
Theorem 11 we have the convergence to zero in the right hand sides of parts (1),

(2). - 4
Next we estimate H (An (f(j) (o) (- — xo)])) (z0)
We have that

Y

Z/EZZ?M] 9 (20) (£ — 20)” Zx (nao — k)

Zchib[JnaW Zy (nzg — k)

(A0 (£9 @o) (- = 20)") ) (w0) =
When p =00, j =1,...,m, we obtain
‘ f(J) (z0) (k _ 3;0), <

.

We further have that

|G (9 - 20) ],

(amt::@rM)N ( % 79 (z0) (k _a:0>j

k=[na]

J

o o £ - =

Z)\ (nl‘o - k‘)) S

v

2T N L 2 J
(i) | @] |f o zimn-n) = ©n
=na] 0o
[nb) j
2 k
(arctan7r)\> Hf (zo H ( Z[: H" —xzo||  Zx (nxg k)) =
k= na—‘ [e%s)
[nd] j
2m k
(mm) |79 @ > [ NS
{ k = [na] *°
% ool < 5w
Lnb] j ,
+ Z Hs — ol Zx(nxo — k) (Jg“ (68)
k = [na] °
18 sl >

27 1 1—hy (nt7>=2) .
e — J) H b all
<arctan TA ) Hf (o { F t ( 9 [lb—alll, ¢ —0, as n — occ.
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That s '
H (gn (f(j) (o) (- — xo)J)) (mO)HW — 0, as n — o0.

Therefore when p = oo, for j =1,...,m, we have proved:

H( (f(J) ) (- —xo)j)) (Q:O)ny <

o L (=)
(w) |72 (@0 H{ ( > >|b—a||oo} <
(69)
27 1—hy(nt——2 .
(arctanm\) Hf(j)H {naj + ( : (2 )> [b— a”io} = Paj (n) < oo,

and converges to ZETO, as n — Q.

We conclude:

In Theorem 11, the right hand sides of (57) and (58) converge to zero as
n — oo, for any p € [1, o0].

Also in Corollary 12, the right hand sides of (59) and (60) converge to zero
as n — oo, for any p € [1, 0] .

Conclusion 14 We have proved that the left hand sides of (55), (56), (57),
(58) and (59), (60) converge to zero as n — oo, for p € [1,00]. Consequently
A, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (56). Higher speed of convergence happens also to the left hand side of (55).

We give
Corollary 15 (to Theorem 11) Let O open subset of (RN, ||||..), such that

N

[T lai,bi] € O CRY, and let (X, H||7) be a general Banach space. Let m € N
i=1

and f € C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let xp €

[ai,b;
i=1

N
(H [ai,bi]> and v > 0. Here 1 (n) as in (63) and py; (n) as in (69), where
i=1
neEN:n'" @ >2 0<a<l,j=1,..,m. Then

)
(4 ij( (79 o) (- = 20)")) a)| <

v




2) additionally, if f9) (x0) =0, j = 1,...,m, we have
(A () (20) — £ (20, <
wr (.7 (1 ()77 )

rm/!

m T mr2
e e R e R )

3)

[ERCRE N

i=1

i P2 (n)
< R
[aq,bi] ; .7!

wi (£, 1 (1 (m) 757

rm (01 (”))("ﬁrl) (72)
r - mr?
{(m:—l)—'—Z—kS} =:p3(n) — 0, as n — oo.

We continue with

Theorem 16 Let f € Cp (RN,X), 0< B <1, ze RN NneN with
n'=P > 2, wy is for p=oo. Then

1)
1B (1) = £ @)l < n (£ )+ (0= i (02 = 2) 111, | = e o,
(73)

2
180 () =111, <22 ). (74)

Given that f € (CU (RN,X) NCg (]RN,X)), we obtain lim B, (f) = f, uni-

formly. The speed of convergence above is max (#, (1 — hx (nl’ﬂ — 2))) .

Proof. As similar to [12] is omitted. m
We give

Theorem 17 Let f € Cp (RV,X), 0 < 8 < 1, z € RN, N,n € N with
n'=8 > 2, wy is for p=oo. Then

1)
1C (f,2) = f ()], < wr (f, % + nlﬁ>+(1 — hy (n'F = 2)) anHva —: \s (),
(75)
2)
[iCa (=11, _ < 2s ). (76)

Given that f € (CU (RN,X) NCg (]RN,X)) , we obtain lim C, (f) = f, uni-
formly.
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Proof. As similar to [12] is omitted. m
We also present

Theorem 18 Let f € Cp (RN,X), 0< B <1, ze RN NneN with
n'=P > 2, wy is for p=oco. Then

1
1D () = £ @)l <o (£ 2 )+ (1= (07 = 2) | =M o).
()
)
[1Dw (5= 11| < 2. (78)

Given that [ € (CU (RN,X) NCp (]RN,X)), we obtain lim D, (f) = f,

uniformly.

Proof. As similar to [12] is omitted. m
Next we perform multi layer neural network approximations.
We make

Definition 19 Let f € Cp (RY,X), N € N, where (X, ||||7) is a Banach

space. We define the general neural network operator

Fo(fix) = > L (f) Zx(nz—k) =

k=—o0
Bn(f7l')} Zflnk(f):f(%)klﬂ
Dy, (f, ), if bk (f) = 0k (f) -

Clearly l,,x, (f) is an X-valued bounded linear functional such that ||l,x (f)||, <

S
s |-
Hence F), (f) is a bounded linear operator with HHFn (Ol . < H||f||7 .
We need

Theorem 20 Let f € Cp (]RN,X), N >1. Then F, (f) € Cp (RN,X).

