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Abstract

Here we study the multivariate quantitative approximation of Banach
space valued continuous multivariate functions on a box or R, N € N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We research also the case of
approximation by iterated multilayer neural network operators of the last
four types. These approximations are achieved by establishing multidi-
mensional Jackson type inequalities involving the multivariate modulus
of continuity of the engaged function or its high order Fréchet derivatives
or partial derivatives. Our multivariate operators are defined by using
a multidimensional density function induced by a g-deformed hyperbolic
tangent sigmoid function. The approximations are pointwise and uniform.
The related feed-forward neural network are with one or multi hidden lay-
ers.

2020 Mathematics Subject Classification: 41A17, 41A25, 41A30, 41A36.

Keywords and phrases: multi layer approximation, g-deformed hyper-
bolic tangent sigmoid function, multivariate neural network approximation,
quasi-interpolation operator, Kantorovich type operator, quadrature type op-
erator, multivariate modulus of continuity, abstract approximation, iterated ap-
proximation.

1 Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliaguet-Euvrard and ” Squashing” types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The defining these operators
"bell-shaped” and ”squashing” functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.

Motivations for this work are the article [15] of Z. Chen and F. Cao, also by
[4)-[13], [16], [17].

Here we perform a g-deformed, ¢ > 1, ¢ # 1, hyperbolic tangent sigmoid
function based neural network approximations to continuous functions over
boxes or over the whole RY, N € N and also iterated, multi layer approxi-
mations. All convergences here are with rates expressed via the multivariate
modulus of continuity of the involved function or its high order Fréchet deriv-
ative or partial derivatives and given by very tight multidimensional Jackson
type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RY, as well
as Kantorovich type and quadrature type related operators on RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by the g-deformed hyperbolic tangent sigmoid function.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(x):chJ«aj'w}—i—bj), reR’ seN,
=0

where for 0 < 7 < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - x) is the inner product of a; and z, and
o is the activation function of the network. In many fundamental network mod-
els, the activation function is the hyperbolic tangent sigmoid function. About
neural networks read [19] - [21].

2 About ¢g-deformed tanh,x

We found tanh, z in [18].

We study tanh, z and we have proved ([13]) that it is a sigmoid function and
we will mention several of its properties related to the approximation by neural
network operators. So the deformed tanh, x is defined as follows:

et —qe "
e 4 qe~*’

(1)

hg (x) := tanh qx :=



z € R, where ¢q € (0,4+00) — {1}.
We have that

‘We notice that

That is

he(—z) = —h1 (z), Yz €R, (4)
q
and hi () = —hg (—2), hence
Wy (z) = bl (~z). (5)
It is 9 1 g
et —q — o=
h e = € ].7
«(@) g 1+ % ot
ie.
hq (400) = 1. (6)
Furthermore )
et —q q
hg (z) = -  —==-1
Q( ) €2w+CI(ZI?*>*OO) q
i.e.
hy (—00) = —1 (7)
We find that 9
4 xT
Wy (@) = — 1 >0, (8)
(621 +q)

therefore h, is striclty increasing.
Next we obtain (z € R)

hy (x) = 8qe*” (q_62$> € C(R). (9)

(€2 +q)°
‘We observe that

. v In
q—e* 20<=>QZ€2L<:>1HC]ZQ$<:>.T§7(].
So, in case of x < mTq’ we have that hg is strictly concave up, with hj (lan) =

0.

And in case of z > 1“7‘1, we have that h, is strictly concave down.



So hy is a shifted sigmoid function with h, (0) = 5L # 0, and hy (—2) =

—hg-1 (x) (a semi-odd function).
By1>—-1,z+4 1>z — 1, we consider the activation function

1+q

1
g () = 7 (hg (@ +1) = he(z ~1)) >0, (10)
Vz € R, ¢ > 0, ¢ # 1. Notice that ¢, (£00) = 0, so the x-axis is horizontal

asymptote.
We have that

1
wq (—z) = 1 [hg (2 +1) = hg (-2 —1)] =
1 —x+1 qez—l e—w—l _ qez-‘rl
Z |:< —x+1 +qer 1) - (e—z—l +qex+1>:| =
1 w+1 167$71 e:1!,'71 _ le*$+1
_ e oy _ | _— 9 —
4 [<e¢+1+ 16—1, 1) <qx—1+;e—x+1>‘| -
1
Z[hq—l (x+1) = hy-1 (z = 1)] :w% (), Yz ek (11)
Thus
VY, (—2) =9, (z), VZzER, V¢>0,q#1, adeformed symmetry. (12)

Next we have that

w;(m):i[hf](x—i-l)—h;(:v—l)], VzeR. (13)

Let z < lnq —1,thenz—1<z+1< IHT‘I and hy (z +1) > hy (z — 1) (by hy
being strlctly concave up for x < 1I1q) that is w; (z) > 0. Hence ¥, is striclty
increasing over (—oo, 1“7‘7 — ) .

Let now z — 1 > lnTQ,then:H—1>9c—1> l%q, and hy (z +1) < hy (z — 1),
that is ¢ (z) <O0.

Therefore 1, is strictly decreasing over (lan + 1, —|—oo) .

Next, let lan —1<z< lan + 1. We have that
1 1 12 1
W) = 3 [ e+ ) = (= 1)] =

2(x+1 2(x—1
oq |2ty (4= )3 O )3 - (1
(62(m+1)+q) (62(m—1)+q)

By 2 <zeli<rilehg<2(a+1) e q< @) o gt <
0.



