
TENSORIAL AND HADAMARD PRODUCT INTEGRAL
INEQUALITIES FOR SYNCHRONOUS FUNCTIONS OF

CONTINUOUS FIELDS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a Hilbert space and 
 a locally compact Hausdor¤ space
endowed with a Radon measure � with

R

 1d� (t) = 1: In this paper we show

among others that, if f; g are synchronous and continuous on I and h is nonneg-
ative and continuous on the same interval while (A� )�2
 and (B� )�2
 are con-
tinuous �elds of selfadjoint operators in B (H) such that Sp (A� ) ; Sp (B� ) � I
for each � 2 
, thenZ



h (A� ) f (A� ) g (A� ) d� (�)


Z


h (B� ) d� (�)

+

Z


h (A� ) d� (�)


Z


h (B� ) f (B� ) g (B� ) d� (�)

�
Z


h (A� ) f (A� ) d� (�)


Z


h (B� ) g (B� ) d� (�)

+

Z


h (A� ) g (A� ) d� (�)


Z


h (B� ) f (B� ) d� (�) :

We also have the similar inequalities for the Hadamard product " � "::

1. Introduction

Let I1; :::; Ik be intervals from R and let f : I1 � ::: � Ik ! R be an essentially
bounded real function de�ned on the product of the intervals. Let A = (A1; :::; An)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1; :::;Hk such that
the spectrum of Ai is contained in Ii for i = 1; :::; k: We say that such a k-tuple is
in the domain of f . If

Ai =

Z
Ii

�idEi (�i)

is the spectral resolution of Ai for i = 1; :::; k; by following [2], we de�ne

(1.1) f (A1; :::; Ak) :=

Z
I1

:::

Z
Ik

f (�1; :::; �1) dE1 (�1)
 :::
 dEk (�k)

as a bounded selfadjoint operator on the tensorial product H1 
 :::
Hk:
If the Hilbert spaces are of �nite dimension, then the above integrals become

�nite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the de�nition of Korányi [4] for functions of two
variables and have the property that

f (A1; :::; Ak) = f1(A1)
 :::
 fk(Ak);
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2 S. S. DRAGOMIR

whenever f can be separated as a product f(t1; :::; tk) = f1(t1):::fk(tk) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0;1), namely

f (st) � (�) f (s) f (t) for all s; t 2 [0;1)
and if f is continuous on [0;1) ; then [6, p. 173]
(1.2) f (A
B) � (�) f (A)
 f (B) for all A; B � 0:
This follows by observing that, if

A =

Z
[0;1)

tdE (t) and B =
Z
[0;1)

sdF (s)

are the spectral resolutions of A and B; then

(1.3) f (A
B) =
Z
[0;1)

Z
[0;1)

f (st) dE (t)
 dF (s)

for the continuous function f on [0;1) :
Recall the geometric operator mean for the positive operators A; B > 0

A#tB := A
1=2(A�1=2BA�1=2)tA1=2

where t 2 [0; 1] and

A#B := A1=2(A�1=2BA�1=2)1=2A1=2:

By the de�nitions of # and 
 we have
A#B = B#A and (A#B)
 (B#A) = (A
B)# (B 
A) :

In 2007, S. Wada [8] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B)
 (A#B) � 1

2
[(A#�B)
 (A#1��B) + (A#1��B)
 (A#�B)](1.4)

� 1

2
(A
B +B 
A)

for A; B > 0 and � 2 [0; 1] :
Recall that the Hadamard product of A and B in B(H) is de�ned to be the

operator A �B 2 B(H) satisfying
h(A �B) ej ; eji = hAej ; eji hBej ; eji

for all j 2 N, where fejgj2N is an orthonormal basis for the separable Hilbert space
H:
It is known that, see [5], we have the representation

(1.5) A �B = U� (A
B)U
where U : H ! H 
H is the isometry de�ned by Uej = ej 
 ej for all j 2 N.
If f is super-multiplicative (sub-multiplicative) on [0;1) ; then also [6, p. 173]

(1.6) f (A �B) � (�) f (A) � f (B) for all A; B � 0:
We recall the following elementary inequalities for the Hadamard product

A1=2 �B1=2 �
�
A+B

2

�
� 1 for A; B � 0
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and Fiedler inequality
A �A�1 � 1 for A > 0:

