
SOME INEQUALITIES FOR THE NORMALIZED
DETERMINANT OF HADAMARD PRODUCT OF TWO

POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A on a Hilbert space H and a
�xed unit vector x 2 H; de�ne the normalized determinant by �x(A) :=
exp hlnAx; xi. In this paper we obtain some inequalities for the determinant
�x (A �B) of the Hadamard product of two operators under some natural
assumptions such as 0 < m1 � A �M1 and 0 < m2 � B �M2, where mi;Mi

(i = 1; 2) are constants.

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [6], [7], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by�x(A) := exp hlnAx; xi and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.
Some of the fundamental properties of normalized determinant are as follows,

[6].
For each unit vector x 2 H; see also [11], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.
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We de�ne the logarithmic mean of two positive numbers a; b by

L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.1) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
The famous Young inequality for scalars says that if a; b > 0 and � 2 [0; 1]; then

(1.2) a1��b� � (1� �) a+ �b

with equality if and only if a = b. The inequality (1.2) is also called �-weighted
arithmetic-geometric mean inequality.
We recall that Specht�s ratio is de�ned by [15]

(1.3) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1)

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
Since 0 < M�1I � A�1 � m�1I; then by (1.4) for A�1 we get

1 �


A�1x; x

�
�x(A�1)

� S
�
m�1

M�1

�
= S

��m
M

��1�
= S

�
M

m

�
;

which is equivalent to

(1.5) 1 � �x(A)

hA�1x; xi�1
� S

�
M

m

�
for x 2 H; kxk = 1:
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.6) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
Since 0 < M�1I � A�1 � m�1I; then by (1.4) for A�1 we get

1 �


A�1x; x

�
�x(A�1)

� S
�
m�1

M�1

�
= S

��m
M

��1�
= S

�
M

m

�
;
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which is equivalent to

(1.7) 1 � �x(A)

hA�1x; xi�1
� S

�
M

m

�
for x 2 H; kxk = 1:
We consider the Kantorovich�s constant de�ned by

(1.8) K (h) :=
(h+ 1)

2

4h
; h > 0:

The function K is decreasing on (0; 1) and increasing on [1;1) ; K (h) � 1 for any
h > 0 and K (h) = K

�
1
h

�
for any h > 0:

The following multiplicative re�nement and reverse of Young inequality in terms
of Kantorovich�s constant holds

(1.9) Kr

�
b

a

�
a1��b� � (1� �) a+ �b � KR

�
b

a

�
a1��b�

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g :
The �rst inequality in (1.9) was obtained by Zuo et al. in [19] while the second

by Liao et al. [14].
Recall the geometric operator mean for the positive operators A; B > 0

A#tB := A
1=2(A�1=2BA�1=2)tA1=2

where t 2 [0; 1] and

A#B := A1=2(A�1=2BA�1=2)1=2A1=2:

By the de�nitions of # and 
 we have

A#B = B#A and (A#B)
 (B#A) = (A
B)# (B 
A) :

In 2007, S. Wada [17] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B)
 (A#B) � 1

2
[(A#�B)
 (A#1��B) + (A#1��B)
 (A#�B)](1.10)

� 1

2
(A
B +B 
A)

for A; B > 0 and � 2 [0; 1] :
Recall that the Hadamard product of A and B in B(H) is de�ned to be the

operator A �B 2 B(H) satisfying

h(A �B) ej ; eji = hAej ; eji hBej ; eji

for all j 2 N, where fejgj2N is an orthonormal basis for the separable Hilbert space
H:
It is known that, see [5], we have the representation

(1.11) A �B = U� (A
B)U

where U : H ! H 
H is the isometry de�ned by Uej = ej 
 ej for all j 2 N.
If f is super-multiplicative (sub-multiplicative) on [0;1) ; then also [10, p. 173]

(1.12) f (A �B) � (�) f (A) � f (B) for all A; B � 0:
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We recall the following elementary inequalities for the Hadamard product

A1=2 �B1=2 �
�
A+B

2

�
� 1 for A; B � 0

and Fiedler inequality

(1.13) A �A�1 � 1 for A > 0:
As extension of Kadison�s Schwarz inequality on the Hadamard product, Ando [1]
showed that

A �B �
�
A2 � 1

�1=2 �
B2 � 1

�1=2
for A; B � 0

and Aujla and Vasudeva [3] gave an alternative upper bound

A �B �
�
A2 �B2

�1=2
for A; B � 0:

It has been shown in [12] that
�
A2 � 1

�1=2 �
B2 � 1

�1=2
and

�
A2 �B2

�1=2
are incom-

parable for 2-square positive de�nite matrices A and B:
Motivated by the above results, in this paper we obtain some inequalities for

the determinant �x (A �B) of the Hadamard product of two operators under some
natural assumptions such as 0 < m1 � A � M1 and 0 < m2 � B � M2, where
mi;Mi (i = 1; 2) are constants.

