TENSORIAL AND HADAMARD PRODUCTS INTEGRAL
REVERSES OF YOUNG’S INEQUALITY FOR CONTINUOUS
FIELDS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space and 2 a locally compact Hausdorff space
endowed with a Radon measure p with [, 1du (t) = 1. In this paper we show
among others that, if (A7) cq and (Br),cq are continuous fields of positive
operators in B (H) , then for all v € [0,1] we have the tensorial inequality

og(17y)/QATdu(T)®1+u1®/QBTdu(T)

- [ Ao e [ B

<v(l-v)

U (ArInA;)du(r )®1+1®</ B, In Brdy (1 ))

/A dp (T ®/ In B-dp (1 /anA-rdu(T)®/S;B-rdu(‘r)}.

We also have the following inequalities for the Hadamard product
0< / (1-v)Ar +vBr)du(r)ol — / ALY dp (1) o/ BZdu (T)
Q Q Q

<v(l-v) {/;I(A.,—IHA.,—+BTInBT)d,u(T)ol

_/QApo(T)o/QmBTdﬂ(T) /lnA dp (7 /Bq—du }

for all v € [0,1].

1. INTRODUCTION

The famous Young’s inequality for scalars says that if a,b > 0 and v € [0, 1],
then

(1.1) a7y < (1—v)a+uvb

with equality if and only if @ = b. The inequality (1.1) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [13]

Li if h e (0,1)U(1,00)
(12) sw=q )

1if h=1.
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It is well known that lim,_, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .

The following inequality provides a refinement and a multiplicative reverse for
Young’s inequality

(1.3) S ((%) ) a7 < (1-v)a+vb< S (%) a' vy,
where a,b >0, v € [0,1], r = min {1 — v, v}.

The second inequality in (1.3) is due to Tominaga [14] while the first one is due
to Furuichi [5].

It is an open question for the author if in the right hand side of (1.3) we can
replace S (%) by S ((%)R> where R = max {1 —v,v}.

Kittaneh and Manasrah [9], [10] provided a refinement and an additive reverse
for Young inequality as follows:

(1.4) r(xf—\/l;fS(1—u)a+ub—a1_”b”§R(\f—\/§)2

where a,b >0, v € [0,1], r = min{l — v,v} and R = max {1 — v, v}.
We also consider the Kantorovich’s constant defined by

(h+1)?
4h

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (+) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds
(1.6) K (%) a7 < (1-v)a+vb< K (%) a=vy
where a,b >0, v € [0,1], r =min {1l —v,v} and R = max {1 —v,v}.

The first inequality in (1.6) was obtained by Zou et al. in [16] while the second
by Liao et al. [12].

In the recent paper [4] we obtained the following reverses of Young’s inequality
as well:

(1.5) K (h) =  h>0.

(1.7) 0<(1-v)a+vb—a™"b" <v(l—v)(a—>b)(Ina—Inb)
and
(1.8) 1< % < exp [41/(1 ) (K (%) - 1)] :

where a,b > 0, v € [0,1].

It has been shown in [4] that there is no ordering for the upper bounds of the
quantity (1 — v) a+vb—a'~"b” as provided by the inequalities (1.4) and (1.7). The
(1—v)a+vb

—=op»— incorporated

same conclusion is true for the upper bounds of the quantity
in the inequalities (1.3), (1.6) and (1.8).

Let Iy,...,Ix be intervals from R and let f : I; X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A1, ..., A,)

be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hy, ..., Hx such that
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the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; :/ NdE; (A;)
I

i

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
n I

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [11] for functions of two
variables and have the property that

(AL, A) = fi1(AD) @ .. ® fir(Ak),

whenever f can be separated as a product f(t1,...,tx) = f1(t1)...fx(tr) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

F(st) > (<) £ (s) £ (t) for all 5, € [0,00)
and if f is continuous on [0,00), then [7, p. 173]

(1.10) f(A®B) > (L) f(A)® f(B) for all A, B >0.
This follows by observing that, if

A :/ tdE (t) and B = / sdF (s)
[0,00)

[0,00)

are the spectral resolutions of A and B, then
(1.11) ,ﬂA@B):/’ /‘ £ (st)dE (t) @ dF (s)
[0,00) J/[0,00)

for the continuous function f on [0,00) .
Recall the geometric operator mean for the positive operators A, B > 0

A#,B = AYV2(ATY2BAT/2)E A2
where t € [0, 1] and
A#B = AYV2(ATY2BATY/2)1/2 4172,
By the definitions of # and ® we have
A#B = B#A and (A#B) @ (B#A)=(A®B)#(B® A).