As extension of Kadison�s Schwarz inequality on the Hadamard product, Ando [1]
showed that

A �B �
�
A2 � 1

�1=2 �
B2 � 1

�1=2
for A; B � 0

and Aujla and Vasudeva [3] gave an alternative upper bound

A �B �
�
A2 �B2

�1=2
for A; B � 0:

It has been shown in [7] that
�
A2 � 1

�1=2 �
B2 � 1

�1=2
and

�
A2 �B2

�1=2
are incom-

parable for 2-square positive de�nite matrices A and B:
Let 
 be a locally compact Hausdor¤ space endowed with a Radon measure �.

A �eld (At)t2
 of operators in B (H) is called a continuous �eld of operators if the
parametrization t 7�! At is norm continuous on B (H). If, in addition, the norm
function t 7�! kAtk is Lebesgue integrable on 
, we can form the Bochner integralR


Atd� (t), which is the unique operator in B (H) such that '

�R


Atd� (t)

�
=R



' (At) d� (t) for every bounded linear functional ' on B (H) : Assume also that,R



1d� (t) = 1:
Motivated by the above results, in this paper we show among others that, if f;

g are synchronous and continuous on I and h is nonnegative and continuous on
the same interval while (A� )�2
 and (B� )�2
 are continuous �elds of selfadjoint
operators in B (H) such that Sp (A� ) ; Sp (B� ) � I for each � 2 
, thenZ




h (A� ) f (A� ) g (A� ) d� (�)

Z



h (B� ) d� (�)

+

Z



h (A� ) d� (�)

Z



h (B� ) f (B� ) g (B� ) d� (�)

�
Z



h (A� ) f (A� ) d� (�)

Z



h (B� ) g (B� ) d� (�)

+

Z



h (A� ) g (A� ) d� (�)

Z



h (B� ) f (B� ) d� (�) :

We also have the similar inequalities for the Hadamard product " � ":

2. Main Results

We recall that the functions f; g are synchronous (asynchronous) on the interval
I if

(f (t)� f (s)) (g (t)� g (s)) � (�) 0
for all t; s 2 I: If f and g have the same monotonicity on I; then they are synchro-
nous.
We start to the following result:

Lemma 1. Assume that f; g are synchronous and continuous on I and h; k non-
negative and continuous on the same interval. If A; B are selfadjoint with spectra
Sp (A) ; Sp (B) � I; then

[h (A) f (A) g (A)]
 k (B) + h (A)
 [k (B) f (B) g (B)](2.1)

� [h (A) f (A)]
 [k (B) g (B)] + [h (A) g (A)]
 [k (B) f (B)]
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or, equivalently

(h (A)
 k (B)) [(f (A) g (A))
 1 + 1
 (f (B) g (B))](2.2)

� (h (A)
 k (B)) [f (A)
 g (B) + g (A)
 f (B)] :

If f; g are asynchronous on I; then the inequality reverses in (2.1) and (2.2).

Proof. Assume that f and g are synchronous on I, then

f (t) g (t) + f (s) g (s) � f (t) g (s) + f (s) g (t)
for all t; s 2 I:
We multiply this inequality by h (t) k (s) � 0 to get

f (t) g (t)h (t) k (s) + h (t) f (s) g (s) k (s)

� f (t)h (t) g (s) k (s) + f (s) k (s) g (t)h (t)
for all t; s 2 I:
If we take the double integral, then we getZ

I

Z
I

[f (t) g (t)h (t) k (s) + h (t) f (s) g (s) k (s)] dE (t)
 dF (s)(2.3)

�
Z
I

Z
I

[f (t)h (t) g (s) k (s) + f (s) k (s) g (t)h (t)] dE (t)
 dF (s) :

Observe thatZ
I

Z
I

[f (t) g (t)h (t) k (s) + h (t) f (s) g (s) k (s)] dE (t)
 dF (s)

=

Z
I

Z
I

f (t) g (t)h (t) k (s) dE (t)
 dF (s)

+

Z
I

Z
I

h (t) f (s) g (s) k (s) dE (t)
 dF (s)

= [h (A) f (A) g (A)]
 k (B) + h (A)
 [k (B) f (B) g (B)]
and Z

I

Z
I

[f (t)h (t) g (s) k (s) + f (s) k (s) g (t)h (t)] dE (t)
 dF (s)

