TENSORIAL AND HADAMARD PRODUCT INTEGRAL
INEQUALITIES FOR SYNCHRONOUS FUNCTIONS OF
CONTINUOUS FIELDS OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a Hilbert space and 2 a locally compact Hausdorff space
endowed with a Radon measure p with [, 1du (t) = 1. In this paper we show
among others that, if f, g are synchronous and continuous on I and h is nonneg-
ative and continuous on the same interval while (A;) cq and (Br),cq are con-
tinuous fields of selfadjoint operators in B (H) such that Sp (A;), Sp (B-) C I
for each 7 € Q, then

/h(AT)f(AT)g(AT)du(T)Géf h (Br) dpu (7)
Q Q
+/ﬂh(AT>du<r>®/Qh(BT>f<BT>g<BT)du<T>
2/Qh(AT)f(Af)du(T)®/Qh(BT)9(BT)du(T)

+/Qh(AT>g(AT)du<T>®/Qh(BT>f<BT>du<T>.

We also have the similar inequalities for the Hadamard product ” o ”..

1. INTRODUCTION

Let I4,...,I;; be intervals from R and let f: I; x ... X I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A1, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hy, ..., Hx such that
the spectrum of A; is contained in I; for ¢ = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; = / NdE; (Ai)
I.

i

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
(11) f(Al,...,Ak) 2:/ f(Al,...,Al)dEl (A1)®...®dEk ()\k)
I Iy

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [4] for functions of two
variables and have the property that

f(AL s Ak) = fi(A) @ .. ® fr(Ag),
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whenever f can be separated as a product f(¢1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely

f(st) > (L) f(s) f(t) for all s,t € [0,00)
and if f is continuous on [0,00), then [6, p. 173]
(1.2) f(A®B) > (L) f(A)® f(B) forall A, B>0.
This follows by observing that, if

A= / tdE (t) and B = sdF (s)
[0,00) [0,00)
are the spectral resolutions of A and B, then
(1.3) (ﬂA@B):/‘ /‘ £ (st)dE (t) @ dF (s)
[0,00) /[0,00)

for the continuous function f on [0, 00).
Recall the geometric operator mean for the positive operators A, B > 0

A#B = AV2(AY2BAY/2)t AL/
where t € [0, 1] and
A#B = AY2(A-V2BA-Y/2)1/2 4172,
By the definitions of # and ® we have
A#B = B#A and (A#DB) @ (B#A)=(A®B)#(B® A).
In 2007, S. Wada [8] obtained the following Callebaut type inequalities for ten-

sorial product

(1~4) (A#B) ® (A#B) < [(A#aB) ® (A#lfocB) + (A#lfaB) ® (A#aB)]

— N | =

<-(A® B+ B®A)

3
for A, B> 0 and a € [0,1].

Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,e;) = (Aej, ¢;) (Bej, €5)

for all j € N, where {e;},\ is an orthonormal basis for the separable Hilbert space
H.

It is known that, see [5], we have the representation

(1.5) AoB=U"(A® B)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [6, p. 173]

(1.6) f(AoB) > (<)f(A)o f(B) forall A, B>0.

We recall the following elementary inequalities for the Hadamard product

A2 o B2 < <A;B>olforA, B>0
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and Fiedler inequality
AoA ' >1for A>0.
As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
2 1/2 2 1/2
AOBS(A ol) (B 01) for A, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (A20B%)"? for A, B>0.

It has been shown in [7] that (A% o 1)1/2 (B*01) 2 and (A?o B2)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Let 2 be a locally compact Hausdorff space endowed with a Radon measure pu.
A field (Ay),c(, of operators in B (H) is called a continuous field of operators if the
parametrization ¢ — A; is norm continuous on B (H). If, in addition, the norm
function ¢ — || A¢|| is Lebesgue integrable on €2, we can form the Bochner integral
Joy Aedpu (t), which is the unique operator in B (H) such that ¢ ([, Audp(t)) =
Jo @ (Ay) dp (t) for every bounded linear functional ¢ on B (H) . Assume also that,
Jo ldu(t) = 1.

