LOWER AND UPPER BOUNDS FOR THE NORMALIZED
DETERMINANT OF HADAMARD PRODUCT OF TWO
POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we obtain some lower and upper bounds for the
determinant Az (A o B) of the Hadamard product of two operators under some
natural assumptions such as 0 < mj; < A < Mj and 0 < mg < B < Ma, where
m;, M; (i =1,2) are constants.

1. INTRODUCTION

The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.1) a7 < (1—-v)a+vb

with equality if and only if @ = b. The inequality (1.1) is also called v-weighted
arithmetic-geometric mean inequality.

The following inequality provides a refinement and a multiplicative reverse for
Young’s inequality

(1.2) S ((%>7> a7 < (1—-v)a+vb< S (%) al=rp,

where a,b >0, v € [0,1], » = min {1 — v, v}.

The second inequality in (1.2) is due to Tominaga [16] while the first one is due
to Furuichi [8].

We consider the Kantorovich’s constant defined by

_ (h+1)?

(1.3) K (h):= 0 h > 0.
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (1) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(1.4) K" (%) a7 < (1—-v)a+vb< KR (%) a' v

where a,b >0, v € [0,1], r =min{l — v,v} and R = max {1 — v, v}.
The first inequality in (1.4) was obtained by Zou et al. in [19] while the second
by Liao et al. [14].
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In the recent paper [4] we obtained the following reverses of Young’s inequality
as well:

(1.5) 0<(1-v)at+vb—a'""b" <v(l—v)(a—>b)(Ina—Inb)
and
(1.6) 1< % < exp [41/(1 ) (K (%) - 1)] :

where a, b > 0, v € [0, 1].
It has been shown in [4] that there is no ordering for some known upper bounds

of the quantity (1 —v)a + vb — a'~?b” and the one provided by the inequality
(1—v)a+vb

(1.5). The same conclusion is true for the upper bounds of the quantity oo

incorporated in the inequalities (1.2), (1.4) and (1.6).

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[6].
For each unit vector x € H, see also [11], we have:

(i) continuity: the map A — A,(A) is norm continuous;

(ii) bounds: <A_1x7x>_1 < AL(A) < (Az, z);
(ifi) continuous mean: (APz,x)"/P | Ay(A) for p | 0 and (APz,2)'/" 1 A,(A)
for p T 0;
) power equality: A, (AY) = A (A)! for all t > 0;
) homogeneity: A, (tA) =tA,(A) and A, (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A;(A) < A, (B);

1) multiplicativity: A, (AB) = A,(A)A,(B) for commuting A and B;

) Ky Fan type inequality: A,((1 —a) A+ aB) > Ay (A)'7*A,(B)* for 0 <
a <1

We define the logarithmic mean of two positive numbers a, b by

lnll::{lna if b 7é a,
L(a,b) :=
aif b=a.

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M I, where m, M are positive
numbers,

MInm —mlnM 7

(L.7)  0<(Az,z) — Ay (A) < L(m,M) |InL(m, M) + M —m

1

for all x € H, ||z|| = 1.
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The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.8) a7 < (1—v)a+vb
with equality if and only if @ = b. The inequality (1.8) is also called v-weighted

arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [15]

BTt h e (0,1) U (L)
(19) S(h) — eln(hh—l)

1if h=1.

It is well known that lim,—1 S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.10) 1< Xli’j; <S (%)

for0<mI<A<MIandz€H, |z| =1.
Since 0 < M~ < A=! <m™!I, then by (1.10) for A=! we get

1<M<S<E_ll> :S<(Aﬂ;)_l> :5(%)

which is equivalent to

(1.11) 1<A“’(A)_§S<M)

T (Al z) ! m

forx € H, ||z|| = 1.
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.12) 1< ﬁx(’:; <S (%)

for0<mI<A<MIandz € H, |z| =1.
Since 0 < M~ < A=! <m~!I, then by (1.10) for A=! we get

s s () -s(() ) (%)

which is equivalent to

(1.13) 1<A“'(A)_§S<M)

T (A-lg )t m

forx € H, ||z|| = 1.
Recall the geometric operator mean for the positive operators A, B > 0

A#,B = AYV2(ATY/2BAT1/2)t p1/2
where t € [0,1] and
A#B = AYP(ATPBATI2)R AL,
By the definitions of # and ® we have
A#B = B#A and (A#B)® (B#A)=(A®B)#(B® A).
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In 2007, S. Wada [17] obtained the following Callebaut type inequalities for ten-
sorial product

(L14) (A#B) ® (A#B) < 5 [(A#aB) © (Afh1_aB) + (A#h1_aB) © (A#a B)

[ A

<-(A®B+B®A)

[\

for A, B> 0and a € [0,1].
Recall that the Hadamard product of A and B in B(H) is defined to be the
operator Ao B € B(H) satisfying
(Ao B)ej,ej) = (Aej, e;) (Bej, )
for all j € N, where {e; }j cn is an orthonormal basis for the separable Hilbert space

H.
It is known that, see [5], we have the representation

(1.15) AoB=U"(A® B)U
where U : H — H ® H is the isometry defined by Ue; = ¢; ® ¢; for all j € N.