=

Z
I

Z
I

f (t)h (t) g (s) k (s) dE (t)
 dF (s)

+

Z
I

Z
I

g (t)h (t) f (s) k (s) dE (t)
 dF (s)

= [h (A) f (A)]
 [k (B) g (B)] + [h (A) g (A)]
 [k (B) f (B)] :

By utilizing (2.3) we derive (2.2).
Now, by making use of the tensorial property

(XU)
 (Y V ) = (X 
 Y ) (U 
 V ) ;
for any X; U; Y; V 2 B (H) ; we obtain

[h (A) f (A) g (A)]
 k (B) + h (A)
 [k (B) f (B) g (B)]
= (h (A)
 k (B)) [(f (A) g (A))
 1] + (h (A)
 k (B)) [1
 (f (B) g (B))]
= (h (A)
 k (B)) [(f (A) g (A))
 1 + 1
 (f (B) g (B))]
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and

[h (A) f (A)]
 [k (B) g (B)] + [h (A) g (A)]
 [k (B) f (B)]
= (h (A)
 k (B)) (f (A)
 g (B)) + (h (A)
 k (B)) (g (A)
 f (B))
= (h (A)
 k (B)) [f (A)
 g (B) + g (A)
 f (B)] ;

which proves (2.2). �

Remark 1. With the assumptions of Lemma 1 and if we take k = h; then we get

[h (A) f (A) g (A)]
 h (B) + h (A)
 [h (B) f (B) g (B)](2.4)

� [h (A) f (A)]
 [h (B) g (B)] + [h (A) g (A)]
 [h (B) f (B)] ;

where f; g are synchronous and continuous on I and h is nonnegative and contin-
uous on the same interval.
Moreover, if we take h � 1 in (2.4), then we get

(2.5) (f (A) g (A))
 1 + 1
 (f (B) g (B)) � f (A)
 g (B) + g (A)
 f (B) ;

where f; g are synchronous and continuous on I

We have the following result for Hadamard product as well:

Corollary 1. Assume that f; g are synchronous and continuous on I and h; k
nonnegative and continuous on the same interval. If A; B are selfadjoint with
spectra Sp (A) ; Sp (B) � I; then

k (B) � [h (A) f (A) g (A)] + h (A) � [k (B) f (B) g (B)](2.6)

� [h (A) f (A)] � [k (B) g (B)] + [k (B) f (B)] � [h (A) g (A)] :

If f; g are asynchronous on I; then the inequality reverses in (2.6).
In particular, we have

h (B) � [h (A) f (A) g (A)] + h (A) � [h (B) f (B) g (B)](2.7)

� [h (A) f (A)] � [h (B) g (B)] + [h (B) f (B)] � [h (A) g (A)]

and

(2.8) (f (A) g (A) + (f (B) g (B))) � 1 � f (A) � g (B) + f (B) � g (A) :

Proof. If we take U� to the left and U to the right in the inequality (2.1), we get

U� ([h (A) f (A) g (A)]
 k (B))U
+ U� (h (A)
 [k (B) f (B) g (B)])U
� U� ([h (A) f (A)]
 [k (B) g (B)])U
+ U� ([h (A) g (A)]
 [k (B) f (B)])U ,

namely

[h (A) f (A) g (A)] � k (B) + h (A) � [k (B) f (B) g (B)]
� [h (A) f (A)] � [k (B) g (B)] + [h (A) g (A)] � [k (B) f (B)] ,

which is equivalent to (2.6). �
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Theorem 1. Assume that f; g are synchronous and continuous on I and h; k
nonnegative and continuous on the same interval. If (A� )�2
 and (B� )�2
 are
continuous �elds of selfadjoint operators in B (H) such that Sp (A� ) ; Sp (B� ) � I
for each � 2 
, thenZ




h (A� ) f (A� ) g (A� ) d� (�)

Z



k (B� ) d� (�)(2.9)

+

Z



h (A� ) d� (�)

Z



k (B� ) f (B� ) g (B� ) d� (�)

�
Z



h (A� ) f (A� ) d� (�)

Z



k (B� ) g (B� ) d� (�)

+

Z



h (A� ) g (A� ) d� (�)