Motivated by the above results, in this paper we show among others that, if f,
g are synchronous and continuous on I and h is nonnegative and continuous on
the same interval while (A;) .o and (B;) . are continuous fields of selfadjoint
operators in B (H) such that Sp (A,), Sp (B;) C I for each 7 € Q, then

/qh 94 du(m) @ [ BB du()

fAM&MMﬂ@/hBJﬂ&MBJWW)
zLM&H( /h ) du ()

+AhMﬁﬂmwwﬂ®Lhwﬁﬂ&MMﬂ-

We also have the similar inequalities for the Hadamard product ” o ”.

2. MAIN RESULTS
We recall that the functions f, g are synchronous (asynchronous) on the interval
Iif
(f@&)=F(s)(g(t) —g(s)) = (£)0
for all t, s € I. If f and g have the same monotonicity on I, then they are synchro-

nous.
We start to the following result:

Lemma 1. Assume that f, g are synchronous and continuous on I and h, k non-

negative and continuous on the same interval. If A, B are selfadjoint with spectra
Sp(A), Sp(B) C I, then

(2.1) [h(A) F(A) g(A)] @k (B) +h(A)@[k(B) f(B)g(B)]
> [h(A) f(A]@[k(B)g(B)] +[h(A)g(A)] @ [k(B)f(B)]
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or, equivalently
(2.2) (h(A)@k(B))[(f(A)g(A)@1+1(f(B)g(B))
= (h(A) @k (B))[f (A) @9 (B)+g(A) & f(B)].
If f, g are asynchronous on I, then the inequality reverses in (2.1) and (2.2).
Proof. Assume that f and g are synchronous on I, then
F@g@®)+f(s)g(s)=ft)g(s)+f(s)g(t)

forall t,s € I.
We multiply this inequality by h (¢) k (s) > 0 to get

F@®) g@)h)k(s)+h(t)f(s)g(s)k(s)
> [ h(t)g(s)k(s)+ [ (s)k(s)g(t)h(t)

for all t,s € I.
If we take the double integral, then we get

(2.3) // S+ h() £ ()9 (5)k ()] dE (t) @ dF (s)
//fth - F(s)k(3) g (8) h (8] dE () @ dF (s).

Observe that

// s)+h(t) f(s)g(s)k(s)]dE (t) ® dF (s)

://f (s)dE (t) ® dF (s)
//h s)dE (t) ® dF (s)

(A)g(A]©k(B)+h(A)@[k(B)f(B)g(B)]

and

// s)+ [ (s)k(s)g (@) h(t)]dE(t) @ dF (s)

://f (s)k(s)dE (t) @ dF (s)
// $)dE (t) ® dF (s)

@ k(B)g(B)+[h(A)g(A)]e[k(B)f(B)].

By utilizing (2.3) we derive (2.2).
Now, by making use of the tensorial property

(XU)e(YV)=(XY)UeV),
forany X, U, Y,V € B(H), we obtain
[h(A) f(A)g(A)] @k (B)+h(A)@[k(B)f(B)g(B)
=(h(A)@k(B)[(f(A)g(A) @1+ (h(A) @k (B)) 1 (f(B)g(B))
=(h(A)@k(B)[(f(A)g(A)®@1+1x(f(B)g(B))]
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and
[h(A) F(A)]@[k(B)g(B)] +[h(A)g(A)] @ [k(B) f(B)]
= (h(A) @ k(B))(f (A) @ g(B)) + (h(4) @ k(B)) (9 (4) © f (B))
=(h(A)@kB)[f(A)@g9(B)+g(A) e f(B)],

which proves (2.2) O

Remark 1. With the assumptions of Lemma 1 and if we take k = h, then we get
(2.4) [h(A) f(A) g (A)]@h(B)+h(A)@[h(B)f(B)g(B)]
= [h(A) f(A]@[h(B)g(B)+[h(A)g(A)]@[h(B)f(B)],

where f, g are synchronous and continuous on I and h is nonnegative and contin-
uous on the same interval.
Moreover, if we take h =1 in (2.4), then we get

