BOUNDS FOR THE NORMALIZED DETERMINANT OF
HADAMARD PRODUCT OF TWO POSITIVE OPERATORS IN
HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we obtain upper and lower bounds for the de-
terminant Az (A o B) of the Hadamard product of two operators under some
natural assumptions such as 0 < mj; < A < Mj and 0 < mg < B < Mg, where
m;, M; (i =1,2) are constants.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [5], [6], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[5].
For each unit vector « € H, see also [10], we have:

(i) continuity: the map A — A,(A) is norm continuous;
(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);
(iii) continuous mean: (Apx,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T AL(A)
for p T 0;
) power equality: Ay(AY) = AL (A) for all t > 0;
) homogeneity: Ay(tA) =tA,(A) and A, (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A, (A) < A, (B);
i) multiplicativity: A, (AB) = A,(A)A,(B) for commuting A and B;
) Ky Fan type inequality: A, ((1 —a) A+ aB) > AL (A)'"*AL(B)* for 0 <
a<l
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We define the logarithmic mean of two positive numbers a, b by

lng:ilna if b 7& a,
L(a,b) :=
aif b= a.

In [5] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

(11) 0 (Ar.z) ~ An(4) < L(m, M) [0 L (m,ap) o M=y

for all x € H, ||z|| = 1.
The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.2) a7 < (1—v)a+vb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [14]

BTt e (0,1) U (L )
(1.3) S(h) = ()

1if h=1.
It is well known that lim,—1 S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The

function is decreasing on (0, 1) and increasing on (1, 00).
In [6], the authors obtained the following multiplicative reverse inequality as well
(Az, ) M
1.4 1< <S|—
(14) - AL(4) m
for0O<mI<A<MIandzeH,|z|=1.
Since 0 < M~ < A=! <m~'I, then by (1.4) for A=! we get
<A_1x, ac>

= s =0 (im) s (G)7) - (5)

which is equivalent to

(15) 1 A <5 (1)

T (Al )t m

forx € H, ||z|| = 1.
We consider the Kantorovich’s constant defined by

(h+1)?
4h
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any

h>0and K (h) = K (+) for any h > 0.
The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(1.7) K" (b> a7 < (1—-v)a+vb < KR <b> al=vp”
a a

(1.6) K (h) ==  h>0.

where a, b > 0, v € [0,1], r = min {1 — v,v} and R = max {1l —v,v}.
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The first inequality in (1.7) was obtained by Zuo et al. in [18] while the second
by Liao et al. [13].
Recall the geometric operator mean for the positive operators A, B > 0

A#,B = AV2(AV/2BA1/2) A1/
where t € [0, 1] and
A#B = AY2(A-V2BA-1/2)1/2 41/2,
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A)=(A®B)#(B® A).

In 2007, S. Wada [16] obtained the following Callebaut type inequalities for ten-
sorial product

(1.8)  (A#B) ® (A#B) < 5 [(A#aB) ® (A#1-aB) + (A#1-aB) ®@ (A#.D)]

N |

<%M®B+B®m

for A, B> 0and a €0,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying

(Ao B)ej,e;) = (Aej, e5) (Bej, e5)

for all j € N, where {e;},\ is an orthonormal basis for the separable Hilbert space
H.
It is known that, see [4], we have the representation

(1.9) AoB=U"(A® B)U
where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [9, p. 173]
(1.10) f(AoB)> (<) f(A)o f(B) forall A, B> 0.

We recall the following elementary inequalities for the Hadamard product
A2 o B2 < <A;B> olfor A, B>0

and Fiedler inequality
(1.11) Ao At >1for A>0.
As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
AoB< (A%01)?(B201)"? for 4, B> 0
and Aujla and Vasudeva [3] gave an alternative upper bound

1/2

AOBS(A2OBQ) for A, B> 0.