If f is super-multiplicative (sub-multiplicative) on [0, 00), then also [10, p. 173]
(1.16) F(AoB)> (<) f(A)of(B) forall A, B> 0.

We recall the following elementary inequalities for the Hadamard product
A2 o B2 < <AJ2FB> olfor A, B>0

and Fiedler inequality
(1.17) AoA™' >1for A>0.
As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1]
showed that
AoB< (A2 o 1)1/2 (32 o 1)1/2 for A, B>0
and Aujla and Vasudeva [3] gave an alternative upper bound

1/2

AOBS(A2OBQ) for A, B> 0.

It has been shown in [12] that (A% o 1)1/2 (B%o 1)1/2 and (A% o B2)1/2 are incom-
parable for 2-square positive definite matrices A and B.

Motivated by the above results, in this paper we obtain some lower and upper
bounds for the determinant A, (A o B) of the Hadamard product of two operators
under some natural assumptions suchas 0 < m; < A< M; and 0 < my < B < My,
where m;, M; (i = 1,2) are constants.

2. MULTIPLICATIVE INEQUALITIES

We have the following result:

Lemma 1. Let f: I CR — R be a twice differentiable function on the interval Ic,
the interior of 1. If there exists the constants d, D such that

(2.1) d< f"(t) <D foranytel,
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then
(22) v -v)db—aP < (1-v)f(a) +rf ()~ f(L-v)a+t )
< %V(l—u)D(b—a)2
for any a, be I and v € [0,1].
In particular, we have
(2.3) Elg(b—a)ngf(a);f(b)—f<a—2|—b>Sé(b—a)QD,

for any a, b € I.
The constant § is best possible in both inequalities in (2.3).

We have:

Corollary 1. For any a, b >0 and v € [0,1] we have

1
(2.4) 2 (1—=v)(Ina —Inb)*min{a,b} < (1 —v)a+vb—a' "

< Zv(1—v)(Ina — Inb)® max {a, b}

1
2

(I-v)a+vd
al-vpv

max? {a, b}

(2.5) exp |=v (1 —v) (b—a) ]g

1
< exp l2u(1 —v)

We start to the following operator inequalities involving positive operators and
positive linear maps:

Theorem 1. Assume that the selfadjoint operator P satisfies the condition 0 <

m < P < M for some constants, m, M and ® a unital positive linear map from
B (H) into B(K). Then

(2.6)
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and
27) ﬁ@[wfp)(hmmmm%HnM A(/_mm
<®(InP)
: M—2(P) o (P) —m
< gz UM = P)(P=m)] - Inm =gl - M=y
gﬁ(M_cb(P))(cb(P)—m)+1nm%+lnM%
= é (An{ - 1) “nm%‘bﬁnp) +IHM%.

Proof. Assume that 0 < a < b. By taking the logarithm in (2.5) we get

(2.8) %u 1-v) (1 - %)2

<ln((l-v)a+wvb)—(l—v)lna—vind

1 b ?
Siy(lfy) <a1)
for all v € [0,1].

We take v = =2 € [0,1] for ¢ € [a,b], then by (2.8) we get

b—a

1 b—t t—a
2. — (b — —a)<Int— Ina — 1
(2.9) 2b2(b t)(t—a) <Int b_ana b—anb
1
< _—_(p— _
_2a2(b t)(t—a)

for all t € [a, b].

