TENSORIAL AND HADAMARD PRODUCT INTEGRAL INEQUALITIES FOR SYNCHRONOUS FUNCTIONS OF CONTINUOUS FIELDS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a Hilbert space and Ω a locally compact Hausdorff space endowed with a Radon measure μ with $\int_{\Omega} 1d\mu(t) = 1$. In this paper we show among others that, if f, g are synchronous and continuous on I and h is nonnegative and continuous on the same interval while $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of selfadjoint operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subset I$ for each $\tau \in \Omega$, then

$$\begin{split} &\int_{\Omega} h\left(A_{\tau}\right) f\left(A_{\tau}\right) g\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \int_{\Omega} h\left(B_{\tau}\right) d\mu\left(\tau\right) \\ &+ \int_{\Omega} h\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \int_{\Omega} h\left(B_{\tau}\right) f\left(B_{\tau}\right) g\left(B_{\tau}\right) d\mu\left(\tau\right) \\ &\geq \int_{\Omega} h\left(A_{\tau}\right) f\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \int_{\Omega} h\left(B_{\tau}\right) g\left(B_{\tau}\right) d\mu\left(\tau\right) \\ &+ \int_{\Omega} h\left(A_{\tau}\right) g\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \int_{\Omega} h\left(B_{\tau}\right) f\left(B_{\tau}\right) d\mu\left(\tau\right) . \end{split}$$

We also have the similar inequalities for the Hadamard product " \circ "...

1. INTRODUCTION

Let $I_1, ..., I_k$ be intervals from \mathbb{R} and let $f: I_1 \times ... \times I_k \to \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A = (A_1, ..., A_n)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces $H_1, ..., H_k$ such that the spectrum of A_i is contained in I_i for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

$$A_{i} = \int_{I_{i}} \lambda_{i} dE_{i} \left(\lambda_{i} \right)$$

is the spectral resolution of A_i for i = 1, ..., k; by following [2], we define

(1.1)
$$f(A_1, ..., A_k) := \int_{I_1} ... \int_{I_k} f(\lambda_1, ..., \lambda_1) dE_1(\lambda_1) \otimes ... \otimes dE_k(\lambda_k)$$

as a bounded selfadjoint operator on the tensorial product $H_1 \otimes ... \otimes H_k$.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [2] extends the definition of Korányi [4] for functions of two variables and have the property that

$$f(A_1, \dots, A_k) = f_1(A_1) \otimes \dots \otimes f_k(A_k),$$

RGMIA Res. Rep. Coll. **25** (2022), Art. 127, 15 pp. Received 19/11/22

¹⁹⁹¹ Mathematics Subject Classification. 47A63; 47A99.

 $Key\ words\ and\ phrases.$ Tensorial product, Hadamard Product, Selfadjoint operators, Convex functions.

whenever f can be separated as a product $f(t_1, ..., t_k) = f_1(t_1)...f_k(t_k)$ of k functions each depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on $[0, \infty)$, namely

 $f(st) \ge (\le) f(s) f(t)$ for all $s, t \in [0, \infty)$

and if f is continuous on $[0, \infty)$, then [6, p. 173]

(1.2)
$$f(A \otimes B) \ge (\le) f(A) \otimes f(B) \text{ for all } A, B \ge 0.$$

This follows by observing that, if

$$A = \int_{[0,\infty)} t dE(t)$$
 and $B = \int_{[0,\infty)} s dF(s)$

are the spectral resolutions of A and B, then

(1.3)
$$f(A \otimes B) = \int_{[0,\infty)} \int_{[0,\infty)} f(st) dE(t) \otimes dF(s)$$

for the continuous function f on $[0,\infty)$.

Recall the geometric operator mean for the positive operators A, B > 0

$$A \#_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$$

where $t \in [0, 1]$ and

$$A \# B := A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$$

By the definitions of # and \otimes we have

$$A \# B = B \# A$$
 and $(A \# B) \otimes (B \# A) = (A \otimes B) \# (B \otimes A)$.

In 2007, S. Wada [8] obtained the following *Callebaut type inequalities* for tensorial product

(1.4)
$$(A\#B) \otimes (A\#B) \leq \frac{1}{2} \left[(A\#_{\alpha}B) \otimes (A\#_{1-\alpha}B) + (A\#_{1-\alpha}B) \otimes (A\#_{\alpha}B) \right]$$
$$\leq \frac{1}{2} \left(A \otimes B + B \otimes A \right)$$

for A, B > 0 and $\alpha \in [0, 1]$.

Recall that the Hadamard product of A and B in B(H) is defined to be the operator $A \circ B \in B(H)$ satisfying

$$\langle (A \circ B) e_j, e_j \rangle = \langle A e_j, e_j \rangle \langle B e_j, e_j \rangle$$

for all $j \in \mathbb{N}$, where $\{e_j\}_{j \in \mathbb{N}}$ is an *orthonormal basis* for the separable Hilbert space H.

It is known that, see [5], we have the representation

$$(1.5) A \circ B = \mathcal{U}^* (A \otimes B) \mathcal{U}$$

where $\mathcal{U}: H \to H \otimes H$ is the isometry defined by $\mathcal{U}e_j = e_j \otimes e_j$ for all $j \in \mathbb{N}$.

If f is super-multiplicative (sub-multiplicative) on $[0, \infty)$, then also [6, p. 173]

(1.6)
$$f(A \circ B) \ge (\le) f(A) \circ f(B) \text{ for all } A, B \ge 0$$

We recall the following elementary inequalities for the Hadamard product

$$A^{1/2} \circ B^{1/2} \le \left(\frac{A+B}{2}\right) \circ 1 \text{ for } A, \ B \ge 0$$

and Fiedler inequality

2

$$A \circ A^{-1} \ge 1 \text{ for } A > 0.$$

As extension of Kadison's Schwarz inequality on the Hadamard product, Ando [1] showed that

$$A \circ B \le (A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2} \text{ for } A, \ B \ge 0$$

and Aujla and Vasudeva [3] gave an alternative upper bound

$$A \circ B \le \left(A^2 \circ B^2\right)^{1/2}$$
 for $A, B \ge 0$.