In 2007, S. Wada [15] obtained the following Callebaut type inequalities for ten-
sorial product

(1.12)  (A#B) ® (A#B) < 5 [(A#aB) @ (A#1-aB) + (A#1-0B) ® (A#aB)]

e

<-(A®B+B®A)

[\V]

for A, B>0and a € [0,1].
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Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,e;) = (Aej,e5) (Bej, e5)

for all j € N, where {e; }j cn 18 an orthonormal basis for the separable Hilbert space
H.
It is known that, see [6], we have the representation

(1.13) AoB=U" (A2 B)U
where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [7, p. 173]
(1.14) f(AoB)> (L) f(A)o f(B) forall A, B > 0.

We recall the following elementary inequalities for the Hadamard product
Al/2 o B1/2 < (A—;B> olfor A, B>0

and Fiedler inequality
(1.15) AoA™' >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that

AoB < (A201)?(B201)"? for 4, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

AoB< (142032)1/2 for A, B> 0.

It has been shown in [8] that (A% o 1)1/2 (B*01) /2 and (A?o B2)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Let 2 be a locally compact Hausdorff space endowed with a Radon measure pu.
A field (Ay),c(, of operators in B (H) is called a continuous field of operators if the
parametrization ¢ — A; is norm continuous on B (H). If, in addition, the norm
function ¢ — || A¢|| is Lebesgue integrable on €2, we can form the Bochner integral
Joy Aedpu (t), which is the unique operator in B (H) such that ¢ ([, Audp(t)) =
Jo @ (Ay) dp (t) for every bounded linear functional ¢ on B (H) . Assume also that,
Jo ldu(t) = 1.

Motivated by the above results, in this paper we show among others that, if
(A7) ,cq and (B;)_cq are continuous fields of positive operators in B (H) , then
for all v € [0,1] we have the tensorial inequality

O§(1—V)LATdu(T)®1+1/1®/QBrdM(T)

_Laﬂ@m®éﬂwm

<v(l-v)

x[jg(AThh4gdﬂ(r)®1-+1@><S)Bfmlﬂdu@ﬁ>

_Am@m®4m&wm_émmwm®4&wm}
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We also have the following inequalities for the Hadamard product
Og/((l—u)AT—i—uBT)du(T) /A1 Ydu (T /B”du
Q

v(l—v) {/Q (A;InA; +B;InB;)du(r)o1l

—/QATdu(T)o/anBTdu( ) — /lnA dp (7 /B dp (r }

for all v € [0,1].

2. MAIN RESULTS
We start to the following tensorial inequality:
Lemma 1. Assume that A, B >0 and v € [0,1], then
21) 0 < 1-v)A®l+vieB-A""® B
< vQl-v)[(AnA)®1+1®(BlnB)—A®InB - (In4) ® B].

In particular,
22) 0 < Z(A®1+1®B)-AY?2g B/?

< [(AMA)®1+1® (BInB)—A®InB — (InA) ® B].

I I NN

Proof. From (1.7) we have
(2.3) 0<(1—v)t+vs—t'""s" <v(l—v)(t—s)(nt—Ins)

for all t, s > 0 and v € [0,1].
If

A= tdE (t) and B = sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then by taking the double integral f[o 00) f[o 00)
over dF (t) ® dF (s) in (2.3) we get

(2.4) 0< / / [(1=v)t+vs—t'""s"] dE (t) ® dF (s)
0,00 0,00
<v(l—v t—s)(Int—Ins)dFE (t)  dF (s).
<u( )/[Om)/mm)< )( )dE (t) & dF (s)
Observe that, by (1.9)

/ / [(1—v)t+vs—t'""s"] dE (t) ® dF (s)
[0,00) /[0,00)

:(1_V)/Ooo /000 tdE(t)®dF(S)+V/[(],oo)/[(],oo)SdE(t)®dF(S)

/ / 77" dE (t) @ dF (s)
[0,00) J/[0,00)
=(1-v)A®1+v1®B—- A" ® B
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and
/ / (t—s)(Int —Ins)dE (t) ® dF (s)
:/ / (tlnt+ slns —tlns — slnt) dE (t) @ dF (s)
:/ / tintdE (t) @ dF (s / / slnsdE (t) ® dF (s)
[0,00) /[0,00)
/ / tlnsdE (t) ® dF (s / / sintdE (t) ® dF (s)
[0,00) [0,00) J/[0,00)
(AnA)®1+1® (BlInB)—A®InB—(lnAd)® B
and by (2.4) we get (2.1). O

Corollary 1. With the assumptions of Theorem 1 we have the following inequalities
for the Hadamard product

(2.5) 0 < [A—v)A+vB]ol—A""0oB"
< v(1-v)[AlnA+BlnB)ol—AolnB — (InA) o B|

forv e 0,1].
In particular,

(2.6) 0< A;BM—AWOBW
i[(AlnA—l—BlnB)ol—AolnB (InA)o BJ.