It has been shown in [11] that (A2 o 1)1/2 (B*01) 2 and (A?o B2)1/2 are incom-
parable for 2-square positive definite matrices A and B.
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Motivated by the above results, we establish in this paper the following upper
and lower bounds for the determinant A, (A o B)

M1 Mg —((AoB)ax,x) ((AoB)z,z) —mymg
(mlm2) My My —mymg (MlMQ) My Mg —mymg

K<M1M2>(§‘M1M21m1m2<“*( -2 ML e ) )
<

mimso
My My —((AoB)z,z) ((AoB)z,xz)—mimg
X (m1m2> M Ma—mimy (Mle) My My —mymy
<exp[U" (In(A® B))Ux,x)]
<A, (AoB)
< K (M1M2> +M1M2im1m2<|AOB*THIm’2+2—MlM2 |m,z>)
mimaz
My My —((AoB)z,z) ((AoB)z,@) —mjmy
mlmg) My Mg—mqimg (Mle) M1 Mg —myimg
<M1M2> mﬂnﬁ% (MlMQ)%
mima
My M.
<K ( : ) xp (U (In (A ® B)Uz,a),
mimsz

provided that 0 <m; < A< M; and 0 < mg < B < M.

2. MAIN RESULTS

We start to the following operator inequalities involved positive operators and
positive linear maps:

Theorem 1. Assume that the selfadjoint operator P satisfies the condition 0 <

m < P < M for some constants, m, M and ® a unital positive linear map from
B (H) into B(K). Then

M —®(P) ®(P)—m
2.1 1 In M
(2.1) nm M—-—m +n M—-—m
M 1 1 m+ M
<InhK|— - — ®(P) —
= m> (2 —m |2 )
M —®(P) ®(P)—m
1 In M
+m M—-—m o M—-—m
<Ilnd(P)
M 1 1 m+ M
< — _ _
an(m> 2+M_m'<I>(P) 5 )
HnmenM‘b( m
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Proof. Assume that 0 < a < b. If we take v = £=2 € [0, 1] for ¢ € [a, b] and observe
that

" — min t—a b—t _1_ 1 t_a—|—b
o b—a'b—a] 2 b-a 2 |’
t—a b—t 1 1 a+b
R_max{ba7ba} §+bfa b= 2 '
and bt .
— —a
(1—u)a+ub—ma+biab—t.

By utilizing (1.7) we get

(23) K-l (b> GBEEbEE <t < KRRl (b) ot

a a

for all ¢ € [a,b].
If we take the logarithm in (2.3), then we get

-t t—a
2.4 1 1
(2.4) na,b_a—|— nbb—a
b 1 1 a+b b—t t—a
<InK |- - — t— —— 1 Inb
= <a><2 b—a 2 ‘)+nab—a+nb—a
<lInt

2 b—a b—a

b 1 1
< Z -
an(a> (2+ba

for all ¢ € [a,b].
By utilizing the continuous functional calculus for selfadjoint operators T" with
spectra Sp (T') C [a, ], we obtain from (2.4) that

b—T T—a

t—a+bD+1nab_t +lnbt_a

2. 1
(2.5) nay— .
b 1 1
<k (2)(:-
= (a) <2 b—a
b 1 1
() (2+ba T

2

] I I O e S P
b—a b—

2 CLbfa b—a

CH_bD—i—ln b—T T—a.
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Now if 0 < m < P < M, then 0 < m < ®(P) < M and by (2.5) we get for
T=3®(P),a=m and b = M the inequality (2.1). If we take T'= P, a = m and
b= M in (2.5) and then apply ® we also obtain (2.2). O

Corollary 1. With the assumptions of Theorem 1 we have the chain of inequalities

(2.6) lnmi +InM——

Proof. Third inequality follows by Jensen’s operator inequality for the operator
concave function In. The fifth inequality follows by the fact that

m+ M
2

o (P) - "M < S ).

while the last inequality follows by the fact that

from the first part of (2.6). O
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Theorem 2. Assume that 0 < m; < A< My and 0 < mo < B < Ms, then

My My —((AoB)x,x) {(AoB)z,x) —myma
(27) (m1m2) My Mp—myma (MlMQ) My Mp—myma

<M1M2> (3= sy U ( -2 MU o ) )
<K

mimes
My Mo—((AoB)x,x) ((AoB)z,z)—mqimg
x (mimg) Mia=mims (M M,)~ Midz-mims
< exp [{U* (In (A & B) Uz, )
<A (A0 B)
1 AoB— mama M My |xz>)

M, Mo R vepy ey (| 2 )
<K
B <m1m2 >

My My —((AoB)z,z) ((AoB)z,z)—mjmg
m1m2) M1 Mg —mymg (MlMg) M{ Mg —mymg

M M. My My—((AoB)x,z) {(AoB)w,z) —mymy
12 mlmg) M Mz —mjmy (Mle) M7 Mg —mymg
mims