It has been shown in [7] that $(A^2 \circ 1)^{1/2} (B^2 \circ 1)^{1/2}$ and $(A^2 \circ B^2)^{1/2}$ are incomparable for 2-square positive definite matrices A and B.

Let Ω be a locally compact Hausdorff space endowed with a Radon measure μ . A field $(A_t)_{t\in\Omega}$ of operators in B(H) is called a continuous field of operators if the parametrization $t \longmapsto A_t$ is norm continuous on B(H). If, in addition, the norm function $t \longmapsto ||A_t||$ is Lebesgue integrable on Ω , we can form the Bochner integral $\int_{\Omega} A_t d\mu(t)$, which is the unique operator in B(H) such that $\varphi(\int_{\Omega} A_t d\mu(t)) = \int_{\Omega} \varphi(A_t) d\mu(t)$ for every bounded linear functional φ on B(H). Assume also that, $\int_{\Omega} 1 d\mu(t) = 1$.

Motivated by the above results, in this paper we show among others that, if f, g are synchronous and continuous on I and h is nonnegative and continuous on the same interval while $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of selfadjoint operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subset I$ for each $\tau \in \Omega$, then

$$\int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) g(B_{\tau}) d\mu(\tau) \geq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) g(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) d\mu(\tau).$$

We also have the similar inequalities for the Hadamard product " \circ ".

2. Main Results

We recall that the functions f, g are synchronous (asynchronous) on the interval I if

$$(f(t) - f(s))(g(t) - g(s)) \ge (\le) 0$$

for all $t, s \in I$. If f and g have the same monotonicity on I, then they are synchronous.

We start to the following result:

Lemma 1. Assume that f, g are synchronous and continuous on I and h, k nonnegative and continuous on the same interval. If A, B are selfadjoint with spectra $\operatorname{Sp}(A), \operatorname{Sp}(B) \subset I$, then

$$(2.1) \qquad [h(A) f(A) g(A)] \otimes k(B) + h(A) \otimes [k(B) f(B) g(B)] \\ \geq [h(A) f(A)] \otimes [k(B) g(B)] + [h(A) g(A)] \otimes [k(B) f(B)]$$

 $or, \ equivalently$

(2.2)
$$(h(A) \otimes k(B)) [(f(A)g(A)) \otimes 1 + 1 \otimes (f(B)g(B))] \\\geq (h(A) \otimes k(B)) [f(A) \otimes g(B) + g(A) \otimes f(B)].$$

If f, g are asynchronous on I, then the inequality reverses in (2.1) and (2.2).

Proof. Assume that f and g are synchronous on I, then

$$f(t) g(t) + f(s) g(s) \ge f(t) g(s) + f(s) g(t)$$

for all $t, s \in I$.

We multiply this inequality by $h(t) k(s) \ge 0$ to get

$$f(t) g(t) h(t) k(s) + h(t) f(s) g(s) k(s) \geq f(t) h(t) g(s) k(s) + f(s) k(s) g(t) h(t)$$

for all $t, s \in I$.

If we take the double integral, then we get

(2.3)
$$\int_{I} \int_{I} [f(t) g(t) h(t) k(s) + h(t) f(s) g(s) k(s)] dE(t) \otimes dF(s) \\ \geq \int_{I} \int_{I} [f(t) h(t) g(s) k(s) + f(s) k(s) g(t) h(t)] dE(t) \otimes dF(s).$$

Observe that

$$\int_{I} \int_{I} [f(t) g(t) h(t) k(s) + h(t) f(s) g(s) k(s)] dE(t) \otimes dF(s)$$

= $\int_{I} \int_{I} f(t) g(t) h(t) k(s) dE(t) \otimes dF(s)$
+ $\int_{I} \int_{I} h(t) f(s) g(s) k(s) dE(t) \otimes dF(s)$
= $[h(A) f(A) g(A)] \otimes k(B) + h(A) \otimes [k(B) f(B) g(B)]$

and

$$\begin{split} &\int_{I} \int_{I} \left[f\left(t\right) h\left(t\right) g\left(s\right) k\left(s\right) + f\left(s\right) k\left(s\right) g\left(t\right) h\left(t\right) \right] dE\left(t\right) \otimes dF\left(s\right) \\ &= \int_{I} \int_{I} f\left(t\right) h\left(t\right) g\left(s\right) k\left(s\right) dE\left(t\right) \otimes dF\left(s\right) \\ &+ \int_{I} \int_{I} g\left(t\right) h\left(t\right) f\left(s\right) k\left(s\right) dE\left(t\right) \otimes dF\left(s\right) \\ &= \left[h\left(A\right) f\left(A\right) \right] \otimes \left[k\left(B\right) g\left(B\right) \right] + \left[h\left(A\right) g\left(A\right) \right] \otimes \left[k\left(B\right) f\left(B\right) \right]. \end{split}$$

By utilizing (2.3) we derive (2.2).