By utilizing the continuous functional calculus for selfadjoint operators T" with
spectra Sp (T') C [a,b], we obtain from (2.9) that

1 T —a
— (b—T)(T —a)+1 Inb
apz (0= TN(T —a) +Inag—0+Inbo—r

<InT

(2.10)

1 b—-T T—a
< —(b-T)(T — 1 Inb .
_2a2( ) ( a)+nab_a+n b—a

Now if 0 < m < P < M, then 0 < m < ®(P) < M and by (2.10) we get for
T =®(P),a=mand b= M the inequality

1 M — & (P)
S5 (M =@ (P)) (@ (P) —m) + Inm

<ln®(P)

since
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If we take T = P, a = m and b = M in (2.10), then we get

1 M- P P—m
—— (M — P) (P — 1 In M
SIVER V(P =m) - nm g+ In Mo
<InP
1 M—-P P—m
< J— — .
_2m2(M P) (P m)+1an_m+lnMM_m

If we apply to this inequality the functional ® we get

1 M-2(P) ®(P)—m
m@[(M_P)(P_m)]—’_lnmﬂ-f—lnMﬂ
< ®(InP)
< grg@ (01— P) (P m)] 4 ) 2 2

Since the function g (t) = (M —t) (¢t —m), t € [m, M] is operator concave, then by
Jensen’s operator inequality we have

(M~ P)(P—m)] <(M—@(P))(®(P)—m).

The theorem is thus proved. 0

Corollary 2. With the assumptions of Theorem 1 we have the chain of inequalities

(2.11) 1nm%+lnzw%
< 2]1W<1>[(M—P) (P —m)] +1anM_:DmP) +1In M Jff)__mm
<& (InP)<In®(P)
gQLmZ(M—@(P))(@(P)—m)ﬂnm%ﬂnﬂi &_mm
_é<%1>2+lnmﬂm+lnMW
;(An{—1>2+c1>(1np).

The second inequality in (2.11) follows by Jensen’s operator inequality for the
operator concave function In. The rest is obvious.

We have the following inequalities for the determinant A, (Ao B) for x € H,
]| = 1.
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Theorem 2. Assume that 0 < m; < A< My and 0 < mo < B < Ms, then

My My —((AoB)z,x) ((AoB)z,z) —mqmgy
(212) (m1m2) M1 Mg —myimog (M1M2) M{ Mg —myimo

1 * —mym T, T
< exp <Z(MlMQ)2 U* (M Mz — P) (P — mims)|Uz, >>

My Moy —((AoB)x,x) ((AoB)x,z)—mqms
X (m1m2) M7 Mg —m7qmg (Mle) My Mg —mqmg

<exp[U" (In(A® B))Ux,x)]
<A, (AoB)

My My—((AoB)z,w) {(AoB)z,x) —mymy
S (mlmg) My Mg —mymg (MlMQ) M1 Mg —myimg

X exp (2(1 (MiyMs — Ao B )(Ao B —mimsy) x,x))

mlmz)2

1 [/ MM, 2
< - 1
= oxP (8 <m1m2 ) >

My My —((AoB)z,z) {(AoB)z,z) —mymy
X(mlmg) My My —m7ma (Mle) M1 Mg —myma

2
< exp (1 <M1M2 - 1> > exp(U* (InA® B)Uz, )

8 mimso

forxz e H, ||z| = 1.

Proof. Since 0 < mq; < A< M; and 0 < my < B < My, then 0 < mymo < P =
A®B < My Ms. From (2.11) for m = myma, M = M1 Ms, ® (P) =U* (AQ B)U =
Ao B we get

MlMngOB AoB — mMmi1Mmy
2.1 1 — 4+ In(M{My) —————
(2.13) n (maimg) My My — mymg T n (M M) My My — myma
1
< —sUF [(M1M2 —P)(P - m1m2)]u
2 (M, My)?
MMy — Ao B AoB —mims
1 ——— +In (M1 M) —————
+ n(mlmg) M1M2 — mi1msy + H( ! 2) M1M2 — Mi1Myo
<U" (In(A®B)U<In(AoB)
1
< 72(M1M2—AOB)(AOB —mlmg)
2 (myms
MlMngOB AoB — mimso
| ——— +In (M My) ————
+ n(mlmg) M1M2 — mi1ms + Il( ! 2) MlMg — mimso
2
1 <M1M2 - 1>
— 8 \mimg
MlMQ—AOB AoB — mimesg
1 —— 4+ In(M|My) ———
* n(mlmg) MMy — mima * n( ! 2> MMy — myima

2
<1 (Mle - 1) +U* (In(A® B)U.
8 mimeso
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If we take the inner product for € H, ||z|| = 1, then we get
MiMy — (Ao B)x,z) ((Ao B)z,z) — mima

1 In (M, M.
n (mams) My My — myme +In (MMz) My My — myme
1
S ——— <L{* [(MlMQ — P) (P — mlmQ)]Z/lz,w>
2 (M Ms)?

MMy — {((Ao B)z,x) ((Ao B)x,z) —mims

—|—ln (mlmg) +hl (MlMg)