Z



k (B� ) f (B� ) d� (�) :

In particular, for k = h; we haveZ



h (A� ) f (A� ) g (A� ) d� (�)

Z



h (B� ) d� (�)(2.10)

+

Z



h (A� ) d� (�)

Z



h (B� ) f (B� ) g (B� ) d� (�)

�
Z



h (A� ) f (A� ) d� (�)

Z



h (B� ) g (B� ) d� (�)

+

Z



h (A� ) g (A� ) d� (�)

Z



h (B� ) f (B� ) d� (�) :

Proof. We have from (2.1) that

[h (A� ) f (A� ) g (A� )]
 k (B
) + h (A� )
 [k (B
) f (B
) g (B
)](2.11)

� [h (A� ) f (A� )]
 [k (B
) g (B
)] + [h (A� ) g (A� )]
 [k (B
) f (B
)]

for all � ; 
 2 
:
If we take the integral

R


over d� (�) in (2.11), then we getZ




f[h (A� ) f (A� ) g (A� )]
 k (B
)(2.12)

+h (A� )
 [k (B
) f (B
) g (B
)]g d� (�)

�
Z



f[h (A� ) f (A� )]
 [k (B
) g (B
)]

+ [h (A� ) g (A� )]
 [k (B
) f (B
)]g d� (�) :

Using the properties of integral and tensorial products, we haveZ



f[h (A� ) f (A� ) g (A� )]
 k (B
)

+h (A� )
 [k (B
) f (B
) g (B
)]g d� (�)

=

Z



h (A� ) f (A� ) g (A� ) d� (�)
 k (B
)

+

Z



h (A� ) d� (�)
 [k (B
) f (B
) g (B
)] ;
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f[h (A� ) f (A� )]
 [k (B
) g (B
)]

+ [h (A� ) g (A� )]
 [k (B
) f (B
)]g d� (�)

=

Z



h (A� ) f (A� ) d� (�)
 [k (B
) g (B
)]

+

Z



h (A� ) g (A� ) d� (�)
 [k (B
) f (B
)]

and by (2.12) we getZ



h (A� ) f (A� ) g (A� ) d� (�)
 k (B
)(2.13)

+

Z



h (A� ) d� (�)
 [k (B
) f (B
) g (B
)]

�
Z



h (A� ) f (A� ) d� (�)
 [k (B
) g (B
)]

+

Z



h (A� ) g (A� ) d� (�)
 [k (B
) f (B
)]

for all 
 2 
:
If we take the integral

R


over d� (
) in (2.13), then we get the desired result

(2.9). �

Remark 2. Moreover, if we take h � 1 in (2.10), then we getZ



f (A� ) g (A� ) d� (�)
 1 + 1

Z



f (B� ) g (B� ) d� (�)(2.14)

�
Z



f (A� ) d� (�)

Z



g (B� ) d� (�)

+

Z



g (A� ) d� (�)

Z



f (B� ) d� (�) :

If we take B� = A� ; � 2 
 in (2.14) then we obtainZ



f (A� ) g (A� ) d� (�)
 1 + 1

Z



f (A� ) g (A� ) d� (�)(2.15)

�
Z



f (A� ) d� (�)

Z



g (A� ) d� (�)

+

Z



g (A� ) d� (�)

Z



f (A� ) d� (�) :

Corollary 2. With the assumptions of Theorem 1,Z



h (A� ) f (A� ) g (A� ) d� (�) �
Z



k (B� ) d� (�)(2.16)

+

Z



h (A� ) d� (�) �
Z



k (B� ) f (B� ) g (B� ) d� (�)

�
Z



h (A� ) f (A� ) d� (�) �
Z



k (B� ) g (B� ) d� (�)

+

Z



h (A� ) g (A� ) d� (�) �
Z



k (B� ) f (B� ) d� (�) :
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In particular, for k = h; we haveZ



h (A� ) f (A� ) g (A� ) d� (�) �
Z



h (B� ) d� (�)(2.17)

+

Z



h (A� ) d� (�) �
Z



h (B� ) f (B� ) g (B� ) d� (�)

�
Z



h (A� ) f (A� ) d� (�) �
Z



h (B� ) g (B� ) d� (�)

+

Z



h (A� ) g (A� ) d� (�) �
Z



h (B� ) f (B� ) d� (�) :