2. Multiplicative Inequalities

We have the following result for general convex functions [4]:

Lemma 1. Let f : I � R! R be a convex function on the interval I, a; b 2 �I; the
interior of I; with a < b and � 2 [0; 1] : Then

� (1� �) (b� a)
�
f 0+ ((1� �) a+ �b)� f 0� ((1� �) a+ �b)

�
(2.1)

� (1� �) f (a) + �f (b)� f ((1� �) a+ �b)
� � (1� �) (b� a)

�
f 0� (b)� f 0+ (a)

�
:

In particular, we have

1

4
(b� a)

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
� f (a) + f (b)

2
� f

�
a+ b

2

�
(2.2)

� 1

4
(b� a)

�
f 0� (b)� f 0+ (a)

�
:

The constant 14 is best possible in both inequalities from (2.2).

Corollary 1. If the function f : I � R! R is a di¤erentiable convex function on
�I; then for any a; b 2 �I and � 2 [0; 1] we have

0 � (1� �) f (a) + �f (b)� f ((1� �) a+ �b)(2.3)

� � (1� �) (b� a) [f 0 (b)� f 0 (a)] :

Proof. If a < b; then the inequality (2.3) follows by (2.1). If b < a; then by (2.1)
we get

0 � (1� �) f (b) + �f (a)� f ((1� �) b+ �a)(2.4)

� � (1� �) (b� a) [f 0 (b)� f 0 (a)]
for any � 2 [0; 1] : If we replace � by 1� � in (2.4), then we get (2.3). �



SOME INEQUALITIES FOR THE NORMALIZED DETERMINANT 5

Corollary 2. For any a; b > 0 and � 2 [0; 1] we have
(2.5) 0 � (1� �) a+ �b� a1��b� � � (1� �) (a� b) (ln a� ln b)
and

(1� �) ln a+ � ln b � ln ((1� �) a+ �b)(2.6)

� (1� �) ln a+ � ln b+ � (1� �) (b� a)
2

ab
:

Proof. If we write the inequality (2.3) for the convex function f : R! (0;1) ;
f (x) = exp (x) ; then we have

0 � (1� �) exp (x) + � exp (y)� exp ((1� �)x+ �y)(2.7)

� � (1� �) (x� y) [exp (x)� exp (y)]
for any x; y 2 R and � 2 [0; 1] :
Let a; b > 0: If we take x = ln a; y = ln b in (2.7), then we get the desired

inequality (2.5).
Now, if we write the inequality (2.3) for the convex function f : (0;1) ! R,

f (x) = � lnx; then we get

0 � ln ((1� �) a+ �b)� (1� �) ln a� � ln b � � (1� �) (b� a)
2

ab

for a; b > 0 and � 2 [0; 1] : �

We start to the following operator inequalities involving positive operators and
positive linear maps:

Theorem 1. Assume that the selfadjoint operator P satis�es the condition 0 <
m � P � M for some constants, m; M and � a unital positive linear map from
B (H) into B (K) : Then

lnm
M � � (P )
M �m + lnM

� (P )�m
M �m(2.8)

� ln� (P )

� lnmM � � (P )
M �m + lnM

� (P )�m
M �m +

1

mM
(M � � (P )) (� (P )�m)

� lnmM � � (P )
M �m + lnM

� (P )�m
M �m +

1

4mM
(M �m)2

and

lnm
M � � (P )
M �m + lnM

� (P )�m
M �m(2.9)

� � (lnP )

� lnmM � � (P )
M �m + lnM

� (P )�m
M �m +

1

mM
� [(M � T ) (T �m)]

� lnmM � � (P )
M �m + lnM

� (P )�m
M �m +

1

4mM
(M �m)2 :

Proof. Assume that 0 < a < b. We take � = t�a
b�a 2 [0; 1] for t 2 [a; b] and observe

that

(1� �) a+ �b = b� t
b� aa+

t� a
b� ab = t
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and

� (1� �) = (b� t) (t� a)
(b� a)2

:

From (2.6) we get

b� t
b� a ln a+

t� a
b� a ln b(2.10)

� ln t � b� t
b� a ln a+

t� a
b� a ln b+

1

ab
(b� t) (t� a)

� b� t
b� a ln a+

t� a
b� a ln b+

1

4ab
(b� a)2

for all t 2 [a; b].
By utilizing the continuous functional calculus for selfadjoint operators T with

spectra Sp (T ) � [a; b] ; we obtain from (2.10) that

ln a
b� T
b� a + ln b

T � a
b� a(2.11)

� lnT � ln ab� T
b� a + ln b

T � a
b� a +

1

ab
(b� T ) (T � a)

� ln ab� T
b� a + ln b

T � a
b� a +

1

4ab
(b� a)2 :

Now if 0 < m � P � M , then 0 < m � � (P ) � M and by (2.11) we get for
T = �(P ) ; a = m and b = M the inequality (2.8). If we take T = P; a = m and
b =M in (2.11) and then apply � we also obtain (2.9). �

Corollary 3. With the assumptions of Theorem 1 we have the chain of inequalities

lnm
M � � (P )
M �m + lnM

� (P )�m
M �m(2.12)

� � (lnP ) � ln� (P )

� lnmM � � (P )
M �m + lnM

� (P )�m
M �m +

1

mM
(M � � (P )) (� (P )�m)

� lnmM � � (P )
M �m + lnM

� (P )�m
M �m +

m

4M

�
M

m
� 1
�2

� m

4M

�
M

m
� 1
�2
+�(lnP ) :

Proof. Second inequality follows by Jensen�s operator inequality for the operator
concave function ln; while the last inequality follows by the fact that

lnm
M � � (P )
M �m + lnM

� (P )�m
M �m � � (lnP )

from the �rst part of (2.12). �

We have the following inequalities for the determinant �x (A �B) for x 2 H;
kxk = 1:
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Theorem 2. Assume that 0 < m1 � A � M1 and 0 < m2 � B � M2; then for
m = m1m2; M =M1M2;

m
M�A�B
M�m M

A�B�m
M�m(2.13)

� exp [hU� (ln (A
B))Ux; xi]
� �x (A �B)

� m
M�A�B
M�m M

A�B�m
M�m

� exp
�

1

mM
h(M �A �B ) (A �B �m)x; xi

�
� exp

"
m

4M

�
M

m
� 1
�2#

exp hU� (lnA
B)Ux; xi

for x 2 H; kxk = 1:

Proof. Since 0 < m1 � A � M1 and 0 < m2 � B � M2, then 0 < m1m2 = m �
P = A
B �M =M1M2: From (2.12) for � (P ) = U� (A
B)U = A �B we get

lnm
M �A �B
M �m + lnM

A �B �m
M �m(2.14)

� U� (lnA
B)U � ln (A �B)

� lnmM �A �B
M �m + lnM

A �B �m
M �m

+
1

mM
(M �A �B ) (A �B �m)

� lnmM �A �B
M �m + lnM

A �B �m
M �m +

m

4M

�
M

m
� 1
�2

� m

4M

�
M

m
� 1
�2
+ U� (lnA
B)U :

If we take the inner product for x 2 H; kxk = 1; then we get

lnm
M � h(A �B)x; xi

M �m + lnM
h(A �B)x; xi �m

M �m
� hU� (lnA
B)Ux; xi � hln (A �B)x; x i

� lnmM � h(A �B)x; xi
M �m + lnM

h(A �B)x; xi �m
M �m

+
1

mM
h(M �A �B ) (A �B �m)x; xi

� lnmM � h(A �B)x; xi
M �m + lnM

h(A �B)x; xi �m
M1M2 �m

+
m

4M

�
M

m
� 1
�2

� m

4M

�
M

m
� 1
�2
+ hU� (lnA
B)Ux; xi ;
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namely

ln
�
m

M�A�B
M�m M

A�B�m
M�m

�
� hU� (lnA
B)Ux; xi � hln (A �B)x; x i

ln
�
m

M�A�B
M�m M

A�B�m
M�m

�
+

1

mM
h(M �A �B ) (A �B �m)x; xi

� ln
�
m

M�A�B
M�m M

A�B�m
M�m

�
+
m

4M

�
M

m
� 1
�2

� m

4

�
M

m
� 1
�2
+ hU� (lnA
B)Ux; xi

and by taking the exponential, we get (2.13). �

3. Additive Inequalities

We start to the following operator inequalities involving positive operators and
positive linear maps:

Theorem 3. Assume that the selfadjoint operator P satis�es the condition 0 <
m � P � M for some constants, m; M and � a unital positive linear map from
B (H) into B (K) : Then

ln
�
m

M��(P )
M�m M

�(P )�m
M�m

�
(3.1)

� � (lnP ) � ln� (P )

� ln
�
m

M��(P )
M�m M

�(P )�m
M�m + (M � � (P )) (� (P )�m)

�
lnM � lnm
M �m

��
� ln

�
m

M��(P )
M�m M

�(P )�m
M�m +

1

4
(M �m) (lnM � lnm)

�
:

Proof. From (2.5) we get

(3.2) a1��b� � (1� �) a+ �b � a1��b� + � (1� �) (a� b) (ln a� ln b)

for 0 < a < b and � 2 [0; 1] :
Assume that 0 < a < b. We take � = t�a

b�a 2 [0; 1] for t 2 [a; b] and observe that

(1� �) a+ �b = b� t
b� aa+

t� a
b� ab = t

and

� (1� �) = (b� t) (t� a)
(b� a)2

:

By (3.2) we get

a
b�t
b�a b

t�a
b�a � t � a

b�t
b�a b

t�a
b�a + (b� t) (t� a)

�
ln a� ln b
a� b

�
(3.3)

� a
b�t
b�a b

t�a
b�a +

1

4
(a� b) (ln a� ln b)

for all t 2 [a; b] :
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If we take the ln in (3.3) we get

b� t
b� a ln a+

t� a
b� a ln b(3.4)

� ln t � ln
�
a
b�t
b�a b

t�a
b�a + (b� t) (t� a)

�
ln a� ln b
a� b

��
� ln

�
a
b�t
b�a b

t�a
b�a +

1

4
(a� b) (ln a� ln b)

�
for all t 2 [a; b] :
By utilizing the continuous functional calculus for selfadjoint operators T with

spectra Sp (T ) � [a; b] ; we obtain from (3.4) that

ln a
b� T
b� a + ln b

T � a
b� a(3.5)

� lnT � ln
�
a
b�T
b�a b

T�a
b�a + (b� T ) (T � a)

�
ln a� ln b
a� b

��
� ln

�
a
b�T
b�a b

T�a
b�a +

1

4
(a� b) (ln a� ln b)

�
:

Now if 0 < m � P �M , then 0 < m � � (P ) �M and by the second part of (3.5)
we get for T = �(P ) ; a = m and b =M the inequality

ln� (P )(3.6)

� ln
�
m

M��(P )
M�m M

�(P )�m
M�m + (M � � (P )) (� (P )�m)

�
lnM � lnm
M �m

��
� ln

�
m

M��(P )
M�m M

�(P )�m
M�m +

1

4
(M �m) (lnM � lnm)

�
:

From the �rst part of (3.5) we have

lnm
M � P
M �m + lnM

P �m
M �m � lnP:

If we take the positive linear map � we obtain

lnm
M � � (P )
M �m + lnM

� (P )�m
M �m � � (lnP ) ;

which is equivalent to

(3.7) ln
�
m

M��(P )
M�m M

�(P )�m
M�m

�
� � (lnP ) :

Now, by operator Jensen�s inequality we have � (lnP ) � ln� (P ) : By collecting all
these inequalities we obtain the desired result (3.1). �

Corollary 4. With the assumptions of Theorem 1 we have

(3.8) � (lnP ) � ln� (P ) � � (lnP ) + 1
4

�
M

m
� 1
�
ln

�
M

m

�
:

Proof. By the concavity of the function ln we have x; y > 0 that

lnx� ln y � x

y
� 1:

This implies that
ln (t+ k) � ln t+ kt�1
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for all t; k > 0:
By the functional calculus we get in the operator order

ln (T + k) � lnT + kT�1

for all operators T > 0 and k > 0:
Therefore

ln

�
m

M��(P )
M�m M

�(P )�m
M�m +

1

4
(M �m) (lnM � lnm)

�
(3.9)

� ln
�
m

M��(P )
M�m M

�(P )�m
M�m

�
+
1

4
(M �m) (lnM � lnm)

�
m

M��(P )
M�m M

�(P )�m
M�m

��1
� ln

�
m

M��(P )
M�m M

�(P )�m
M�m

�
+

1

4m
(M �m) (lnM � lnm)

= ln
�
m

M��(P )
M�m M

�(P )�m
M�m

�
+
1

4

�
M

m
� 1
�
ln

�
M

m

�

since, obviously,

m
M��(P )
M�m M

�(P )�m
M�m � m:

Finally, since, by the �rst part of (3.1)

ln
�
m

M��(P )
M�m M

�(P )�m
M�m

�
� � (lnP ) ;

hence by (3.1) and (3.9) we derive (3.8). �

We also have the following inequalities for the determinants:

Theorem 4. Assume that 0 < m1 � A � M1 and 0 < m2 � B � M2; then for
m = m1m2; M =M1M2;

�x

�
m

M�A�B
M�m M

A�B�m
M�m

�
(3.10)

� exp [hU� (ln (A
B))Ux; xi]
� �x (A �B)

� �x
�
m

M�A�B
M�m M

A�B�m
M�m + (M �A �B) (A �B �m)

�
lnM � lnm
M �m

��
� ln

�
M

m

� 1
4 (M�m)

�x

�
m

M�A�B
M�m M

A�B�m
M�m

�
for x 2 H; kxk = 1:
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Proof. Since 0 < m1 � A � M1 and 0 < m2 � B � M2, then 0 < m1m2 = m �
P = A
B �M1M2 =M: From (3.1) for � (P ) = U� (A
B)U = A �B we get

ln
�
m

M�A�B
M�m M

A�B�m
M�m

�
(3.11)

� U�� (ln (A
B))U � ln (A �B)

� ln
h
m

M�A�B
M�m M

A�B�m
M�m

+(M �A �B) (A �B �m)
�
lnM � lnm
M �m

��
� ln

�
m

M�A�B
M�m M

A�B�m
M�m +

1

4
(M �m) (lnM � lnm)

�
:

If we take the inner product for x 2 H; kxk = 1; then we getD
ln
�
m

M�A�B
M�m M

A�B�m
M�m

�
x; x

E
� hU�� (ln (A
B))Ux; xi � hln (A �B)x; xi

�
D
ln
h
m

M�A�B
M�m M

A�B�m
M�m

+(M �A �B) (A �B �m)
�
lnM � lnm
M �m

��
x; x

�
�
�
ln

�
m

M�A�B
M�m M

A�B�m
M�m +

1

4
(M �m) (lnM � lnm)

�
x; x

�
;

which, by taking the exponential, is equivalent to

�x

�
m

M�A�B
M�m M

A�B�m
M�m

�
(3.12)

� exp [hU� (ln (A
B))Ux; xi]
� �x (A �B)

� �x
�
m

M�A�B
M�m M

A�B�m
M�m + (M �A �B) (A �B �m)

�
lnM � lnm
M �m

��
� �x

�
m

M�A�B
M�m M

A�B�m
M�m +

1

4
(M �m) (lnM � lnm)

�
:

Since for any positive operator T and positive constant k we have

�x (T + k) = k�x (T )

hence

�x

�
m

M�A�B
M�m M

A�B�m
M�m +

1

4
(M �m) (lnM � lnm)

�
= ln

�
M

m

� 1
4 (M�m)

�x

�
m

M�A�B
M�m M

A�B�m
M�m

�
and the inequality (3.10) is proved. �

From Theorem 4 we also have



12 S. S. DRAGOMIR

Corollary 5. With the assumptions of Theorem 4 we have

exp [hU� (ln (A
B))Ux; xi](3.13)

� �x (A �B)

� ln
�
M1M2

m1m2

� 1
4 (M1M2�m1m2)

exp [hU� (ln (A
B))Ux; xi]

for x 2 H; kxk = 1:

4. Connection to Oppenheim�s Inequalities

In the �nite dimensional case, if we consider the matrices A = (aij) ; B = (bij) 2
Mn (C) ; then A �B has an associated matrix A �B = (aijbij) in Mn (C) :
Recall Hadamard determinant inequality [18, p. 218] for A � 0

detA � det (A � 1) (=
nY
i=1

aii)

and Oppenheim�s inequality [18, p. 242] for A; B � 0

detAdetB � det (A �B) � det (A � 1) det (B � 1)
 
=

nY
i=1

aiibii

!
:

In the recent paper [11] S. Hiramatsu and Y. Seo obtained the following inter-
esting Oppenheim�s type inequalities

(4.1)
1

S (h1)S (h2)
� �x (A �B)
�x (A � 1)�x (1 �B)

� S (h1h2)

for x 2 H; kxk = 1; provided that 0 < m1 � A �M1 and 0 < m2 � B �M2:
We have the following similar inequalities:

Proposition 1. With the assumptions of Theorem 2 we have the determinant
inequalities

(4.2)
1

E (h1)E (h2)
� �x (A �B)
�x (A � 1)�x (1 �B)

� E (h1h2) ;

where h1 = M1

m1
> 1; h2 =

M2

m2
> 1 and E (h) := exp

h
1
4h (h� 1)

2
i
:

Proof. By the properties of the tensorial product, we have that

A
B = (A
 1) (1
B)
where A
 1 and 1
B are commutative operators.
Therefore

ln (A
B) = ln [(A
 1) (1
B)] = ln (A
 1) + ln (1
B)
and

U� (ln (A
B))U=U� [ln (A
 1) + ln (1
B)]U
= U� (ln (A
 1))U + U� (ln (1
B))U .

Using Jensen�s operator inequality for the operator concave function ln; we also
have

U� (ln (A
 1))U � ln (U� (A
 1)U) = ln (A � 1)
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and

U� (ln (1
B))U � ln (U� ((1
B))U) = ln (1 �B) :
These imply for x 2 H; kxk = 1 that

exp hU� (ln (A
B))Ux; xi � exp [hln (A � 1)x; xi+ hln (1 �B)x; xi]
= exp [hln (A � 1)x; xi] exp [hln (1 �B)x; xi]
= �x (A � 1)�x (1 �B)

and by the second part of (2.13) for m = m1m2; M =M1M2; we derive the second
inequality in (4.2).
From (2.12) we have

ln� (P ) � � (lnP ) + m

4M

�
M

m
� 1
�2

provided that 0 < m � P �M:
Now, if we take in this inequality 0 < m1 � P = A 
 1 � M1; then we get for

� (P ) = U� (A
 1)U = A � 1 that

ln (A � 1) � m1

4M1

�
M1

m1
� 1
�2
+ U� (ln (A
 1))U

while for 0 < m2 � P = 1
B �M2

ln (1 �B) � m2

4M2

�
M2

m2
� 1
�2
+ U� (ln (1
B))U ;

which gives, by addition, that

ln (A � 1) + ln (1 �B)

� ln
"
exp

"
m1

4M1

�
M1

m1
� 1
�2
+
m2

4M2

�
M2

m2
� 1
�2##

� U� (ln (A
 1))U + U� (ln (1
B))U = U� (ln (A
B))U :

By taking the inner product for x 2 H; kxk = 1 we get that

hln (A � 1)x; xi+ hln (1 �B)x; xi

� ln
"
exp

"
m1

4M1

�
M1

m1
� 1
�2
+
m2

4M2

�
M2

m2
� 1
�2##

� hU� (ln (A
B))Ux; xi

and by taking the exponential, we derive

exp hln (A � 1)x; xi exp hln (1 �B)x; xi

exp

�
m1

4M1

�
M1

m1
� 1
�2
+ m2

4M2

�
M2

m2
� 1
�2� � exp hU� (ln (A
B))Ux; xi

for x 2 H; kxk = 1 and by the third inequality in (2.13) we obtain the �rst part of
(4.2). �

We also can state:
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Proposition 2. With the assumptions of Theorem 2 we have the determinant
inequalities

(4.3)
1

F (h1)F (h2)
� �x (A �B)
�x (A � 1)�x (1 �B)

� F (h1h2) ;

where h1 = M1

m1
> 1; h2 =

M2

m2
> 1 and F (h) := h

1
4 (h�1) for h > 0:

The proof follows from the inequality (3.8) by using a similar argument as in the
proof of Proposition 1 and we omit the details.
By conducting some numerical experiments we can state the following:

Conjecture 1. With the above notations, we have for h > 1 that

F (h) > E (h) > S (h) .
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