Now, by making use of the tensorial property

$$(XU) \otimes (YV) = (X \otimes Y) (U \otimes V),$$

for any $X, U, Y, V \in B(H)$, we obtain

$$\begin{aligned} & [h(A) f(A) g(A)] \otimes k(B) + h(A) \otimes [k(B) f(B) g(B)] \\ & = (h(A) \otimes k(B)) \left[(f(A) g(A)) \otimes 1 \right] + (h(A) \otimes k(B)) \left[1 \otimes (f(B) g(B)) \right] \\ & = (h(A) \otimes k(B)) \left[(f(A) g(A)) \otimes 1 + 1 \otimes (f(B) g(B)) \right] \end{aligned}$$

4

and

$$\begin{split} & [h\left(A\right)f\left(A\right)] \otimes [k\left(B\right)g\left(B\right)] + [h\left(A\right)g\left(A\right)] \otimes [k\left(B\right)f\left(B\right)] \\ & = (h\left(A\right) \otimes k\left(B\right))\left(f\left(A\right) \otimes g\left(B\right)\right) + (h\left(A\right) \otimes k\left(B\right))\left(g\left(A\right) \otimes f\left(B\right)\right) \\ & = (h\left(A\right) \otimes k\left(B\right))\left[f\left(A\right) \otimes g\left(B\right) + g\left(A\right) \otimes f\left(B\right)\right], \end{split}$$

which proves (2.2).

Remark 1. With the assumptions of Lemma 1 and if we take k = h, then we get

(2.4)
$$[h(A) f(A) g(A)] \otimes h(B) + h(A) \otimes [h(B) f(B) g(B)]$$

$$\ge [h(A) f(A)] \otimes [h(B) g(B)] + [h(A) g(A)] \otimes [h(B) f(B)],$$

where f, g are synchronous and continuous on I and h is nonnegative and continuous on the same interval.

Moreover, if we take $h \equiv 1$ in (2.4), then we get

$$(2.5) \qquad (f(A) g(A)) \otimes 1 + 1 \otimes (f(B) g(B)) \ge f(A) \otimes g(B) + g(A) \otimes f(B),$$

where f, g are synchronous and continuous on I

We have the following result for Hadamard product as well:

Corollary 1. Assume that f, g are synchronous and continuous on I and h, k nonnegative and continuous on the same interval. If A, B are selfadjoint with spectra $\text{Sp}(A), \text{Sp}(B) \subset I$, then

(2.6)
$$k(B) \circ [h(A) f(A) g(A)] + h(A) \circ [k(B) f(B) g(B)] \\\geq [h(A) f(A)] \circ [k(B) g(B)] + [k(B) f(B)] \circ [h(A) g(A)].$$

If f, g are asynchronous on I, then the inequality reverses in (2.6). In particular, we have

$$(2.7) h(B) \circ [h(A) f(A) g(A)] + h(A) \circ [h(B) f(B) g(B)] \\
\ge [h(A) f(A)] \circ [h(B) g(B)] + [h(B) f(B)] \circ [h(A) g(A)]$$

and

$$(2.8) \qquad (f(A) g(A) + (f(B) g(B))) \circ 1 \ge f(A) \circ g(B) + f(B) \circ g(A).$$

Proof. If we take \mathcal{U}^* to the left and \mathcal{U} to the right in the inequality (2.1), we get

$$\begin{split} \mathcal{U}^* \left(\left[h\left(A \right) f\left(A \right) g\left(A \right) \right] \otimes k\left(B \right) \right) \mathcal{U} \\ + \mathcal{U}^* \left(h\left(A \right) \otimes \left[k\left(B \right) f\left(B \right) g\left(B \right) \right] \right) \mathcal{U} \\ \geq \mathcal{U}^* \left(\left[h\left(A \right) f\left(A \right) \right] \otimes \left[k\left(B \right) g\left(B \right) \right] \right) \mathcal{U} \\ + \mathcal{U}^* \left(\left[h\left(A \right) g\left(A \right) \right] \otimes \left[k\left(B \right) f\left(B \right) \right] \right) \mathcal{U}, \end{split}$$

namely

$$\begin{split} & [h(A) f(A) g(A)] \circ k(B) + h(A) \circ [k(B) f(B) g(B)] \\ & \geq [h(A) f(A)] \circ [k(B) g(B)] + [h(A) g(A)] \circ [k(B) f(B)], \end{split}$$

which is equivalent to (2.6).

Theorem 1. Assume that f, g are synchronous and continuous on I and h, k nonnegative and continuous on the same interval. If $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of selfadjoint operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subset I$ for each $\tau \in \Omega$, then

(2.9)
$$\int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} k(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} k(B_{\tau}) f(B_{\tau}) g(B_{\tau}) d\mu(\tau) \geq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} k(B_{\tau}) g(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} k(B_{\tau}) f(B_{\tau}) d\mu(\tau)$$

In particular, for k = h, we have

(2.10)
$$\int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) g(B_{\tau}) d\mu(\tau) \geq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) g(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) d\mu(\tau).$$

Proof. We have from (2.1) that

$$(2.11) \qquad [h(A_{\tau}) f(A_{\tau}) g(A_{\tau})] \otimes k(B_{\gamma}) + h(A_{\tau}) \otimes [k(B_{\gamma}) f(B_{\gamma}) g(B_{\gamma})] \\ \geq [h(A_{\tau}) f(A_{\tau})] \otimes [k(B_{\gamma}) g(B_{\gamma})] + [h(A_{\tau}) g(A_{\tau})] \otimes [k(B_{\gamma}) f(B_{\gamma})]$$

for all $\tau, \gamma \in \Omega$.