Proof. For the operators X and Y we have the representation
XoY=U"(XRY)U,

where U : H — H ® H is the isometry defined by Ue; = e; ® e; for all j € N.
If we take U* to the left and U to the right in the inequality (2.1), we get

27) 0<U [1-v)A®1+vi®B-A""®B"|U
<v(l-v)U'[(AlnA)®1+1®(BlnB)—A®InB - (InA)® B]U.
Observe that
U [(1-v)A®l+vlieB—-A""®B"|U
=(1-v)U* AU+ (1eB)U-U* (A" ®B")U
=(1-v)(Aol)+v(loB)— (A" oBY)
and
U [(AnA)®1+1® (BInB)—A®InB— (InA) ® BjU
=U" (AnA) ) U+U" (1® (BInB))U
—U (AW B)U —U* ((InA) @ B)U
=(AlnA)ol+1o(BlnB)—AolnB—(InA)o B
and by (2.7) we derive (2.5). O
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Remark 1. If we take B = A in Corollary 1, then we get
(2.8) 0<Aol—A""0A"<2w(1-v)[(AlnA)ol— AolnA]

for allv €10,1].
In particular,

(2.9) 0<Aol—AY20AY2< Z[(AInA)ol—AolnA].

N |

Our first main result is as follows:

Theorem 1. Let (A;) . Q and (B ) .cqbe continuous fields of positive operators in
B (H) such that Sp(A;), Sp(B;) C (0 00) for each T € Q. Then for all v € [0,1]
we have

(2.10) 0<(1- V)/ Ardu(r)®@1+0v1 ®/ B, du (1)
Q

/ Avdu (r / BYdu (1
Q

v(l—v)

<
X [/Q(ATIHA.,-)CZ;L(T)®1+1® </QBTlnBTdu(T)>
—/QATdu(T)@@/anBTdﬂ( ) — /lnA dp (1 /B du (1 }

In particular,
(2.11) 0< /Adu )®1+1®/Bdu()}

Al/Zdlu / Bl/Qd‘u

|
n\w\}—l

IN

i_/ﬂ(A InA,)dp(r )®1+1®<ABTIHBTdu(T)>
/QA dp (7 /anBTdu (T)*/anATdu (1) ® | By (T)].

Proof. From (2.1) we get

(202)< (1-v)A, ®14+v1®B,— A"V ®BY
< v(1l-v)[(ArnA)®14+1®(ByInB,)— A, ®InB, — (InA;) ® B,]

for all 7,7y € Q.
If we take the integral [, over du (7), then we get

(2.13) Og/ﬂ[(171/)AT®1+V1®BW7A?”®B’7’] dp (1)
§z/(171/)/ [(A-InA;)®1+1® (BylnB,)
Q

—A,®InBy, — (InA,;) ® B,]du (1)
for all v € Q.
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Using the properties of the Bochner’s integral and the tensorial product we have

/Q[(1—I/)AT®1+I/1®B,Y—Ai7”®B,’ﬂd,u(T)

= (]_—l/)/ ATd/L(T)@)l-‘rI/l@BV—/ Al7Vdp (1) ® BY
Q Q
and
/Q [(A;InA;))®14+1® (BylnB,) — A, ®InB, — (InA;) ® B,]du (1)

:/ (A;rlnA)dp(r)®1+1® (ByInB,)
Q

_/ Ardp (1) ®In B, — / InA.dp(r)® B,
Q Q

for all v € Q.
From (2.13) we then get

(2.14) 0<(1-v) A Ardp(t)®1+0v1® By — /Q Al Vau () ® BY
<v(l-v)

X [/ (A-InA;)dp(t)®1+1® (ByInB,)
Q

_/ATdu(T)®1HBFY—/IHATd/L(T)(X)BPY]
Q Q

for all v € Q.
If we take the integral fQ over dy () and utilizing the properties of the Bochner’s
integral and the tensorial product, we derive the desired result (2.10). g

Corollary 2. With the assumptions of Theorem 1 we have the following inequalities
for the Hadamard product

(2.15) 0< /Q((l —v) A, +vB;)du(r)ol — /QAifl’du (1) o /Q BZdu (1)
<v(l-v) [/ (A;InA. 4+ B;InB;)du(r)o1l
Q

7/9147@ (T)o/glnBTdu(T)—/anArdu (T)O/QBrdﬂ(T)}

for allv € ]0,1].
In particular,

(2.16) og/ﬂdu(ﬂop/ﬂ%ﬂ(ﬂo/ BY2dyu (1)
o 2 Q Q
1
<4|J2@m4nAT+zx¢ntducﬂol

—/QATd,u (T)o/ﬂlnBTdu (T)—/anATdu (T)O/QBrdM (7)]