Remark 3. By taking B� = A� ; � 2 
 in (2.17) and using the commutativity of
the Hadamard product, we getZ




h (A� ) d� (�) �
Z



h (A� ) f (A� ) g (A� ) d� (�)(2.18)

�
Z



h (A� ) f (A� ) d� (�) �
Z



h (A� ) g (A� ) d� (�) :

In particular, if we take h � 1 in (2.18), then we get

(2.19)
Z



f (A� ) g (A� ) d� (�) � 1 �
Z



f (A� ) d� (�) �
Z



g (A� ) d� (�) :

Assume that A; B are such that Sp (A) ; Sp (B) � I; then Sp ((1� t)A+ tB) � I
for all t 2 [0; 1] : By taking A� = (1� t)A+ tB in (2.19), we getZ 1

0

f ((1� t)A+ tB) g ((1� t)A+ tB) dt � 1(2.20)

�
Z 1

0

f ((1� t)A+ tB) dt �
Z 1

0

g ((1� t)A+ tB) dt

for all continuous and synchronous functions on I:
For f (x) = exp (�x) ; g (x) = exp (�x) with �� > 0; we get from (2.20) thatZ 1

0

exp [(�+ �) ((1� t)A+ tB)] dt � 1(2.21)

�
Z 1

0

exp [� ((1� t)A+ tB)] dt �
Z 1

0

exp� ((1� t)A+ tB) dt

It is known that if U and V are commuting, i.e. UV = V U , then the exponential
function satis�es the property

exp (U) exp (V ) = exp (V ) exp (U) = exp (U + V ) :

Also, if U is invertible and a; b 2 R with a < b thenZ b

a

exp (tU) dt = U�1 [exp (bU)� exp (aU)] :
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Moreover, if U and V are commuting and V � U is invertible, thenZ 1

0

exp ((1� s)U + sV ) ds =
Z 1

0

exp (s (V � U)) exp (U) ds

=

�Z 1

0

exp (s (V � U)) ds
�
exp (U)

= (V � U)�1 [exp (V � U)� I] exp (U)
= (V � U)�1 [exp (V )� exp (U)] :

ThereforeZ 1

0

exp [k ((1� s)U + sV )] ds = k�1 (V � U)�1 [exp (kV )� exp (kU)]

for k 6= 0:
Now, if A and B are commutative with B �A is invertible, thenZ 1

0

exp [(�+ �) ((1� t)A+ tB)] dt � 1

= (�+ �)
�1
(B �A)�1 [exp ((�+ �)B)� exp ((�+ �)A)] ;

Z 1

0

exp [� ((1� t)A+ tB)] dt = ��1 (B �A)�1 [exp (�B)� exp (�A)]

and Z 1

0

exp [� ((1� t)A+ tB)] dt = ��1 (B �A)�1 [exp (�B)� exp (�A)] :

From (2.21) we then get

(�+ �)
�1
n
(B �A)�1 [exp ((�+ �)B)� exp ((�+ �)A)]

o
� 1(2.22)

� ��1��1
n
(B �A)�1 [exp (�B)� exp (�A)]

o
�
n
(B �A)�1 [exp (�B)� exp (�A)]

o
;

where A and B are commutative with B �A is invertible.

3. Related Results

We also have:

Lemma 2. Let f; g : [m;M ] � R! R be continuous on [m;M ] and di¤erentiable
on (m;M) with g0 (t) 6= 0 for t 2 (m;M) : Assume that

�1 < 
 = inf
t2(m;M)

f 0 (t)

g0 (t)
; sup
t2(m;M)

f 0 (t)

g0 (t)
= � <1;
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and A; B selfadjoint operators with spectra Sp (A) ; Sp (B) � [m;M ], then for any
continuous and nonnegative function h de�ned on [m;M ] ;

2


"�
h (A) g2 (A)

�

 h (B) + h (A)


�
h (B) g2 (B)

�
2

(3.1)

� (g (A)h (A))
 (h (B) g (B))]
� [h (A) f (A) g (A)]
 h (B) + h (A)
 [h (B) f (B) g (B)]
� [h (A) f (A)]
 [h (B) g (B)]� [h (A) g (A)]
 [h (B) f (B)]

� 2�
"�
h (A) g2 (A)