(25)  (f(AgA)el+1e(f(B)g(B)=f(A)®g(B)+g(4) e f(B),

where f, g are synchronous and continuous on I
We have the following result for Hadamard product as well:

Corollary 1. Assume that f, g are synchronous and continuous on I and h, k
nonnegative and continuous on the same interval. If A, B are selfadjoint with
spectra Sp (A), Sp(B) C I, then

(2.6) k(B)o[h(A)f(A)g(A)]+h(A)o[k(B)f(B)g(B)
> [h(A) f(A)]e[k(B)g(B)] +[k(B)f(B)]o[h(A)g(A)].

If f, g are asynchronous on I, then the inequality reverses in (2.6).
In particular, we have

(2.7) h(B)o[h(A)f(A

)9 (A)] +h(A)o[h(B)f(B)g(B)]
> [h(A) f(A)] o [h(

B)g(B)] + [l (B) f (B)] o [h(A)g(A)]
and
28  (f(Ag(A)+(f(B)g(B)elzf(A)og(B)+f(B)og(A).
Proof. If we take U* to the left and U to the right in the inequality (2.1), we get
U ([h(A) f(A) g (A)] @ k(B)U
+U" (h(A) @[k (B) f(B)g(B))U
U ([h(A) f(A]e[k(B)g(B))U
+U ([h(A)g (Al [k(B) f(B)HU,
namely
[h(A) f(A) g (A)] ok (B)+h(A)e[k(B)f(B)g(B)]
2 [h(A) f(A)] e[k (B)g(B)] +[h(A)g(A)]o[k(B) f(B)],
which is equivalent to (2.6). O
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Theorem 1. Assume that f, g are synchronous and continuous on I and h, k
nonnegative and continuous on the same interval. If (A;) cq and (B;) o are
continuous fields of selfadjoint operators in B (H) such that Sp (A,), Sp (B,) C I
for each T € Q, then

(2.9) /Q h(A) f (Ar) g (Ay)du(r) & / K (B,) du (7)

Q

+ / B (Ar) du(r) ® / k(B,) f (B.) g (B.) dy ()

>/Qh(AT)f(AT)d,u(T)®/Qk(Br)g(Br)dﬂ(T)
+ [ A e [ BB 5 (B du o).

In particular, for k = h, we have

(2.10) /Q h(A) f (A g (Ar)du(r) @ /Q h(B,) du (r)
+ / h(Ar)dp(r) @ / W(B.) f (B.)g (B.)du(r)

>/Qh(AT)f(AT>du(T)®/h(BT>g<BT>du<T)

B Q
+ [ A g du() e [ h(B) 7B du(r).
Proof. We have from (2.1) that

(2.11)  [n(Ar) f(Ar) g (Ar)] @ k(By) + h(Ar) @ [k(By) f(By) g (By)]
> [h (A7) f (A @ [k (By) g (By)] + [h(Ar) g (A7) @ [k (By) f (By)]

for all 7, v € Q.
If we take the integral [, over du (7) in (2.11), then we get

(2.12) [t feagane k)
Fh(An) @ [k (By) £ (By) g (By)]}du ()
> [ a0 £ 0 1 (B (B,)
R (A g (AD)] @ [k (By) £ (By)]}du (7).
Using the properties of integral and tensorial products, we have
[ nan s sane ks,
Th(Ar) @ [ (By) £ (By) g (By)]} dp(r)
= [ A £ (A (A dn(r) & & (B,)