The proof follows by taking U* to the left and U to the right in the inequality
(2.10) and using the properties of the integral.
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Remark 2. If we take B, = A,, T € Q in Corollary 2, then we obtain the following
inequalities of interest

(2.17) og/QATdM(T)ol—/QAi‘”du(T)O/QAZdu (1)
<2w(l-v) UQATmATdu (T)ol—/QATdu (T)O/anAfdu (7)}

for allv € ]0,1].
In particular,

(2.18) og/QATdu(T)u—/QAi/?du (T)O/QB;/QdM(T)

1
<= [ A;InA;dp(r)ol — / Ardp (1) o/ In A, du (7)]
2 e Q Q

3. RELATED RESULTS
In the case when the operators are bounded below and above we also have:
Lemma 2. Assume that the selfadjoint operators A and B satisfy the condition
0<m< A, B<M, then
1—v v M
(31 0<(1-v)A®14+vi®B-A @B"<v(l—-v)(M—m)In|—
m

for allv € 1]0,1].
In particular,

A®R1+1®B
2 L E———
(32) o<t

(M —m)lIn <M> .
m
Proof. If a, b € [m, M] C (0,00), then
0<(a—0b)(lnea—1nd) =|(a —b) (Ina — Inb)|
=la=blna—Ind| < (M —-—m)(InM —Inm).

_AV2g B2 <

] =

By (2.3) we then get
(3.3) 0<(1-v)at+vb—a b <v(l—v)(M—m)(InM —Inm)

for all a, b € [m, M].
If

A:/MtdE ) andB:/mM sdF (s)

m

are the spectral resolutions of A and B, then by taking the double integral ffr\f ff
over dF (t) ® dF (s) in (3.3) we get

(3.4) 0< /M /M [(1—v)t+vs—t'""s"] dE (t) ® dF (s)

m m

S1/(1—V)(M—m)(lnM—lnm)/M/MdE(t)®dF(s)
=v(l—-v)(M—m)(InM —1lnm).
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Observe that, by (1.9),

/ / [(1=v)t+vs—t'""s"] dE (t) ® dF (s)
[0,00) J[0,00)

=(1-v) /000 /OOO tdE(t)@dF(s)Jru/[om) /[O’OO) sdE (t) ® dF (s)

/ / t17Vs"dE (t) ® dF (s)
[0,00) J/[0,00)
1-v)A®1+v1®B—- A" ® B,

which gives, by (3.4), the desired result (3.1). O
Corollary 3. With the assumptions of Lemma 2, we have the following inequalities
for the Hadamard product

M
(3.5) 0<[1-v)A+vB]lol—A""oB"<v(l—-v)(M—m)ln ()

m

for all v € 0,1].
In particular,

A+ B
(3.6) 0< 28,

1 M
1—AY2oBY2 < — (M —m)In (> .
4 m
Remark 3. If we take B = A in Corollary 3, then we get
M
(3.7) O§Aol—Al_”oA”Sy(l—y)(M—m)ln<)
m

for allv € ]0,1].
In particular,

(3.8) 0§Aol—A1/20A1/2§1(M—m)1n<M).
m

S

We also have:

Theorem 2. Let (A;) .o and (B:), cqbe continuous fields of positive operators in
B (H) such that Sp(A.), Sp(B;) C [m,M] C (0,00) for each 7 € Q. Then for all
v € [0,1] we have

(3.9) 0<(1-v) /Q Adp(T)@1+0v1® /Q Brdu (1)

—/Q AV (T)®/QBZdH (7)

§V(1—1/)(M—m)ln(1\nf>.

In particular,

1
(3.10) 0< B [ 5 Ardp(T)®@1+1® 5 B, du (7)]

AV () [ B ()
Q

ot ().

IN

I
..Jk\»—lb\
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The proof follows from Lemma 2 in a similar way to the one in the proof of
Theorem 1 and the details are omitted.

Corollary 4. With the assumptions of Theorem 2 we have the following inequalities
for the Hadamard product

(3.11) 0< /Q((l —v)A, +vB;)du(r)ol — /QAi_”d,u (1) o/QBZd,u (1)

§u(1z/)(Mm)1n<M).

m

In particular,

(3.12) og/ﬁdu (7)01—/A1/2du(7)o/Bi/%m(T)
Q Q Q

gi(M—m)ln(]\nf>.

If we take B, = A, 7 € Q in Corollary 4, then we get

(3.13) 0< /QATdu (T)ol— /Q Al vau () o /Q A¥dp (1)
<v(l-v)(M—m)ln <M>

m

and

(3.14) OS/ATdu(T)ol—/ AY2dy, (T)o/ AY2dp (1) <
Q Q Q

(M —m)n <]‘nf> .
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