If we take the integral \int_{Ω} over $d\mu(\tau)$ in (2.11), then we get

(2.12)

$$\int_{\Omega} \left\{ \left[h\left(A_{\tau}\right) f\left(A_{\tau}\right) g\left(A_{\tau}\right) \right] \otimes k\left(B_{\gamma}\right) \\
+ h\left(A_{\tau}\right) \otimes \left[k\left(B_{\gamma}\right) f\left(B_{\gamma}\right) g\left(B_{\gamma}\right) \right] \right\} d\mu\left(\tau\right) \\
\geq \int_{\Omega} \left\{ \left[h\left(A_{\tau}\right) f\left(A_{\tau}\right) \right] \otimes \left[k\left(B_{\gamma}\right) g\left(B_{\gamma}\right) \right] \\
+ \left[h\left(A_{\tau}\right) g\left(A_{\tau}\right) \right] \otimes \left[k\left(B_{\gamma}\right) f\left(B_{\gamma}\right) \right] \right\} d\mu\left(\tau\right).$$

Using the properties of integral and tensorial products, we have

$$\int_{\Omega} \left\{ \left[h\left(A_{\tau}\right) f\left(A_{\tau}\right) g\left(A_{\tau}\right) \right] \otimes k\left(B_{\gamma}\right) \right. \\ \left. + h\left(A_{\tau}\right) \otimes \left[k\left(B_{\gamma}\right) f\left(B_{\gamma}\right) g\left(B_{\gamma}\right) \right] \right\} d\mu\left(\tau\right) \right. \\ \left. = \int_{\Omega} h\left(A_{\tau}\right) f\left(A_{\tau}\right) g\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes k\left(B_{\gamma}\right) \right. \\ \left. + \int_{\Omega} h\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \left[k\left(B_{\gamma}\right) f\left(B_{\gamma}\right) g\left(B_{\gamma}\right) \right] \right],$$

$$\int_{\Omega} \left\{ \left[h\left(A_{\tau}\right) f\left(A_{\tau}\right) \right] \otimes \left[k\left(B_{\gamma}\right) g\left(B_{\gamma}\right) \right] \right. \\ \left. + \left[h\left(A_{\tau}\right) g\left(A_{\tau}\right) \right] \otimes \left[k\left(B_{\gamma}\right) f\left(B_{\gamma}\right) \right] \right\} d\mu\left(\tau\right) \right. \\ \left. = \int_{\Omega} h\left(A_{\tau}\right) f\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \left[k\left(B_{\gamma}\right) g\left(B_{\gamma}\right) \right] \right. \\ \left. + \int_{\Omega} h\left(A_{\tau}\right) g\left(A_{\tau}\right) d\mu\left(\tau\right) \otimes \left[k\left(B_{\gamma}\right) f\left(B_{\gamma}\right) \right] \right] \right.$$

and by (2.12) we get

(2.13)

$$\int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes k(B_{\gamma}) \\
+ \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes [k(B_{\gamma}) f(B_{\gamma}) g(B_{\gamma})] \\
\geq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \otimes [k(B_{\gamma}) g(B_{\gamma})] \\
+ \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes [k(B_{\gamma}) f(B_{\gamma})]$$

for all $\gamma \in \Omega$.

If we take the integral \int_{Ω} over $d\mu(\gamma)$ in (2.13), then we get the desired result (2.9).

Remark 2. Moreover, if we take $h \equiv 1$ in (2.10), then we get

(2.14)
$$\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes 1 + 1 \otimes \int_{\Omega} f(B_{\tau}) g(B_{\tau}) d\mu(\tau)$$
$$\geq \int_{\Omega} f(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} g(B_{\tau}) d\mu(\tau)$$
$$+ \int_{\Omega} g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} f(B_{\tau}) d\mu(\tau).$$

If we take $B_{\tau} = A_{\tau}, \tau \in \Omega$ in (2.14) then we obtain

(2.15)
$$\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes 1 + 1 \otimes \int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau)$$
$$\geq \int_{\Omega} f(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} g(A_{\tau}) d\mu(\tau)$$
$$+ \int_{\Omega} g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} f(A_{\tau}) d\mu(\tau).$$

Corollary 2. With the assumptions of Theorem 1,

(2.16)

$$\int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} k(B_{\tau}) d\mu(\tau)
+ \int_{\Omega} h(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} k(B_{\tau}) f(B_{\tau}) g(B_{\tau}) d\mu(\tau)
\ge \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} k(B_{\tau}) g(B_{\tau}) d\mu(\tau)
+ \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} k(B_{\tau}) f(B_{\tau}) d\mu(\tau).$$

In particular, for k = h, we have

$$(2.17) \qquad \int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} h(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} h(B_{\tau}) f(B_{\tau}) g(B_{\tau}) d\mu(\tau) \geq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} h(B_{\tau}) g(B_{\tau}) d\mu(\tau) + \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} h(B_{\tau}) f(B_{\tau}) d\mu(\tau) .$$

Remark 3. By taking $B_{\tau} = A_{\tau}, \tau \in \Omega$ in (2.17) and using the commutativity of the Hadamard product, we get

(2.18)
$$\int_{\Omega} h(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau)$$
$$\geq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau).$$

In particular, if we take $h \equiv 1$ in (2.18), then we get

(2.19)
$$\int_{\Omega} f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \circ 1 \ge \int_{\Omega} f(A_{\tau}) d\mu(\tau) \circ \int_{\Omega} g(A_{\tau}) d\mu(\tau).$$

Assume that A, B are such that $\operatorname{Sp}(A)$, $\operatorname{Sp}(B) \subset I$, then $\operatorname{Sp}((1-t)A + tB) \subset I$ for all $t \in [0, 1]$. By taking $A_{\tau} = (1 - t)A + tB$ in (2.19), we get

(2.20)
$$\int_{0}^{1} f((1-t)A + tB) g((1-t)A + tB) dt \circ 1$$
$$\geq \int_{0}^{1} f((1-t)A + tB) dt \circ \int_{0}^{1} g((1-t)A + tB) dt$$

for all continuous and synchronous functions on I.