+ / B (A du(7) © [k (B,) £ (By) g (B,)].
Q
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Aﬁmm»ﬂmn®wwwu&n
(AL g (An)] ® [k (By) £ (By)]} dis (7)
=AhM»ﬂmMMﬂ®%Bwﬂ&ﬂ
-+j/fluaog<A¢>du<T>®[k(Bv>f<an
Q

and by (2.12) we get

(2.13) /“h A)dpu(7) &  (B,)
[ A du(r) @ 6 (B,) £ (B,) g (B)
/h [k (B3) 9 (By)]
+ [ B8 (A du(7) @ 6 (B,) £ (B
for all v € Q.
If we take the integral [, over du (v) in (2.13), then we get the desired result
(2.9). O

Remark 2. Moreover, if we take h =1 in (2.10), then we get

(2.14) /f ) dp (7 ®1+1®/f 9(Br)dp(7)
,Af D)@ [ 9(B)du()
+ [ aandnme [ FB)au)

If we take B, = A, 7 € Q in (2.14) then we obtain

(2.15) /f S dp (T ®1+1®/f 9 (Az)dp(T)

_Af D)@ [ g(A)du)
+ [ atandume [ Fa)dn)

Corollary 2. With the assumptions of Theorem 1,
(2.16) [ (a0 1 (4) A)du(T)o/k(B)du(
/h E(B,) £ (B,) g (B:) du(7)
AL /Qk
+Lh Ak
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In particular, for k = h, we have
(7)
Q
+/Qh<AT>du<f> o/Qm ) (B2) g (By) du ()
> [ b F A du(r)o [ (B (B du (o)

Q

+ [ A g du o [ 1B £ (B dn ().

(2.17) [ Fang e | nie)d
B g

Remark 3. By taking B, = A., 7 € Q in (2.17) and using the commutativity of
the Hadamard product, we get

(2.18) A h(Ar)dp (7)o 2h(AT) [ (A7) g (As) dp(7)

¢
> [ b (A du(r)o [ 1A g (A du(r),
Q Q

In particular, if we take h =1 in (2.18), then we get

(2.19) /Q F(A) g (A du(r)ol > /Q f(Ay) dpi (7)o /Q 0 (A dpi (7).

Assume that A, B are such that Sp (A), Sp(B) C I, then Sp((1—t)A+¢B) C I
for all t € [0,1]. By taking A, = (1 —¢) A+ tB in (2.19), we get

(2.20) /1f((1—t)A+tB)g((1—t)A+tB)dtol

1 1
Z/o f((l—t)A—HB)dto/O g((1—t)A+tB)dt

for all continuous and synchronous functions on 1.
For f (x) = exp (ax), g (z) = exp (Bz) with a8 > 0, we get from (2.20) that

(2.21) /1 exp[(a+B) (1 —t) A+ tB)]dtol

1 1
2/0 eXp[a((l—t)A—HB)]dto/o expfB((1—t)A+tB)dt

It is known that if U and V are commuting, i.e. UV = VU, then the exponential
function satisfies the property

exp (U)exp (V) =exp(V)exp(U) =exp(U+V).

Also, if U is invertible and a,b € R with a < b then

b
/ exp (tU) dt = U™ [exp (bU) — exp (aU)].
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Moreover, if U and V' are commuting and V' — U is invertible, then
1 1

/ exp((1—s)U+sV)ds = / exp (s (V —U))exp (U)ds
0 0

- </ exp(s(V—U))dS) exp (U)

0
:(VfU)f1 lexp (V —U) —I]exp (U)
(V—=U) " exp (V) — exp (U)] .

Therefore
/0 exp[k(1—s)U+sV)]ds =k~ (V —=U) " [exp (kV) — exp (kU)]

for k # 0.
Now, if A and B are commutative with B — A is invertible, then

/Olexpuaw)((l—t>A+tB>1dtol

= (a+8)" (B—A) " [exp((a+ B) B) —exp ((a + ) A)],

/01 expla((1—t) A+ tB)]dt = a~* (B — A) " [exp (aB) — exp (0 A)]
and
[ el -4t mla=5" (8- ) e (35) - oxp (34
From (2.21) we then get

(222)  (a+B) (B exp((@+ ) B) —exp((a+ B A)]} o1
> a5 {(B=A) [exp (aB) - exp (ad)]}
o {(B =) [exp (8B) — exp (84)]}

where A and B are commutative with B — A is invertible.