�

 h (B) + h (A)


�
h (B) g2 (B)

�
2

� (g (A)h (A))
 (h (B) g (B))] :

In particular,

2


�
g2 (A)
 1 + 1
 g2 (B)

2
� g (A)
 g (B)

�
(3.2)

� [f (A) g (A)]
 1 + 1
 [f (B) g (B)]� f (A)
 g (B)� g (A)
 f (B)

� 2�
�
g2 (A)
 1 + 1
 g2 (B)

2
� g (A)
 g (B)

�
:

Proof. Using the Cauchy mean value theorem, for all t; s 2 [m;M ] with t 6= s there
exists � between t and s such that

f (t)� f (s)
g (t)� g (s) =

f 0 (�)

g0 (�)
2 [
;�] :

Therefore


 [g (t)� g (s)]2 � [f (t)� f (s)] [g (t)� g (s)] � � [g (t)� g (s)]2

for all t; s 2 [m;M ] ; which is equivalent to



�
g2 (t)� 2g (t) g (s) + g2 (s)

�
� f (t) g (t) + f (s) g (s)� f (t) g (s)� f (s) g (t)
� �

�
g2 (t)� 2g (t) g (s) + g2 (s)

�
for all t; s 2 [m;M ] :
If we multiply by h (t)h (s) � 0; then we get



�
h (t) g2 (t)h (s)� 2g (t)h (t)h (s) g (s) + h (t)h (s) g2 (s)

�
� h (t) f (t) g (t)h (s) + h (t)h (s) f (s) g (s)
� h (t) f (t)h (s) g (s)� h (t) g (t)h (s) f (s)
� �

�
h (t) g2 (t)h (s)� 2g (t)h (t)h (s) g (s) + h (t)h (s) g2 (s)

�
for all t; s 2 [m;M ] :
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This implies that




Z M

m

Z M

m

�
h (t) g2 (t)h (s)� 2g (t)h (t)h (s) g (s) + h (t)h (s) g2 (s)

�
� dE (t)
 dF (s)

�
Z M

m

Z M

m

[h (t) f (t) g (t)h (s) + h (t)h (s) f (s) g (s)

�h (t) f (t)h (s) g (s)� h (t) g (t)h (s) f (s)] dE (t)
 dF (s)

� �
Z M

m

Z M

m

�
h (t) g2 (t)h (s)� 2g (t)h (t)h (s) g (s) + h (t)h (s) g2 (s)

�
� dE (t)
 dF (s)

and by performing the calculations as in the proof of Lemma 1, we derive (3.1). �

Corollary 3. With the assumptions of Lemma 1 we have

2


"
h (B) �

�
h (A) g2 (A)

�
+ h (A) �

�
h (B) g2 (B)

�
2

(3.3)

� (g (A)h (A)) � (h (B) g (B))]
� h (B) � [h (A) f (A) g (A)] + h (A) � [h (B) f (B) g (B)]
� [h (A) f (A)] � [h (B) g (B)]� [h (A) g (A)] � [h (B) f (B)]

� 2�
"
h (B) �

�
h (A) g2 (A)

�
+ h (A) �

�
h (B) g2 (B)

�
2

� (g (A)h (A)) � (h (B) g (B))] :

In particular,

2


�
g2 (A) + g2 (B)

2
� 1� g (A) � g (B)

�
(3.4)

� [f (A) g (A) + f (B) g (B)] � 1� f (A) � g (B)� g (A) � f (B)

� 2�
�
g2 (A) + g2 (B)

2
� 1� g (A) � g (B)

�
:

Theorem 2. Let f and g be as in Lemma 2. If (A� )�2
 and (B� )�2
 are contin-
uous �elds of selfadjoint operators in B (H) such that Sp (A� ) ; Sp (B� ) � [m;M ]
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for each � 2 
, then we have

2


�
1

2

�Z



h (A� ) g
2 (A� ) d� (�)


Z



h (B� ) d� (�)(3.5)

+

Z



h (A� ) d� (�)

Z



h (B� ) g
2 (B� ) d� (�)

�
�
Z



g (A� )h (A� ) d� (�)

Z



h (B� ) g (B� ) d� (�)

�
�
Z



h (A� ) f (A� ) g (A� ) d� (�)