For $f(x) = \exp(\alpha x)$, $g(x) = \exp(\beta x)$ with $\alpha \beta > 0$, we get from (2.20) that

(2.21)
$$\int_{0}^{1} \exp\left[\left(\alpha + \beta\right) \left(\left(1 - t\right)A + tB\right)\right] dt \circ 1$$
$$\geq \int_{0}^{1} \exp\left[\alpha \left(\left(1 - t\right)A + tB\right)\right] dt \circ \int_{0}^{1} \exp\beta\left(\left(1 - t\right)A + tB\right) dt$$

It is known that if U and V are commuting, i.e. UV = VU, then the exponential function satisfies the property

$$\exp(U)\exp(V) = \exp(V)\exp(U) = \exp(U+V).$$

Also, if U is invertible and $a, b \in \mathbb{R}$ with a < b then

$$\int_{a}^{b} \exp(tU) dt = U^{-1} \left[\exp(bU) - \exp(aU) \right].$$

Moreover, if U and V are commuting and V - U is invertible, then

$$\int_{0}^{1} \exp((1-s)U + sV) \, ds = \int_{0}^{1} \exp(s(V-U)) \exp(U) \, ds$$
$$= \left(\int_{0}^{1} \exp(s(V-U)) \, ds\right) \exp(U)$$
$$= (V-U)^{-1} \left[\exp(V-U) - I\right] \exp(U)$$
$$= (V-U)^{-1} \left[\exp(V) - \exp(U)\right].$$

Therefore

$$\int_{0}^{1} \exp\left[k\left((1-s)U+sV\right)\right] ds = k^{-1} \left(V-U\right)^{-1} \left[\exp\left(kV\right) - \exp\left(kU\right)\right]$$

for $k \neq 0$.

Now, if A and B are commutative with B - A is invertible, then

$$\int_{0}^{1} \exp\left[(\alpha + \beta) \left((1 - t) A + tB\right)\right] dt \circ 1$$

= $(\alpha + \beta)^{-1} (B - A)^{-1} \left[\exp\left((\alpha + \beta) B\right) - \exp\left((\alpha + \beta) A\right)\right],$
$$\int_{0}^{1} \exp\left[\alpha \left((1 - t) A + tB\right)\right] dt = \alpha^{-1} (B - A)^{-1} \left[\exp\left(\alpha B\right) - \exp\left(\alpha A\right)\right]$$

and

$$\int_{0}^{1} \exp\left[\beta \left((1-t)A + tB\right)\right] dt = \beta^{-1} \left(B - A\right)^{-1} \left[\exp\left(\beta B\right) - \exp\left(\beta A\right)\right].$$

From (2.21) we then get

(2.22)
$$(\alpha + \beta)^{-1} \left\{ (B - A)^{-1} \left[\exp\left((\alpha + \beta)B\right) - \exp\left((\alpha + \beta)A\right) \right] \right\} \circ 1$$
$$\geq \alpha^{-1}\beta^{-1} \left\{ (B - A)^{-1} \left[\exp\left(\alpha B\right) - \exp\left(\alpha A\right) \right] \right\}$$
$$\circ \left\{ (B - A)^{-1} \left[\exp\left(\beta B\right) - \exp\left(\beta A\right) \right] \right\},$$

where A and B are commutative with B - A is invertible.

3. Related Results

We also have:

Lemma 2. Let $f, g: [m, M] \subset \mathbb{R} \to \mathbb{R}$ be continuous on [m, M] and differentiable on (m, M) with $g'(t) \neq 0$ for $t \in (m, M)$. Assume that

$$-\infty < \gamma = \inf_{t \in (m,M)} \frac{f'(t)}{g'(t)}, \quad \sup_{t \in (m,M)} \frac{f'(t)}{g'(t)} = \Gamma < \infty,$$

and A, B selfadjoint operators with spectra Sp(A), $Sp(B) \subseteq [m, M]$, then for any continuous and nonnegative function h defined on [m, M],

$$(3.1) \qquad 2\gamma \left[\frac{(h(A) g^{2}(A)) \otimes h(B) + h(A) \otimes (h(B) g^{2}(B))}{2} \\ - (g(A) h(A)) \otimes (h(B) g(B))] \\ \leq [h(A) f(A) g(A)] \otimes h(B) + h(A) \otimes [h(B) f(B) g(B)] \\ - [h(A) f(A)] \otimes [h(B) g(B)] - [h(A) g(A)] \otimes [h(B) f(B)] \\ \leq 2\Gamma \left[\frac{(h(A) g^{2}(A)) \otimes h(B) + h(A) \otimes (h(B) g^{2}(B))}{2} \\ - (g(A) h(A)) \otimes (h(B) g(B))] \right].$$

In particular,

$$(3.2) \qquad 2\gamma \left[\frac{g^2(A) \otimes 1 + 1 \otimes g^2(B)}{2} - g(A) \otimes g(B) \right]$$
$$\leq \left[f(A) g(A) \right] \otimes 1 + 1 \otimes \left[f(B) g(B) \right] - f(A) \otimes g(B) - g(A) \otimes f(B)$$
$$\leq 2\Gamma \left[\frac{g^2(A) \otimes 1 + 1 \otimes g^2(B)}{2} - g(A) \otimes g(B) \right].$$

Proof. Using the Cauchy mean value theorem, for all $t, s \in [m, M]$ with $t \neq s$ there exists ξ between t and s such that

$$\frac{f\left(t\right)-f\left(s\right)}{g\left(t\right)-g\left(s\right)}=\frac{f'\left(\xi\right)}{g'\left(\xi\right)}\in\left[\gamma,\Gamma\right].$$

Therefore

$$\gamma [g(t) - g(s)]^2 \le [f(t) - f(s)] [g(t) - g(s)] \le \Gamma [g(t) - g(s)]^2$$

for all $t, s \in [m, M]$, which is equivalent to

$$\begin{split} \gamma \left[g^{2} \left(t \right) - 2g \left(t \right)g \left(s \right) + g^{2} \left(s \right) \right] \\ &\leq f \left(t \right)g \left(t \right) + f \left(s \right)g \left(s \right) - f \left(t \right)g \left(s \right) - f \left(s \right)g \left(t \right) \\ &\leq \Gamma \left[g^{2} \left(t \right) - 2g \left(t \right)g \left(s \right) + g^{2} \left(s \right) \right] \end{split}$$

for all $t, s \in [m, M]$.