3. RELATED RESULTS

We also have:

Lemma 2. Let f, g: [m, M] CR — R be continuous on [m, M| and differentiable
on (m, M) with ¢’ (t) # 0 fort € (m,M). Assume that

fr@ J'(t)
in —=, sup ;
te(m,M) g' (t) " te(m,m) 9 (1)

—00 <y = =TI < oo,
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and A, B selfadjoint operators with spectra Sp (A), Sp (B) C [m, M], then for any
continuous and nonnegative function h defined on [m, M],

(h(A)g®(A) @ h(B)+h(A) @ (h(B)g* (B

~—
~—

(3.1) 2y

In particular,

o) o [TAEIIEEE) 6 0)

<lfAgAel+1elf(B)g(B)] - f(A)@g(B)-g(4)e f(B)

2 2
TEELELETE) e em).

gQF{

Proof. Using the Cauchy mean value theorem, for all ¢, s € [m, M] with ¢ # s there
exists € between ¢ and s such that

Therefore

Vg ) =g (&) < [f () = F($)]g(t) =g ()] <Tlg(t) =g (s)]’

for all ¢, s € [m, M|, which is equivalent to

v[g* (t) =29 (t) g (s) + g° (5)]
F@gt)+f(s)g(s)
r (

<
<

for all ¢, s € [m, M].
If we multiply by h (t) h (s) > 0, then we get

for all ¢, s € [m, M].
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This implies that

M M
y / / [1.(t) 6% (t) h () — 29 (£) h (t) b () 9 (5) + b () h (5) 67 ()]
x dE (t) ® dF (s)

M M
S/ / (L (&) £ () g (@) h(s) +h(t)h(s)f(s)g(s)
F@)h(s)g(s)—n(t)gt)h(s)f(s)]dE (t) ® dF (s)
M

)
<t [ [ OO - 2OhOE ) + bR o)

and by performing the calculations as in the proof of Lemma 1, we derive (3.1). O

Corollary 3. With the assumptions of Lemma 1 we have

(3.3) 2y 5
—(g(A)h(A)) e (h(B)g(B))]
<h(B)o[h(A)f(A)g(A)]+h(A)e[h(B)f(B)g(B)]
—[h(A) f(A)] o [h(B)g(B)] = [h(A) g (A)] o [h(B) f(B)]
h(B)o (1 (A) g (4)) + h(A)o (h(B) g (B))

Theorem 2. Let f and g be as in Lemma 2. If (A;), cq and (B;) cq are contin-
uous fields of selfadjoint operators in B (H) such that Sp (A.), Sp(B;) C [m, M]
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for each T € Q, then we have

/h /h Br)du(7)
_ Qh( A f (AL dp (7) /Qh dyu (7)
_ / h(A) g (A dp(7) @ Qh(B»f(BT)du(r)
<or B </Qh(AT)g2 (Af)du(7)®/gh(Br)dﬂ(T)
+ /Qh(AT)du (r)<>z>/Qh(BT)g2 (Bf)du(7)>

- [aanan s [ 1E)aE) ).
Q Q

The proof follows from Lemma 2 by using a similar argument to the one in the
proof of Theorem 1 and we omit the details.
If we take h =1 in (3.5), then we get

39 2|5 ([ FUrmmeiiis [ @6 amm)

- [staduee /g}( (7]

/f 2 du (r ®1+1®/f 9(Br)du(r)

—/Qf ) dp (7) /Qg(BT)du(T)—/Qg ) M(T)®/Qf(B d
<or B (/992(Aq—)d/l(7)®1+1®/Q.92(Br)d/‘(7'))

- [atamme [a@am)|.
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From (3.6) we derive the following result for the Hadamard product

(3.7) 2y
y [ /Q I A +9" (B g (o1 - /Q 9 (A du (7)o /Q g(BT)du(T)]

2
< / F (A g (A7) + f (Br) g (Br)] dp(7) 0 1

Q
/Q £ (Ar)dpa (7)o / 9 (B.) dp(7) - / 9 (Ar) dp(7) 0 / £ (Br)dpu (7)
<ar

<|[ LS B o1 [ ganduine [

(B du(r)].
If in this inequality we take B, = A, 7 € , then we get
39 | [Funamer- [surmee [ ome)

Q
< [ F(AD)g(A)du(r)o1— / £ (A dpu(r) o / g (4,) dp (7)
Q Q Q

<o [#nammer- [g@namme [ o).