Proof. Very lengthy and as similar to [12] is omitted. m

o
A, (fyeC ]J—VI [ai, bi], X |, given that f € C H [a;, b;] ,X)

i=1

=1
Call L,, any of the operators A, By, Cy, Dy,.

Remark 21 By (26) it is obvious that H”A" (f) < H||fH7H < 00, and

(oo}

=
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Clearly then

122 DI = {120 L] < 0z | < e o)

etc.
Therefore we get

iz ol < i o veen, (81)

the contraction property.
Also we see that

lies ol | < ies o] << iza o | <] 2
Here LE are bounded linear operators.

Notation 22 Here N € N, 0 < 8 < 1. Denote by

2m N .
N = (m) o U Ln = Ay, (83)
1, if Ln = By, Cp, Dy,

1 .
L nh Zan = An7 Bn»
P ()= {;+;ﬁ, if L = Co, D, (84
N .
0. [ (I erd ). it = (55)
CYB ( N,X) ’ Zan = BnycrmDnv

and

y oz { Il lebids if Ln = An, (86)
RN7 Zan = BnaCnaDrr
We give the condensed

Theorem 23 Let f€Q,0<B<1, z€Y;n, NeN withn'=% > 2. Then
(i)
1 (£,2) = F @), < ex w1 (0 ) + (1= ha (07 = 2)) 1711,

OJ =:7)(n),

87)
where wy 18 for p = oo,
and
(ii)
12w (= 11| <7 =0, asn - . (38)

For f uniformly continuous and in 2 we obtain
lim L, (f) = f,

pointwise and uniformly.
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Proof. By Theorems 9, 16, 17, 18. =
Next we do iterated multilayer neural network approximation (see also [9]).
We make

Remark 24 Letr € N and L,, as above. We observe that
Lyf—f=Lnf—Ly )+ (L =L f) +
(L2 = L2 f) + o+ (Lnf = Lof) + (Lnf = ).
Then

e =a|| < ieas = zisl|| L+ izt - o2l +
[ze2s = 2ol |+ et [ = Zas |+ 12ns = 1] =
lzat @ar = ||+ {|2672 @t = DIL| +[|lI257° @ = DL

oot |1 L f = DU+ [120f = 71| <7 12as =50 59

That is

(90)

Inzes = )| < e izas = 11,

We give the following multilayer neural network approximation.

Theorem 25 All here as in Theorem 23 and r € N, 75 (n) as in (87). Then
1Enf = £lL]| < rma ). (1)

So that the speed of convergence to the unit operator of L, is not worse than of
L,.

Proof. By (90) and (88). m
We make

Remark 26 Let mq,....m, E N:my <my < ... <m,, 0< <1, fenq.
Then ¢ (m1) > ¢ (m2) > ... > p(m,), ¢ as in (84).
Therefore

wi (f;p(m1)) = w1 (fr(m2)) = .. Z wr (9 (mr)) - (92)

Assume further that mi_ﬁ >249=1,...,7. Then

1—hy (m}_ﬁ — 2) 1—nhy (mé_ﬁ — 2) 1—hy (mi—ﬂ _ 2)
> > .2 .
2 - 2 - 2
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Let L,,, as above, i =1,...,7, all of the same kind.
We write

Lun, L,y (--Limy (L m1f))) - f=
Lo, (Lo (-Ling (Liny £))) = Luny, (Liny—y (Lo f)) +
L, (L, (.Liny f)) = L, (Lm,,,l (-Lms f)) +
L, (L, (.Ling £)) = Lin, (Limy_y (-Liny f)) + ot (94)
L, (Lny_y f) = Lin, f + Lin, f = f =
Lo, (Lim,_y (--Liny)) (Ling f = f) + Ly, (Liy—y (-Ling)) (L f — f) +
Lo, (L, —y (o-Liny)) (L f = f) 4 oo+ Lo, (Liny o f = f) + Lon, f — [

Hence by the triangle inequality property of H””“’H we get
o0
HL’"LT (Lmr—l ( ma ( ml-f - f”,y <

|Zom, (Lan, s -Lna)) Lo f = DI ||+
HLmr (Lmr—l (Lma)) (Lmzf - f)”,y +
HHLWT (Lmr—l ("-Lm4)) (wa,f - f)H"VHoo + ...+

HHLmr (LmTflf - f) H'yHoo + HHLmTf - f”VHoo

(repeatedly applying (80))

< |12mar = 71|+ |12

et = 21|+t

2 st = 71|+ 1t = 11 = S it =11 09)
=1

That is, we proved

[ myes e, ) ES RN <<§:HHL S=1 - e

We give the following multi layer neural network general approximation re-
sult.
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Theorem 27 Let f € Q; N, my,mo,....m, E N:m; <mg < ... <m,, 0<
8 < 1; m}_ﬁ >2,i=1,..,r,z €Y, and let (L, ..., Lim,.) as (Apmyy ey Am,.)
or (Bmys ey Bm,) or (Crmyy ooty Crn) 07 (Dippyy ooy D), p = 00. Then

HLmr (Lmrq (-+-Lim, (Lmlf)>) () = f (x)” <

~

e m e A5 ) B N I
S et - 11| <
i=1
o Y- o o )+ (1= (= = 2)) s | ] <

ren [wi (o (m) + (1= ha (mi ™" =2)) 151, D)

Clearly, we notice that the speed of convergence to the unit operator of the iter-
ated multilayer neural network operator is not worse than the speed of Ly, .

Proof. Using (96), (92), (93) and (87), (88). m
We continue with

Theorem 28 Let all as in Corollary 15, and r € N. Here o5 (n) is as in (72).
Then

[z =1, <+

1Anf — Il

<7y (n). (98)

(oo}

Proof. By (90) and (72). m

Application 29 A typical application of all of our results is when (X, ”H'v) =

(C,|-]), where C are the complex numbers.
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