If we multiply by $h(t) h(s) \ge 0$, then we get

$$\begin{split} \gamma \left[h\left(t \right)g^{2}\left(t \right)h\left(s \right)-2g\left(t \right)h\left(t \right)h\left(s \right)g\left(s \right)+h\left(t \right)h\left(s \right)g^{2}\left(s \right) \right] \\ &\leq h\left(t \right)f\left(t \right)g\left(t \right)h\left(s \right)+h\left(t \right)h\left(s \right)f\left(s \right)g\left(s \right) \\ &-h\left(t \right)f\left(t \right)h\left(s \right)g\left(s \right)-h\left(t \right)g\left(t \right)h\left(s \right)f\left(s \right) \\ &\leq \Gamma \left[h\left(t \right)g^{2}\left(t \right)h\left(s \right)-2g\left(t \right)h\left(t \right)h\left(s \right)g\left(s \right)+h\left(t \right)h\left(s \right)g^{2}\left(s \right) \right] \end{split}$$

for all $t, s \in [m, M]$.

This implies that

$$\begin{split} \gamma & \int_{m}^{M} \int_{m}^{M} \left[h\left(t\right) g^{2}\left(t\right) h\left(s\right) - 2g\left(t\right) h\left(t\right) h\left(s\right) g\left(s\right) + h\left(t\right) h\left(s\right) g^{2}\left(s\right) \right] \\ & \times dE\left(t\right) \otimes dF\left(s\right) \\ & \leq \int_{m}^{M} \int_{m}^{M} \left[h\left(t\right) f\left(t\right) g\left(t\right) h\left(s\right) + h\left(t\right) h\left(s\right) f\left(s\right) g\left(s\right) \\ & - h\left(t\right) f\left(t\right) h\left(s\right) g\left(s\right) - h\left(t\right) g\left(t\right) h\left(s\right) f\left(s\right) \right] dE\left(t\right) \otimes dF\left(s\right) \\ & \leq \Gamma \int_{m}^{M} \int_{m}^{M} \left[h\left(t\right) g^{2}\left(t\right) h\left(s\right) - 2g\left(t\right) h\left(t\right) h\left(s\right) g\left(s\right) + h\left(t\right) h\left(s\right) g^{2}\left(s\right) \right] \\ & \times dE\left(t\right) \otimes dF\left(s\right) \end{split}$$

and by performing the calculations as in the proof of Lemma 1, we derive (3.1). \Box

Corollary 3. With the assumptions of Lemma 1 we have

$$(3.3) \qquad 2\gamma \left[\frac{h(B) \circ (h(A) g^{2}(A)) + h(A) \circ (h(B) g^{2}(B))}{2} - (g(A) h(A)) \circ (h(B) g(B))] \\ \leq h(B) \circ [h(A) f(A) g(A)] + h(A) \circ [h(B) f(B) g(B)] \\ - [h(A) f(A)] \circ [h(B) g(B)] - [h(A) g(A)] \circ [h(B) f(B)] \\ \leq 2\Gamma \left[\frac{h(B) \circ (h(A) g^{2}(A)) + h(A) \circ (h(B) g^{2}(B))}{2} - (g(A) h(A)) \circ (h(B) g(B))] \right].$$

In particular,

$$(3.4) \qquad 2\gamma \left[\frac{g^2(A) + g^2(B)}{2} \circ 1 - g(A) \circ g(B) \right] \\ \leq \left[f(A) g(A) + f(B) g(B) \right] \circ 1 - f(A) \circ g(B) - g(A) \circ f(B) \\ \leq 2\Gamma \left[\frac{g^2(A) + g^2(B)}{2} \circ 1 - g(A) \circ g(B) \right].$$

Theorem 2. Let f and g be as in Lemma 2. If $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of selfadjoint operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau}) \subset [m, M]$

for each $\tau \in \Omega$, then we have

$$(3.5) \qquad 2\gamma \left[\frac{1}{2} \left(\int_{\Omega} h(A_{\tau}) g^{2}(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) d\mu(\tau) \right) + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) g^{2}(B_{\tau}) d\mu(\tau) \right) \right] \\ - \int_{\Omega} g(A_{\tau}) h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) g(B_{\tau}) d\mu(\tau) \right] \\ \leq \int_{\Omega} h(A_{\tau}) f(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) d\mu(\tau) \\ + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) g(B_{\tau}) d\mu(\tau) \\ - \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) d\mu(\tau) \\ - \int_{\Omega} h(A_{\tau}) g(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) f(B_{\tau}) d\mu(\tau) \\ \leq 2\Gamma \left[\frac{1}{2} \left(\int_{\Omega} h(A_{\tau}) g^{2}(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) d\mu(\tau) \right) \\ + \int_{\Omega} h(A_{\tau}) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) g^{2}(B_{\tau}) d\mu(\tau) \right) \\ - \int_{\Omega} g(A_{\tau}) h(A) d\mu(\tau) \otimes \int_{\Omega} h(B_{\tau}) g(B_{\tau}) d\mu(\tau) \right].$$

The proof follows from Lemma 2 by using a similar argument to the one in the proof of Theorem 1 and we omit the details.