Consider the functions f(t) = t?, g(t) = t9 defined on (0,00). Then f'(t) =
ptP~1, ¢ (t) = gt for t > 0 and

Assume that either p,q € (0,00) or p,q € (—o0,0). Then g > 0 and ch:g is
increasing for p > ¢ and decreasing for p < ¢ and constant 1 for p = gq.

Observe that for [m, M] C (0,00),

"t "t
inf f,( ) = Pp=a and sup f/( ) — Ppyr—a for p > ¢q
te[m,M] g (t) q te[m,M] 9 (t) q
and
/ !
inf f, ®) = P ppa and sup f, ) — PP for p<q.
tefm,M] g’ (1) q tefm) 9 (1) q

Assume that either p, g € (0,00) or p,q € (—00,0) and (A,), . and (B;), . are
continuous fields of selfadjoint operators in B (H ) such that Sp (A,), Sp (B.) [m, M| C
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(0,00) for each 7 € Q. From (3.5) we get for p > ¢ that
(3.9) 0< 2§mp—q

A2%4d 1+1 B244
><<f9 () © ; 8 Jo Bridu (7 /Aw /Bqdu )

< / AP ()@ 1+1® / BPTdy (1)
Q

—/QAde( 7 ® /Bw /A‘Idu /QBi’du(T)

< 2P ppra
q
A24 1+1 B2?iq
(DA LSBT [ o) [ mranc)
Q Q
and for p < ¢

(3.10) 0 < 2§M”‘q

o (A BOELAS]ILRD [ iy [ pranin)

2
g/Aﬁ+q®1+1®/]3v’i+(1_/‘4£®/Bg_/AZQ‘Q/Bf
Q Q Q2 @ &
< 9Pyp—a
q
A244 14+1 B2
x(fQ 2 u(7)® J2F ®fQ T l‘(T)/QAfII_dM(T)@/QBgdﬂ(T))'

From (3.7) we also have the inequalities for the Hadamard product for p > ¢ that
A2 4 B2
(3.11) 0 < 2Zmp—a (/ <T+T> Jol— / Aldp (r / Bldu (r )
q Q 2
< / (AP*9 4 BPHY) dp (1) 0 1
Q

Azdu(r)o | Bup(r / Asdu(r)o | Brdu(r)
Q Q

<olar ([ (A;B) du(r)o1 - / Asau(r) o [ Bidn(r))

and for p < ¢

1) o<2lae ([ (EEED qumer- [(arduee [ prane)

< [ (e By dur) o
Q

. /Q APdy (1) o /Q Bldy (1) — /Q Addp (7)o /Q Brdp (7)

A24 4 B2
< 2L mp—a (/ (T;—T> dp(r)ol— / Aldp (t)o | Bldu (T)) .
q Q Q Q
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Finally, for B; = A, in (3.11) and (3.12), we get for p > ¢ that

(3.13) 0< gmp—q (/ A2y, (7)01—/Aqdu /chlu )
Q

< [ artdu(yor- [ Azdur)o [ Atdn(r)
Q Q Q

< Ppgra (/ A%dp(t) ol — / Addp (1) o/ Aldp (7'))
q Q Q Q
and for p < ¢

(3.14) 0<pMP*q (/ A29dy (1) 01—/Aqdu /Aqdu )
/Apﬂdu 01—/ APdp (7 /Aqdu
ngp (/ A2dp (r )01—/Aqdu( )o /QAidu(T)>~
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