IN

K(MM@>mMWOMA®mﬂMJ%

mims
forxz e H, ||z| = 1.
Proof. Since0 <mi; <A< M;and0<mg < B < Ms,then0 < mims <P =A®

B < M; M. From (2.6) for m = mymg, M = MM, ® (P) =U*(A® B)U = AoB
we get

MlMngOB AoBfmlmg

2.8 1 — 4+ In(M; M) ——— =

(28) n (mams) M My —mime +In (M M) MMy —mime
ng<MMﬂ

mimso

1 1 mima + M Ms
S — Y VY U Rt et A p VY
x (2 M1M2—m1m2 (‘ ® 2 ) )
MlMQ—AOB AOB—m1m2
1 — 4+ In(MiMy) —————
+In(mums) M My — mimg +In (M M) M My — mymeg
<U* (In(A® B)U <In(AoB)

M1M2 1 1 mimsa +M1M2
<InK -4 Ao B—- —F——— =%
=0 <m1m2> <2+M1M2m1m2 ° 2 )

M1M27AOB AOBfmlmg
1 -+ In(M;My) ————
*In(mum) MMy —mime +In (M M) MMy — mims
SmK<MM@>
mimeso
MlMQ—AOB AOB—mlmg

+1H (mlmQ) +ln (M1M2)

M1M2—m1m2 M1M2 — mims

ng<M”@>+uwmm®B»u

mims
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If we take the inner product for € H, ||z| = 1, then we get

MMy — ((Ao B)z,x) ((Ao B)z,z) — mimg

1 In (M7 M.
n(mlmZ) M1M2 — mimso + Il( ! 2) M]_M2 — mimso
<K (MlM2>
mimso
1 1 mims + MMy
S0y (lagp - Tt MR,
% (2 M1M2 — mi1ma <u (' © 2 ) ! w>>
MlMQ—AOB AoB—m1m2
1 — 4+ In(M{My) ———
1o (mame) M,y My — mymg i (M) M,y My — myms
< U (In(A® B))Uz,z) < (In(AoB)z,z)
<K (MlM2>
mimso
1 1 mims + MMy
o+ llaeB-—
% (2 + M1M2 — mi1ma < ° 2 x7x>>

MiMy — (Ao B)x,z)
My My — myma

My M,

m1m2>

MiMs — {((Ao B) z,z)
My My — mima

) +{U* (In(A® B))Ux,z),

+ In (myms)

San(

((Ao B)z,z) — mims

+ In (myms) VM — s

+In (MlMQ)

My M,
mims

San(

namely

(2.9)

My My —((AoB)z,x) {AoB)w,x) —mjmy
In (mlmg) M Mg —mqmg (MlMg) M My —mmy

S _mamo+ My My I/{:vw>)
M1M2 (2 My Mg —mymg <M (|A®B 2 |) )

mimsa

My Mg —((AoB)z,x) ((AoB)a,z) —mqmo
+1n (mlmg) M Mg —mimy (Mle) M Mg —mqimo

<{U*(In(A® B))Uz,z) < (In(Ao B)z,z)

<1 [K(MM)](”BMH)
s n

mims

MiMs — {((Ao B)z,x) ((Ao B)z,z) — mymy
| In (M7 M-
T In (mams) My My — myma +In (MM) My My — mimo
<K <M1M2>
mimso

My My —((AoB)z,z) {(AoB)z,x) —mmy
+1In (m1m2) My Mz =mymsz (MlMQ) My My—mymg

My M,
mims

gan< )+<u*(1n(A®B))ux,x>,
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forx € H, ||z|| = 1.
If we take the exponential in (2.9), then we get (2.7). O

3. CONNECTION TO OPPENHEIM’S INEQUALITIES

In the finite dimensional case, if we consider the matrices A = (a;;), B = (b;;) €
M,, (C), then A o B has an associated matrix A o B = (a;;b;;) in M,, (C).
Recall Hadamard determinant inequality [17, p. 218] for A > 0

det A < det(Aol) Ha“
and Oppenheim’s inequality [17, p. 242] for A, B >0

det Adet B < det (Ao B) < det (Ao1)det (Bol) ( Ha“ )

In the recent paper [10] the authors obtained the following Oppenhelm’s type
inequalities
1 < A, (Ao B)
S(h1)S(h2) — Ay (Ao1)A, (10 B)
for x € H, ||z|]| = 1, provided that 0 <m; < A < M; and 0 < mg < B < Ms.
We have the following inequalities:

(3.1) < S (hih2)

Proposition 1. With the assumptions of Theorem 2 we have the determinant
inequalities

1 < A, (Ao B)
K(h1))K(hy) = Ay (Aol)A,(10B) —
whereh1:%>l,h2:%—§>l.