If we take $h \equiv 1$ in (3.5), then we get

$$(3.6) \quad 2\gamma \left[\frac{1}{2} \left(\int_{\Omega} g^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes 1 + 1 \otimes \int_{\Omega} g^{2} \left(B_{\tau} \right) d\mu \left(\tau \right) \right) \right. \\ \left. - \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes \int_{\Omega} g \left(B_{\tau} \right) d\mu \left(\tau \right) \right] \\ \left. \leq \int_{\Omega} f \left(A_{\tau} \right) g \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes 1 + 1 \otimes \int_{\Omega} f \left(B_{\tau} \right) g \left(B_{\tau} \right) d\mu \left(\tau \right) \right. \\ \left. - \int_{\Omega} f \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes \int_{\Omega} g \left(B_{\tau} \right) d\mu \left(\tau \right) - \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes \int_{\Omega} f \left(B_{\tau} \right) d\mu \left(\tau \right) \right) \\ \left. \leq 2\Gamma \left[\frac{1}{2} \left(\int_{\Omega} g^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes 1 + 1 \otimes \int_{\Omega} g^{2} \left(B_{\tau} \right) d\mu \left(\tau \right) \right) \right. \\ \left. - \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \otimes \int_{\Omega} g \left(B_{\tau} \right) d\mu \left(\tau \right) \right] .$$

From (3.6) we derive the following result for the Hadamard product

$$(3.7) \quad 2\gamma \\ \times \left[\int_{\Omega} \frac{g^2 (A_{\tau}) + g^2 (B_{\tau})}{2} d\mu (\tau) \circ 1 - \int_{\Omega} g (A_{\tau}) d\mu (\tau) \circ \int_{\Omega} g (B_{\tau}) d\mu (\tau) \right] \\ \leq \int_{\Omega} \left[f (A_{\tau}) g (A_{\tau}) + f (B_{\tau}) g (B_{\tau}) \right] d\mu (\tau) \circ 1 \\ - \int_{\Omega} f (A_{\tau}) d\mu (\tau) \circ \int_{\Omega} g (B_{\tau}) d\mu (\tau) - \int_{\Omega} g (A_{\tau}) d\mu (\tau) \circ \int_{\Omega} f (B_{\tau}) d\mu (\tau) \\ \leq 2\Gamma \\ \times \left[\int_{\Omega} \frac{g^2 (A_{\tau}) + g^2 (B_{\tau})}{2} d\mu (\tau) \circ 1 - \int_{\Omega} g (A_{\tau}) d\mu (\tau) \circ \int_{\Omega} g (B_{\tau}) d\mu (\tau) \right].$$

If in this inequality we take $B_{\tau} = A_{\tau}, \tau \in \Omega$, then we get

$$(3.8) \qquad \gamma \left[\int_{\Omega} g^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \circ 1 - \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \circ \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \right]$$
$$\leq \int_{\Omega} f \left(A_{\tau} \right) g \left(A_{\tau} \right) d\mu \left(\tau \right) \circ 1 - \int_{\Omega} f \left(A_{\tau} \right) d\mu \left(\tau \right) \circ \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \right)$$
$$\leq \Gamma \left[\int_{\Omega} g^{2} \left(A_{\tau} \right) d\mu \left(\tau \right) \circ 1 - \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \circ \int_{\Omega} g \left(A_{\tau} \right) d\mu \left(\tau \right) \right) \right].$$

Consider the functions $f(t) = t^p$, $g(t) = t^q$ defined on $(0, \infty)$. Then f'(t) = $pt^{p-1}, g'(t) = qt^{q-1}$ for t > 0 and

$$\frac{f'(t)}{g'(t)} = \frac{p}{q}t^{p-q}, \ t > 0.$$

Assume that either $p, q \in (0, \infty)$ or $p, q \in (-\infty, 0)$. Then $\frac{p}{q} > 0$ and $\frac{f'(t)}{g'(t)}$ is increasing for p > q and decreasing for p < q and constant 1 for p = q.

Observe that for $[m, M] \subset (0, \infty)$,

$$\inf_{t \in [m,M]} \frac{f'(t)}{g'(t)} = \frac{p}{q} m^{p-q} \text{ and } \sup_{t \in [m,M]} \frac{f'(t)}{g'(t)} = \frac{p}{q} M^{p-q} \text{ for } p > q$$

and

$$\inf_{t \in [m,M]} \frac{f'(t)}{g'(t)} = \frac{p}{q} M^{p-q} \text{ and } \sup_{t \in [m,M]} \frac{f'(t)}{g'(t)} = \frac{p}{q} m^{p-q} \text{ for } p < q.$$

Assume that either $p, q \in (0, \infty)$ or $p, q \in (-\infty, 0)$ and $(A_{\tau})_{\tau \in \Omega}$ and $(B_{\tau})_{\tau \in \Omega}$ are continuous fields of selfadjoint operators in B(H) such that $\operatorname{Sp}(A_{\tau})$, $\operatorname{Sp}(B_{\tau})[m, M] \subset$