Z



h (B� ) d� (�)

+

Z



h (A� ) d� (�)

Z



h (B� ) f (B� ) g (B� ) d� (�)

�
Z



h (A� ) f (A� ) d� (�)

Z



h (B� ) g (B� ) d� (�)

�
Z



h (A� ) g (A� ) d� (�)

Z



h (B� ) f (B� ) d� (�)

� 2�
�
1

2

�Z



h (A� ) g
2 (A� ) d� (�)


Z



h (B� ) d� (�)

+

Z



h (A� ) d� (�)

Z



h (B� ) g
2 (B� ) d� (�)

�
�
Z



g (A� )h (A) d� (�)

Z



h (B� ) g (B� ) d� (�)

�
:

The proof follows from Lemma 2 by using a similar argument to the one in the
proof of Theorem 1 and we omit the details.
If we take h � 1 in (3.5), then we get

2


�
1

2

�Z



g2 (A� ) d� (�)
 1 + 1

Z



g2 (B� ) d� (�)

�
(3.6)

�
Z



g (A� ) d� (�)

Z



g (B� ) d� (�)

�
�
Z



f (A� ) g (A� ) d� (�)
 1 + 1

Z



f (B� ) g (B� ) d� (�)

�
Z



f (A� ) d� (�)

Z



g (B� ) d� (�)�
Z



g (A� ) d� (�)

Z



f (B� ) d� (�)

� 2�
�
1

2

�Z



g2 (A� ) d� (�)
 1 + 1

Z



g2 (B� ) d� (�)

�
�
Z



g (A� ) d� (�)

Z



g (B� ) d� (�)

�
:
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From (3.6) we derive the following result for the Hadamard product

2
(3.7)

�
�Z




g2 (A� ) + g
2 (B� )

2
d� (�) � 1�

Z



g (A� ) d� (�) �
Z



g (B� ) d� (�)

�
�
Z



[f (A� ) g (A� ) + f (B� ) g (B� )] d� (�) � 1

�
Z



f (A� ) d� (�) �
Z



g (B� ) d� (�)�
Z



g (A� ) d� (�) �
Z



f (B� ) d� (�)

� 2�

�
�Z




g2 (A� ) + g
2 (B� )

2
d� (�) � 1�

Z



g (A� ) d� (�) �
Z



g (B� ) d� (�)

�
:

If in this inequality we take B� = A� ; � 2 
; then we get




�Z



g2 (A� ) d� (�) � 1�
Z



g (A� ) d� (�) �
Z



g (A� ) d� (�)

�
(3.8)

�
Z



f (A� ) g (A� ) d� (�) � 1�
Z



f (A� ) d� (�) �
Z



g (A� ) d� (�)

� �
�Z




g2 (A� ) d� (�) � 1�
Z



g (A� ) d� (�) �
Z



g (A� ) d� (�)

�
:

Consider the functions f (t) = tp; g (t) = tq de�ned on (0;1) : Then f 0 (t) =
ptp�1; g0 (t) = qtq�1 for t > 0 and

f 0 (t)

g0 (t)
=
p

q
tp�q; t > 0:

Assume that either p; q 2 (0;1) or p; q 2 (�1; 0) : Then p
q > 0 and f 0(t)

g0(t) is
increasing for p > q and decreasing for p < q and constant 1 for p = q:
Observe that for [m;M ] � (0;1) ;

inf
t2[m;M ]

f 0 (t)

g0 (t)
=
p

q
mp�q and sup

t2[m;M ]

f 0 (t)

g0 (t)
=
p

q
Mp�q for p > q

and

inf
t2[m;M ]

f 0 (t)

g0 (t)
=
p

q
Mp�q and sup

t2[m;M ]

f 0 (t)

g0 (t)
=
p

q
mp�q for p < q:

Assume that either p; q 2 (0;1) or p; q 2 (�1; 0) and (A� )�2
 and (B� )�2
 are
continuous �elds of selfadjoint operators inB (H) such that Sp (A� ) ; Sp (B� ) [m;M ] �
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(0;1) for each � 2 
: From (3.5) we get for p > q that

0 � 2p
q
mp�q(3.9)

�
�R



A2q� d� (�)
 1 + 1


R


B2q� d� (�)

2
�
Z



Aq�d� (�)