(3.2) < K (hihs)

Proof. By the properties of the tensorial product, we have that
A®B=(A®1)(1® B)

where A ® 1 and 1 ® B are commutative operators.
Therefore

mn(A®B)=ln[(A®1)(1®B)]=lmh(A®1)+In(1® B)
and
U (In(A B)U

U n(Ax1)+In(l® B)U
U (In(A® 1)U +U* (In(1® B)U.
Using Jensen’s operator inequality for the operator concave function ln, we also
have
U (AU <In(U* (A®1)U)=In(Ao1)
and
U In(QeB)U<InU (1®B)U)=In(loB).

These imply for x € H, ||z|| = 1 that

exp(U* (In(A® B))Uz,z) < exp[(In(Aol)z,z)+ (In(loB)x,1)]

exp[(In(Aol)z,z)]exp[(In(1lo B)x,x)]
= A, (Aol)A, (1o B)
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and by the second part of (2.7) we derive the second inequality in (3.2).
From (2.6) we have

In®(P)<InK (Anf) + & (InP)

provided that 0 <m < P < M.
Now, if we take in this inequality 0 < m; < P = A® 1 < My, then we get for
O (P)=U*"(A® 1)U = Aol that

M

In(Aol) <InK (1) +U*(In (A 1)U
my

while for 0 <mo < P=1® B < M
M, §

In(loB)<InK <) +U" (In(1® B))U,

mo

which gives, by addition, that

In(Ao1l)+In(loB)—In {K <Ml)K<M2)]

<U (In(A® 1)U +U* (In(1®B)U =U* (In(A® B))U.

By taking the inner product for z € H, ||| = 1 we get that

My M,
In(Aol In(loB —n|K|—|)K|—
(40 1) a,0) + (1o B) o)~ [ K (201) i (22
<{U* (In(A® B))Uz,z)
and by taking the exponential, we derive

exp((Aol)z,z)exp(ln(lo B)x,x)
K (h1) K (h2)

<exp(U*(In(A® B))Uz,x)

for z € H, ||z|]| = 1 and by the third inequality in (2.7) we obtain the first part of
(3.2). O

Remark 1. Since K (h) > S (h) for h > 0 (see for instance [8, p. 4]), then the
bounds for the ratio

A, (Ao B)
A (Aol)A, (1o B)

provided by (3.1) are better than the ones from (3.2).

Lemma 1. For all hy,he € (1,00) or hq, he € (0,1) we have
(3.3) K (hihs) > K (h1) K (h2) .

If hy € (1,00) and hy € (0,1) or hy € (1,00) and hy € (0,1) then the sign of
inequality reverses in (3.8).
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Proof. We have for hy, hy € (0,00) that

(hiha +1)*  (hi4+1)? (hy + 1)
K (hihs) — K (hy) K (ho) = _
(h1h2) (h1) K (h2) 4hyho 4h, 4hs

_ 1 2 2 2

= Toi [4(uh2+ 1) (ha +1)” (ha +1)°]
1

= m[2(h1h2+1)+(h1+1) (ha +1)]

x [2(hihe +1) = (h + 1) (h2 + 1)].
Observe that
2(hiha+1) = (h1 +1) (he + 1) =2h1ho +2 — hihg —hy — hy — 1
=hiho+1—hy —hy=(h; —1)(ha — 1),

which shows that the sign of K (h1hs) — K (hy1) K (hs) is the same with the one for
(hy — 1) (he — 1), and this proves the lemma. O

Corollary 2. With the assumptions of Theorem 2 we have the deteminant inequal-
1ties

K (hihy) = A, (Ao1)A, (10 B) < K (hihy).

The proof follows by (3.2) and (3.3).

(3.4)
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