M1M2 — mims M1M2 — mims
< U (In(A® B))Uz,z) < {In(AoB)z,x)
1
< —= (MiMy —AoB)(AoB —mimy)x,x)
2(m1m2)

MMy — (Ao B) z,x)
M1M2 — mi1ms

((Ao B)z,z) —myms
M1M2 — mims

+ In (m1my) + In (M Mz)

MMy — {((Ao B) z,z) ((Ao B)z,z) —mima

+ In (myms) + In (M; M3)

M1M2 — mimsy M1M2 — mimsy
M, M, 2
< -1 U* (In(A® B)) Uz, x),
<5 (B8R 0) e B)Us
which, by taking the exponential, is equivalent to (2.12). O

3. CONNECTION TO OPPENHEIM’S INEQUALITIES

In the finite dimensional case, if we consider the matrices A = (a;;), B = (b;;) €
M, (C), then A o B has an associated matrix A o B = (a;;b;;) in M, (C) .
Recall Hadamard determinant inequality [18, p. 218] for A >0

det A < det(Aol) Ha”
and Oppenheim’s inequality [18, p. 242] for A, B > 0
det Adet B < det (Ao B) < det (Ao1)det (Bol) ( Ha“ ) .

In the recent paper [11] S. Hiramatsu and Y. Seo obtained the following inter-
esting Oppenheim’s type inequalities
1 < A, (Ao B)
S (h1)S(he) — Az (Ao1)A, (10 B)
for x € H, ||z|| = 1, provided that 0 < m; < A < M; and 0 < mg < B < Mj.
We have the following similar inequalities:

(3.1)

< S (hihs)

Proposition 1. With the assumptions of Theorem 2 we have the determinant
inequalities

1 < A, (Ao B)
D) D(hs) = A, (Ao 1) A, (10 B)

wherehlzj\m/[—i>1, h2:%>1 and D (h) := exp [%(hfl)ﬂ.

(3.2) D (hihs),
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Proof. By the properties of the tensorial product, we have that
A®B=(A®1)(1®B)

where A ® 1 and 1 ® B are commutative operators.
Therefore

Ih(A®B)=n[(A®1)(1®B)]=h(A®1)+In(l® B)
and
U (In(AB)U=U"In(A®1)+In(1® B)|U
=U"In(A1)U+U" (In(1® B))U.

Using Jensen’s operator inequality for the operator concave function In, we also
have

U (AU <InU" (Ax1)U)=In(Aol)
and
U Ih(1leB)U <IhU* (1®B)U)=In(loB).
These imply for € H, ||z|| = 1 that

exp (U* (In(A® B))Uz,z) <exp[(In(Aol)z,z) + (In(1lo B)z,x)]
— exp[(In (A0 1) ,)] exp [(In (1 0 B) 2, 2)]
=A,(Aol)A,(1oB)
and by the second part of (2.12) for m = myme and M = M; M, we derive the

second inequality in (3.2).
From (2.11) we have

Ind (P) < <I>(1nP)+é (Anf - 1)2

provided that 0 <m < P < M.
Now, if we take in this inequality 0 < m; < P = A® 1 < My, then we get for
O (P)=U"(A® 1)U = Aol that

1 (M 2
ln(A01)§<1—1) TU (In(A® 1)U
8 mq
while for 0 <mo < P=1Q B < My
2
ln(loB)gl(%l) +U" (In(1® B))U,
8 mao

which gives, by addition, that
In(Aol)+1In(loB)

1 /M > 1 (M 2
—1In |exp | = L) 42 (=1
8 \'my 8 \ mgo

<U (In(AQ)U+U (In(1®B)U=U*(In(A® B))U.
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By taking the inner product for = € H, ||z|| = 1 we get that
(In(Aol)z,z) 4+ (In(10 B)z,x)

2 2
—In exp} %—1 —i—1 %—1
8 \ ' my 8 \ me
< (U (In(A® B)Us,x)

and by taking the exponential, we derive
exp(ln(Aol)x,z)exp(ln(lo B)x,x)

2 2

exp[é(ﬁﬁ—l) ‘1‘;(7%2—1)]

for z € H, ||z|| = 1 and by the third inequality in (2.12) we obtain the first part of
(3.2). O

<exp (U (In(A® B))Ux,x)

By conducting some numerical experiments we can state the following;:

Conjecture 1. With the above notations, we have for h > 1 that
D(h) > S(h).
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