Z



Bq�d� (�)

�
�
Z



Ap+q� d� (�)
 1 + 1

Z



Bp+q� d� (�)

�
Z



Ap�d� (�)

Z



Bq�d� (�)�
Z



Aq�d� (�)

Z



Bp�d� (�)

� 2p
q
Mp�q

�
�R



A2q� d� (�)
 1 + 1


R


B2q� d� (�)

2
�
Z



Aq�d� (�)

Z



Bq�d� (�)

�
and for p < q

0 � 2p
q
Mp�q(3.10)

�
�R



A2q� d� (�)
 1 + 1


R


B2q� d� (�)

2
�
Z



Aq�d� (�)

Z



Bq�d� (�)

�
�
Z



Ap+q� 
 1 + 1

Z



Bp+q� �
Z



Ap� 

Z



Bq� �
Z



Aq� 

Z



Bp�

� 2p
q
mp�q

�
�R



A2q� d� (�)
 1 + 1


R


B2q� d� (�)

2
�
Z



Aq�d� (�)

Z



Bq�d� (�)

�
:

From (3.7) we also have the inequalities for the Hadamard product for p > q that

0 � 2p
q
mp�q

�Z



�
A2q� +B

2q
�

2

�
d� (�) � 1�

Z



Aq�d� (�) �
Z



Bq�d� (�)

�
(3.11)

�
Z



�
Ap+q� +Bp+q�

�
d� (�) � 1

�
Z



Ap�d� (�) �
Z



Bq�d� (�)�
Z



Aq�d� (�) �
Z



Bp�d� (�)

� 2p
q
Mp�q

�Z



�
A2q� +B

2q
�

2

�
d� (�) � 1�

Z



Aq�d� (�) �
Z



Bq�d� (�)

�
and for p < q

0 � 2p
q
Mp�q

�Z



�
A2q� +B

2q
�

2

�
d� (�) � 1�

Z



Aq�d� (�) �
Z



Bq�d� (�)

�
(3.12)

�
Z



�
Ap+q� +Bp+q�

�
d� (�) � 1

�
Z



Ap�d� (�) �
Z



Bq�d� (�)�
Z



Aq�d� (�) �
Z



Bp�d� (�)

� 2p
q
mp�q

�Z



�
A2q� +B

2q
�

2

�
d� (�) � 1�

Z



Aq�d� (�) �
Z



Bq�d� (�)

�
:
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Finally, for B� = A� in (3.11) and (3.12), we get for p > q that

0 � p

q
mp�q

�Z



A2q� d� (�) � 1�
Z



Aq�d� (�) �
Z



Aq�d� (�)

�
(3.13)

�
Z



Ap+q� d� (�) � 1�
Z



Ap�d� (�) �
Z



Aq�d� (�)

� p

q
Mp�q

�Z



A2q� d� (�) � 1�
Z



Aq�d� (�) �
Z



Aq�d� (�)

�
and for p < q

0 � p

q
Mp�q

�Z



A2q� d� (�) � 1�
Z



Aq�d� (�) �
Z



Aq�d� (�)

�
(3.14)

�
Z



Ap+q� d� (�) � 1�
Z



Ap�d� (�) �
Z



Aq�d� (�)

� p

q
mp�q

�Z



A2q� d� (�) � 1�
Z



Aq�d� (�) �
Z



Aq�d� (�)

�
:

References

[1] T. Ando, Concavity of certain maps on positive de�nite matrices and applications to Hadamard
products, Lin. Alg. & Appl. 26 (1979), 203-241.

[2] H. Araki and F. Hansen, Jensen�s operator inequality for functions of several variables, Proc.
Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.

[3] J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means,
Math. Japon. 42 (1995), 265-272.

[4] A. Korányi. On some classes of analytic functions of several variables. Trans. Amer. Math.
Soc., 101 (1961), 520�554.

[5] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995),
531-535

[6] T. Furuta, J. Mícíc Hot, J. Peµcaríc and Y. Seo, Mond-Peµcaríc Method in Operator Inequalities.
Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.

[7] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadi-
son�s Schwarz inequalities, Scient. Math. 1 (1998), No. 2, 237-241.

[8] S. Wada, On some re�nement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007),
433-440.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand,, Private Bag 3, Johannesburg 2050, South Africa