 $(0,\infty)$ for each $\tau\in\Omega.$ From (3.5) we get for p>q that

$$(3.9) \quad 0 \leq 2\frac{p}{q}m^{p-q} \\ \times \left(\frac{\int_{\Omega}A_{\tau}^{2q}d\mu\left(\tau\right)\otimes1+1\otimes\int_{\Omega}B_{\tau}^{2q}d\mu\left(\tau\right)}{2} - \int_{\Omega}A_{\tau}^{q}d\mu\left(\tau\right)\otimes\int_{\Omega}B_{\tau}^{q}d\mu\left(\tau\right)\right) \\ \leq \int_{\Omega}A_{\tau}^{p+q}d\mu\left(\tau\right)\otimes1+1\otimes\int_{\Omega}B_{\tau}^{p+q}d\mu\left(\tau\right) \\ - \int_{\Omega}A_{\tau}^{p}d\mu\left(\tau\right)\otimes\int_{\Omega}B_{\tau}^{q}d\mu\left(\tau\right) - \int_{\Omega}A_{\tau}^{q}d\mu\left(\tau\right)\otimes\int_{\Omega}B_{\tau}^{p}d\mu\left(\tau\right) \\ \leq 2\frac{p}{q}M^{p-q} \\ \times \left(\frac{\int_{\Omega}A_{\tau}^{2q}d\mu\left(\tau\right)\otimes1+1\otimes\int_{\Omega}B_{\tau}^{2q}d\mu\left(\tau\right)}{2} - \int_{\Omega}A_{\tau}^{q}d\mu\left(\tau\right)\otimes\int_{\Omega}B_{\tau}^{q}d\mu\left(\tau\right)\right)$$

and for p < q

$$(3.10) \quad 0 \leq 2\frac{p}{q}M^{p-q} \\ \times \left(\frac{\int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \otimes 1 + 1 \otimes \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right)}{2} - \int_{\Omega} A_{\tau}^{q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{q} d\mu\left(\tau\right)\right) \\ \leq \int_{\Omega} A_{\tau}^{p+q} \otimes 1 + 1 \otimes \int_{\Omega} B_{\tau}^{p+q} - \int_{\Omega} A_{\tau}^{p} \otimes \int_{\Omega} B_{\tau}^{q} - \int_{\Omega} A_{\tau}^{q} \otimes \int_{\Omega} B_{\tau}^{p} \\ \leq 2\frac{p}{q}m^{p-q} \\ \times \left(\frac{\int_{\Omega} A_{\tau}^{2q} d\mu\left(\tau\right) \otimes 1 + 1 \otimes \int_{\Omega} B_{\tau}^{2q} d\mu\left(\tau\right)}{2} - \int_{\Omega} A_{\tau}^{q} d\mu\left(\tau\right) \otimes \int_{\Omega} B_{\tau}^{q} d\mu\left(\tau\right)\right).$$

From (3.7) we also have the inequalities for the Hadamard product for p>q that

$$(3.11) \quad 0 \leq 2\frac{p}{q}m^{p-q}\left(\int_{\Omega}\left(\frac{A_{\tau}^{2q}+B_{\tau}^{2q}}{2}\right)d\mu(\tau)\circ 1 - \int_{\Omega}A_{\tau}^{q}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{q}d\mu(\tau)\right)$$
$$\leq \int_{\Omega}\left(A_{\tau}^{p+q}+B_{\tau}^{p+q}\right)d\mu(\tau)\circ 1$$
$$-\int_{\Omega}A_{\tau}^{p}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{q}d\mu(\tau) - \int_{\Omega}A_{\tau}^{q}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{p}d\mu(\tau)$$
$$\leq 2\frac{p}{q}M^{p-q}\left(\int_{\Omega}\left(\frac{A_{\tau}^{2q}+B_{\tau}^{2q}}{2}\right)d\mu(\tau)\circ 1 - \int_{\Omega}A_{\tau}^{q}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{q}d\mu(\tau)\right)$$

and for p < q

$$(3.12) \quad 0 \leq 2\frac{p}{q}M^{p-q}\left(\int_{\Omega}\left(\frac{A_{\tau}^{2q}+B_{\tau}^{2q}}{2}\right)d\mu(\tau)\circ 1 - \int_{\Omega}A_{\tau}^{q}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{q}d\mu(\tau)\right)$$
$$\leq \int_{\Omega}\left(A_{\tau}^{p+q}+B_{\tau}^{p+q}\right)d\mu(\tau)\circ 1$$
$$-\int_{\Omega}A_{\tau}^{p}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{q}d\mu(\tau) - \int_{\Omega}A_{\tau}^{q}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{p}d\mu(\tau)$$
$$\leq 2\frac{p}{q}m^{p-q}\left(\int_{\Omega}\left(\frac{A_{\tau}^{2q}+B_{\tau}^{2q}}{2}\right)d\mu(\tau)\circ 1 - \int_{\Omega}A_{\tau}^{q}d\mu(\tau)\circ\int_{\Omega}B_{\tau}^{q}d\mu(\tau)\right).$$

14

Finally, for $B_{\tau} = A_{\tau}$ in (3.11) and (3.12), we get for p > q that

$$(3.13) \qquad 0 \leq \frac{p}{q} m^{p-q} \left(\int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \circ 1 - \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \right)$$
$$\leq \int_{\Omega} A_{\tau}^{p+q} d\mu(\tau) \circ 1 - \int_{\Omega} A_{\tau}^{p} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{q} d\mu(\tau)$$
$$\leq \frac{p}{q} M^{p-q} \left(\int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \circ 1 - \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \right)$$

and for p < q

$$(3.14) \qquad 0 \leq \frac{p}{q} M^{p-q} \left(\int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \circ 1 - \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \right)$$
$$\leq \int_{\Omega} A_{\tau}^{p+q} d\mu(\tau) \circ 1 - \int_{\Omega} A_{\tau}^{p} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{q} d\mu(\tau)$$
$$\leq \frac{p}{q} m^{p-q} \left(\int_{\Omega} A_{\tau}^{2q} d\mu(\tau) \circ 1 - \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \circ \int_{\Omega} A_{\tau}^{q} d\mu(\tau) \right).$$

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, *Lin. Alg. & Appl.* 26 (1979), 203-241.
- [2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
- [3] J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265-272.
- [4] A. Korányi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520–554.
- [5] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995), 531-535
- [6] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [7] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, *Scient. Math.* 1 (1998), No. 2, 237-241.
- [8] S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007), 433-440.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA