SOME INEQUALITIES FOR THE NORMALIZED
DETERMINANT OF HADAMARD PRODUCT OF TWO
POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag;(A) :=
exp (In Az, z). In this paper we obtain some inequalities for the determinant
Az (Ao B) of the Hadamard product of two operators under some natural
assumptions such as 0 < mj; < A < M; and 0 < mo < B < My, where m;, M;
(i = 1,2) are constants.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector = € H,
namely ||z| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[6].
For each unit vector « € H, see also [11], we have:

(i) continuity: the map A — A,(A) is norm continuous;
(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);
(iil) continuous mean: (Apx,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T AL(A)
for p T 0;
) power equality: Ay(AY) = AL (A) for all t > 0;
) homogeneity: Ay(tA) =tA,(A) and A, (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A, (A) < A, (B);
i) multiplicativity: A, (AB) = A,(A)A,(B) for commuting A and B;
) Ky Fan type inequality: A, ((1 —a) A+ aB) > AL (A)'"*AL(B)* for 0 <
a< 1l
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We define the logarithmic mean of two positive numbers a, b by

lnz:ilna if b 7& a,
L(a,b) :=
aif b = a.

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

MInm—mlnM

(1.1)  0< (Az,z) — AL(A) < L(m,M) |InL(m, M) + W —m

1

for all x € H, ||z|| = 1.
The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.2) a7y < (1—v)a+uvb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [15]

— i if h e (0,1) U (1,00)
eln( hh—-1

(1.3) S (h):= ( )

1ifh=1.

It is well known that lim,— S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0,1) and increasing on (1, 00).
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1§ij;§5(%>

for0O<mI<A<MIandzeH,|z|=1.
Since 0 < M~ < A=! <m~'1, then by (1.4) for A~! we get

v s (1) =s (G ) s (1),

which is equivalent to
(15) OB (M)
(A~ 'z, z) m

forx € H, ||z|| = 1.
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.6) 1SXZX;§S(%>

for0<mlI <A< MIandxe€H, |z| =1.
Since 0 < M~ < A=t <m~'I, then by (1.4) for A=! we get

s () = () ) -5 ()
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which is equivalent to
(1.7) 1§1M¢®_1§S<M>
(A= 1z, x) m

forx € H, ||z|| = 1.
We consider the Kantorovich’s constant defined by

(h+1)?
4h
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any

h>0and K (h) = K () for any h > 0.
The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(1.9) K" (2) a7y < (1-v)a+uvb< K" (2) a'"vb”

(1.8) K (h) =  h>0.

where a, b> 0, v € [0,1], r =min {1 — v,v} and R = max{l —v,v}.

The first inequality in (1.9) was obtained by Zuo et al. in [19] while the second
by Liao et al. [14].

Recall the geometric operator mean for the positive operators A, B > 0

A#,B = AY2(ATY/2BAT1/2)t p1/2
where ¢ € [0,1] and
A#B = AV2(ATY2BATY2)1/241/2,
By the definitions of # and ® we have
A#B = B#A and (A#B)Q (B#A)=(A®B)#(B® A).

In 2007, S. Wada [17] obtained the following Callebaut type inequalities for ten-
sorial product

(1.10)  (A#B) @ (A#B) < 5 [(A#aB) © (A#1-aB) + (A#1-aB) @ (A#aB))

[ A

<-(A® B+B®A)

3
for A, B>0and o € [0,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,ej) = (Aej, e5) (Bej, ¢j)

for all j € N, where {e; }j cn is an orthonormal basis for the separable Hilbert space
H.
It is known that, see [5], we have the representation

(1.11) AoB=U*(A® B)U

where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.
If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [10, p. 173]

(1.12) F(AoB)> (<) f(A)o f(B) forall A, B> 0.
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We recall the following elementary inequalities for the Hadamard product
AV? 6 BY2 < <A+2B> olfor A, B>0

and Fiedler inequality
(1.13) AoA™' >1for A>0.

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
9 1/2 /9 1/2
AOBS(A ol) (B ol) for A, B>0

and Aujla and Vasudeva [3] gave an alternative upper bound
AoB < (420 B%)"? for A, B> 0.

It has been shown in [12] that (A% o 1)1/2 (B%o 1)1/2 and (A% o 32)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we obtain some inequalities for
the determinant A, (A o B) of the Hadamard product of two operators under some
natural assumptions such as 0 < m; < A < M; and 0 < my < B < M,, where
m;, M; (i = 1,2) are constants.

2. MULTIPLICATIVE INEQUALITIES
We have the following result for general convex functions [4]:

Lemma 1. Let f: I CR — R be a convex function on the interval I, a,b € IO, the
interior of I, with a < b and v € [0,1]. Then

[0,
(2.1) v(l—v)(b—a) [fL(Q—v)a+vb) — f.((1-v)a+vb)]
<@ =v)fla)+vf0) - fF((1-v)a+vd)

v(1=v)(b—a)[f. () - fi(a)] .

In particular, we have

(2.2) i( )[h(““’)f/_<a;b>}§f(a);f()f<a+b>

L= a)[£2 ()~ 1L ()]

The constant 1 is best possible in both inequalities from (2.2).

IN

Corollary 1. If the functzon f:I CR — R is a differentiable convex function on
I, then for any a, b e I and v € [0,1] we have

(2.3) 0<(t—v)f(a)+vf(b)—f(A-v)a+twvd)
v(1=v)(b=a)[f () = f (a)].
Proof. If a < b, then the inequality (2.3) follows by (2.1). If b < a, then by (2.1)
we get
(2.4) 0<A-v)fb)+vf(a)—f((1—-v)b+ra)
(1=v)(b=a)[f'(b) - f'(a)]
for any v € [0,1]. If we replace v by 1 — v in (2.4), then we get (2.3). O

<
<v
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Corollary 2. For any a, b > 0 and v € [0, 1] we have
(2.5) 0<(—v)at+vb—a'"" <v(l—v)(a—>)(Ina—Inb)
and
(2.6) (I-v)lna+vinb<In((1-v)a+vd)
(b—a)’
ab
Proof. If we write the inequality (2.3) for the convex function f : R — (0,00),
f (z) = exp(x), then we have
(2.7) 0<(1—v)exp(z)+rvexp(y) —exp((1—v)z+vy)
<v(l=v)(z—y)lexp (z) - exp (y)]
for any z, y € R and v € [0,1].
Let a, b > 0. If we take z = Ina, y = Inb in (2.7), then we get the desired
inequality (2.5).
Now, if we write the inequality (2.3) for the convex function f : (0,00) — R,
f(z) = —Inz, then we get

<(Q-v)lna+vinb+v(l—v)

(b—a)*
ab
for a, b >0 and v € [0,1]. O

0<In((l-v)a+vb)—(1—v)lna—vinb<v(l-v)

We start to the following operator inequalities involving positive operators and
positive linear maps:

Theorem 1. Assume that the selfadjoint operator P satisfies the condition 0 <
m < P < M for some constants, m, M and ® a unital positive linear map from
B (H) into B(K). Then

(2.8) Inm

S M-a(P)

M—-m M
Proof. Assume that 0 < a < b. We take v = =2 € [0,1] for ¢ € [a,b] and observe
that

<In + (M —m)>.
m

(1—V)a+ub:ua+t_a

b=t
b—a b—a
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and
v(1—v) =00l _a)
(b—a)
From (2.6) we get
b—t t—a
(2.10) b_alna+b_alnb
b—t t—a 1
< < — (b= —
_lnt_b_alna+b_alnb+ab(b t)(t—a)
b—t t—a 1 )
< 1 Inb+ — (b—
*b—ana—i—b—an +4ab( @)

for all ¢ € [a, b].
By utilizing the continuous functional calculus for selfadjoint operators T with
spectra Sp (T') C [a,b], we obtain from (2.10) that

b—T T—a
2.11 1 Inb
( ) nab_a+n -
b—T T-—a 1
< < —(p— _
_lnT_lnab—a+lnbb—a+ab(b T)(T — a)
b—T T—a 1 )
< —_— — .
_lnab_a+lnbb_a+4ab(b a)

Now if 0 < m < P < M, then 0 < m < ®(P) < M and by (2.11) we get for
T =®(P),a=mand b =M the inequality (2.8). If we take T'= P, a = m and

)

b= M in (2.11) and then apply ® we also obtain (2.9). O

Corollary 3. With the assumptions of Theorem 1 we have the chain of inequalities

(2.12) mm¥i§%ﬁ+mMg%%%i
<P(InP)<Ind®(P)
§Mm—ﬁ§%ﬁ+MM%?;r+mEUW—MHHMmfm)
Slnm%@fnp)—&—lnM%—l—% (Z—l)Q
< % <Z1>2+<I>(lnp).

Proof. Second inequality follows by Jensen’s operator inequality for the operator
concave function In, while the last inequality follows by the fact that

M — @ (P) o (P)—m
1 In M <®(InP
R VR ¥
from the first part of (2.12). O

We have the following inequalities for the determinant A, (Ao B) for x € H,
]l = 1.
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Theorem 2. Assume that 0 < m; < A < My and 0 < mo < B < My, then for
m = mima, M = MM,

M—-AoB AoB—m

(213) m M-—-m M M—m
<exp[(U* (In(A® B)) Uz, x))
<A, (Ao B)

M—AoB AoB—m

<m M-m N M-m

xexp(ml]W«M—AoB)(AoB —m)x,x})

m (M 2
=P Um

exp (U (InA® B)Uz, )

forz e H, ||z| = 1.

Proof. Since 0 < m; < A< M; and 0 < mg < B < My, then 0 < mymo = m <
P=A®B <M = M;M,. From (2.12) for & (P) =U* (A® B)U = Ao B we get
M —AoB AoB —m
2.14 1 e 1 WL/ puEE—
( ) nm M—m +hn M—m
<U*(InA® B)U <In(AoB)
M—AoB AoB —m

<1 —— 4+ InM
= mm M—-—m o M—-—m
1

+mM(
M—AoB AoB —m m(M )2

M—-—AoB)(AoB —m)

< - 7= i

S o M I
m (M

2
< — (== * :
_4M<m 1) +U (InA®B)U

If we take the inner product for z € H, ||z|| = 1, then we get

M — ((Ao B)z,x) (AoB)z,z) —m
M —m +InM M —m
< U*(InA®B)Uz,z) < (In(AoB)z,z )

M —{((AoB)z,x) (Ao B)z,z) —m
M—-—m i M M—-m

+m—<(M—AoB)(AoB —m)x,x)

M —{((AoB)z,x) (Ao B)z,z) —m
M —m M, —m

Lom (MY
4M \'m
M

< <_1>2+<u* (In A ® B)Uz, z),

Inm

<lnm
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namely

ln (m Ni&;f'r?zBMAZtIB;?rzn)
<U (nA® B)Uz,z) < (In(AoB)z,x )

M—_AoB _ _AoB—m 1

ln(m M=m MW)—i—W((M—AOB)(AOB —m)x,x)

2
S In (m Ag\/;_A;LBMAJ(\}lB_:nWl) -+ ﬂ (M — 1)

m

cm(M_y 2+<u*(1 A® B)Uz,z)
=7\ n T, T

and by taking the exponential, we get (2.13). O

3. ADDITIVE INEQUALITIES

We start to the following operator inequalities involving positive operators and
positive linear maps:

Theorem 3. Assume that the selfadjoint operator P satisfies the condition 0 <
m < P < M for some constants, m, M and ® a unital positive linear map from

B (H) into B (K). Then

M_v(P)  e(P)-m
(31) In (m M—m M M-m )

<®(InP)<Ind(P)

M—®(P) B(P)—m

<n [mM-mMM—m + (M =& (P)) (®(P) —m) (hﬂM—lnm)]

M—-—m

M—®(P) »(P)—m

1
<In [m M=m— N “M=m +Z(M—m) (lnM—lnm)]

Proof. From (2.5) we get
(3.2) a7 < (1—-v)a+vb<a' ™0 +v(1—v)(a—b)(Ina—Inb)

for0 <a<bandve(0,1].
Assume that 0 < a < b. We take v = =% € [0,1] for ¢ € [a,b] and observe that

b—t t—a
(1—1/)a+1/b—b_aa+b_ab—t
and
u(l—V)zi(b_t)(t;a).
(b—a)
By (3.2) we get
b—t t—a b—t t—a Ina—1Inb
(3.3) at=abr—a <t <ab-abv-a + (b—1t)(t—a) —
0 —
—t t—a ]_
< ar=ubi=e + 1 (a—b)(lna —Inb)

for all ¢ € [a,b].
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If we take the In in (3.3) we get

b—t t—a
(3.4) b—alna+b—alnb
bt t-a Ina—1Inb
Slntﬁln abt—abd=a +(b—t) (t—a) W

=t t—a 1
<In {a!l;abba + 1 (a—b)(Ina — 1nb)}

for all ¢ € [a,b].
By utilizing the continuous functional calculus for selfadjoint operators 1" with
spectra Sp (T') C [a,b], we obtain from (3.4) that

b—-T T—a
. 1 1
(3.5) nab_a—l—nbb_
b—T  T—a Ina—1Inb
<InT <ln|a®<ebr=a +(b—T)(T —a) P
a—

<In [aubf—: + % (a —b) (lna—lnb)] :

Now if 0 <m < P < M, then 0 < m < ®(P) < M and by the second part of (3.5)
we get for T'= ® (P), a =m and b = M the inequality
(3.6) In® (P)

M—®(P) ®(P)—m

M—®(P) d(P)—m

1
<In [m M=m_ N[ “M—m 4 Z(M—m) (lnM—lnm)} .

From the first part of (3.5) we have

_p P_
Inm +IM—= <P,
-m M—m

If we take the positive linear map ® we obtain

M —®(P) d(P)—m

il Sl il S

Inm T —m +InM U = o (InP),
which is equivalent to
M—&(P) H(P)—m

(3.7) In (miM*m M5 ) <®(InP).

Now, by operator Jensen’s inequality we have ® (In P) < In® (P). By collecting all
these inequalities we obtain the desired result (3.1). O

Corollary 4. With the assumptions of Theorem 1 we have
1 /M M
3.8 OP(nP)<In®P)<P(InP)+-|——-1)In{— ).
(35 mP) < me(P) <o mr)+ 1 (5 -1)w (%)
Proof. By the concavity of the function In we have z, y > 0 that
Inz—lny < f71.
Y

This implies that
In(t+k)<Int+kt?
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for all ¢, k > 0.
By the functional calculus we get in the operator order

In(T+k)<InT+kT™!

for all operators T' > 0 and k > 0.
Therefore

M—®(P)
ln m M-m

M—&(P) &(P)—m
Sh’l (m M—m N ~M-m )

P(P)—m
M M—m

(3.9) + i (M—m)(InM —1In m)}

1 M—a(P) o(P)—m\ —1
+ 1 (M —m) (I M — Inm) (m W M )
M—o(P) B(P)—m 1
<In (m S M ) + - (M —m) (In M — Inm)
m

M—&(P)
=1In (m M—m

Mm>+1<M1>ln<M>
4 \m m

since, obviously,

M—&(P)

P(P)—m

m M=m M TM-mT >m.
Finally, since, by the first part of (3.1)
M—o(P) o(P)—m
In (miMfm M ) <o (InP),
hence by (3.1) and (3.9) we derive (3.8). O

We also have the following inequalities for the determinants:

Theorem 4. Assume that 0 < m; < A < M; and 0 < mo < B < Ms, then for
m = mime, M = MM,

M—AoB

(3.10) A, (m e Mﬁ"ﬁ;’")
<exp[(U* (In(A® B)) Uz, )]
<A, (AoB)

M—AoB

- In M —1
<A, [m T M 4 (M — Ao B) (Ao B —m) (rlnmﬂ

M—m
%(Mfm) Ao
<n (M) A, (m 7252 01

AoB—m
M—m

m

forxz e H, ||z| = 1.
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Proof. Since 0 < m; < A< M; and 0 < mg < B < My, then 0 < mymo =m <
P=A®B < MMy =M. From (3.1) for ®(P)=U*(A® B)U = Ao B we get

(3.11) In (m%‘f&B M*A&B—%"‘)

<U*®(In(A® B)U <In(Ao B)

M M—AoB AoB-m
<In|m M-m M M-m

InM —1Inm
[ m—4aoB AoB-—m 1
<lIn |m M-m M ¥M-m +1(M—m) (lannm)].

If we take the inner product for z € H, ||z|| = 1, then we get
M—AoB AoB—m
<1n (mWM M—m ) x,T

< (U (In(A® B))Uz,z) < (In (Ao B)z,z)

M—AoB AoB—m
< <ln [m M—m— N[ TM—m

+(M—AoB)(Ao B —m) (W)]wm>

M—_AoB _ _AoB—m 1
< <ln <m Mem M M-m 4 i (M—=m)(InM — lnm)) x,:c> ,

which, by taking the exponential, is equivalent to

M—AoB AoB—m)

(3.12) A, (m FASE g rAoB o
<exp[(U* (In(A® B)) Uz, x)]

<A, (AoB)

M—AoB AoB-—m InM —1Inm
< —m —m — — -
Ax(m M=m M M=m 4+ (M —AoB)(AoB m)( = )>

AoB—m ]_

M—AoB
<A, (m M=m_ M M-m + Z(M—m) (lnM—lnm)> .

Since for any positive operator 1" and positive constant k£ we have

Ay (T + k) = kA, (T)

hence
M—AoB _  AoB—m 1
Ay <m M—m~ M M-m 4 1 (M —m) (lnM—lnm)>
3 (M—m)
—In <M> ! A, (m Mt MiA&EiZZ”)
m
and the inequality (3.10) is proved. O

From Theorem 4 we also have
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Corollary 5. With the assumptions of Theorem 4 we have

(3.13) exp [(U* (In (A ® B)) Uz, x)]
<A;(AoB)
T (M1 Mz—mims)
<In (%) exp [(U" (In (A ® B))Uz, x)]

forz e H, ||z| = 1.

4. CONNECTION TO OPPENHEIM’S INEQUALITIES

In the finite dimensional case, if we consider the matrices A = (a;;), B = (b;;) €
M,, (C), then A o B has an associated matrix A o B = (a;;b;;) in M, (C).
Recall Hadamard determinant inequality [18, p. 218] for A >0

det A < det(Aol) Ha“
and Oppenheim’s inequality [18, p. 242] for A, B >0
det Adet B <det(AoB) <det(Aol)det(Bol) ( Ha“ l,) .

In the recent paper [11] S. Hiramatsu and Y. Seo obtained the following inter-
esting Oppenheim’s type inequalities
1 < A, (Ao B)
S (h1)S(he) — Az (Ao1)A, (10 B)
for x € H, ||z|| = 1, provided that 0 <m; < A< M; and 0 < mg < B < M.
We have the following similar inequalities:

(4.1) < S (hihs)

Proposition 1. With the assumptions of Theorem 2 we have the determinant
inequalities

1 < A, (Ao B)
E(h)E (ha) — Az (Aol A, (loB)

(4.2) E (hiha),

whereh1:%>1, hgz%—;>1 and E (h) ::exp[ﬁ(h—l)ﬂ.

Proof. By the properties of the tensorial product, we have that
A®B=(A®1)(1® B)

where A ® 1 and 1 ® B are commutative operators.
Therefore

m(A®B)=h[(A®1)(1®B))=h(A®1)+In(l® B)
and
U (n(AB)U=U"In(A®1)+In(1® B)|U
U (In(A® 1)U +U* (In(1® B)U.

Using Jensen’s operator inequality for the operator concave function In, we also
have

U (In(AR 1)U <InU (A®1)U)=In(Ao1)
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and
U In(QeB)U<InhU" (1®B)U)=In(loB).
These imply for x € H, ||z|| = 1 that

exp (U (In(A® B))Uz,z) <exp[(In(Aol)z,z)+ (In(1lo B)z,x)]
— exp[(In (A0 1) ,2)] exp [(In (1 0 B) 2, 2)]
=A,(Aol)A, (1o B)
and by the second part of (2.13) for m = mymsy, M = M; Ms, we derive the second

inequality in (4.2).
From (2.12) we have

md(P)<dnp)+ - (M 4 :
- AM \m
provided that 0 <m < P < M.
Now, if we take in this inequality 0 < m; < P = A® 1 < My, then we get for
O (P)=U*"(A® 1)U = Aol that

2
mq M1
In(Aol) < — -1 *ln(A®1
a(do1) < fi (S0 1) U n (4w ))U
while for 0 <mo < P=1® B < M>
2
meo Mg
In(loB) < — -1 U*(In(le B)U
a(toB) < i (T2 1) +u (1w B)U

which gives, by addition, that
In(Aol)+In(loB)

M 2 M. 2
—In [exp 47\}11 (mi — 1) + 417;422 <mz — 1>

<U (n(A®1)U+U (In(1® B)U =U" (In(A® B)U.

By taking the inner product for = € H, ||z|| = 1 we get that
(In(Aol)z,z) 4+ (In (10 B)z,x)

ma (M (N oma (My N
4M; \ mq AMy \ mo

<{U* (In(A® B))Uz,z)

—In |exp

and by taking the exponential, we derive

exp{ln(Aol)z,z)exp{ln(lo B)x,x)
2 2
o [ (3 =1)"+ s (25 -1

for x € H, ||z|| = 1 and by the third inequality in (2.13) we obtain the first part of
(4.2). O

<exp(U* (In(A® B))Uz,x)

We also can state:
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Proposition 2. With the assumptions of Theorem 2 we have the determinant
inequalities

F (h1) F (h2) S AL (Ao1) A, (Lo B) < F (hihs),

where hy = Am/[—i >1, hg = %—; > 1 and F (h) := pi(h—1) for h > 0.

(4.3)

The proof follows from the inequality (3.8) by using a similar argument as in the
proof of Proposition 1 and we omit the details.
By conducting some numerical experiments we can state the following:

Conjecture 1. With the above notations, we have for h > 1 that

F(h)>E(h)>S(h).
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