Byx§m7q+1<:)x—1§h’7q(:>2(x—l)Slnq(:)e%”_l)Sq@

q-— eQ(x—l) > 0.
Clearly by (14) we get that wg () <0, for x € {lan -1, lan + 1} )

More precisely 1, is concave down over [lan -1, lan + 1], and strictly con-

cave down over (I“Tq -1, IHTQ + 1) )

Consequently ¢, has a bell-type shape over R.
Of course it holds 1/1;' (lan) <0.

Atz = lan, we have

U () = [0 e 1) — By 2= 1)) =

e2(z+1) e2(z—1) (15)
(62(m+1)+q)2 (62(m71)+q)2 )

and
Ingq eQ(lanJrl) 62(“17(171)

Yo <2> — (ez(l‘;qﬂ) +q>2 - (62(“‘7“71) +q)2 = (16)

e2 (6_2 + 1)2 —e 2 <62 + 1)2 0
(2 +1)°(e2+1)>

Therefore at the only critical number x = lan 1, achieves a maximum, which is

¥ () =
1 ez+1 _ qe—z—l ez—l _ qe—m+1 _ 17
Z ew+1 + q€7w71 - qazfl + q€7$+1 - ( )

(=) - (=50 s

Conclusion: the maximum value of ¢ is

Ing\ (e—e_l) _ tanh1
Y <2) C2(ete )y 2 (18)

[hg (z+1) = hg(x—1)] =

N

‘We need

Theorem 1 (/13]) We have that

Y gy le—i)=1, VzeR Vg>0,q#1 (19)

1=—00



It holds

Theorem 2 (/13]) It holds
/ Y, (x)der =1, ¢>0, ¢#1. (20)

So

q 18 a density function on R.
We need also the following result

Theorem 3 ([13]) Let 0 < a < 1, and n € N with n*=* > 2; ¢ > 0, ¢ # 1.
Then

1 . 3
Z djq (TL.’E - k) < max {qv q} 646_2n(1 ) = Qe_2n(1 );

(21)

1
Q@ := max {q, q} e,

Let [-] the ceiling of the number, and |-] the integral part of the number.
We need

Theorem 4 ([18]) Let x € [a,b] C R and n € N so that [na] < |nb]. For

q >0, ¢ # 1, we consider the number \q > zo > 0 with v (20) = ¥, (0) and
Ag > 1. Then
1 1 1
< max , =®(q). 22
Z 1/’q (nx - k) q q
k=[na]
We make
Remark 5 (/13])
(i) We have that
[nb)
lim Z Y, (nx —k) #1, for at least some x € [a,b] . (23)

n—-4o0o
k=[na]
(ii) Let [a,b] C R. For large n we always have [na] < [nb|. Also a < % <,
iff Tna < k < |nb).
In general it holds
[nb)

Z Y, (nz —k) <1 (24)

k=[na]



‘We make

Remark 6 We introduce

Zy (21, s N) = Zy (x) 1= qu (z5), x=(z1,....,an)€ERY, ¢>0,¢g#1, NeN.

It has the properties:
(i) Z,(x) >0, VxRN,
(1)

(25)

> Zy(x—k Z Z Z x1 — K,y —ky) =1,

k=—o00 k1=—00 ko=—00 kny=—o00

where k = (ky,...,k,) € ZV, V¥V z € RV,
hence

(iii) .
Z Zg(nz—k)=1,

k=—o0

VzeRY: neN,
and

(iv)
/RN Z, (z)dw = 1,

that is Z, is a multivariate density function.

Here denote ||z := max {|21], ..., |zn]|}, € RV, also set 0o := (00, ...

—00 := (—00, ..., —00) upon the multivariate context, and

[nal := ([na1],..., [nan]),

Lan = (Lnle PERES) LnbNJ) )

where a := (a1, ...,an), b:= (b1, ...,bn).
We obviously see that

[nb] [nb] N
S Zyta—k)y =Y (qu (naxi—ki)> -

k=[na] k=[na]

[nb1] [nbn | N [nb; ]
Z Z (Hz/; nx; — z> H Z Y, (nz; — ki)

ki=[na1] kn=[nan| i=1 \k;=[na;]

(26)

(27)

. (30)



For0<B<1andn €N, afivedx € RN, we have that

Lnb]
Z Zg(nx —k) =
k=[na]
[nb] [nb]
> Zy (nx — k) + > Zy(nx—k).  (31)
{ k = [na] { k = [na]
I — 2l < 75 15 =2l > 75

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition ||% - 1:||C>o > n% implies that there exists at least one % - 137«\ > n%,

where r € {1,...,N}.
(v) By Theorem 3 and as in [10], pp. 379-880, we derive that

[nb]
Z Zy(nx — k) < Qefzn(liﬁ), 0<pB<1, meN, (32)
k= [na)
1% =2l > 75

withn e N:nl=# >2 z ¢ Hfil [ai, b;] .
(vi) By Theorem 4 we get that

0 ! <@@)", (33)

< i)
2 keina] Zq (nx — k)

Vaoe (Hil [ai,bi]), n € N.
It is also clear that

(vii)
3 Zy(nz — k) < Qe (34)

{ k=—-00
[
0<B<l,neN:n"F>2 zcRY, meN.

Furthermore it holds

[nb]
lim > Z, (nx— k) # 1, (35)
e k=[na]

N
for at least some x € (Hi:l (@i, bl]) .
Here (X, ””v) is a Banach space.



Let f € C (Hfil [ai,bi],X>, x = (1,....,TN) € Hivzl [ai,bi], n € N such
that [na;] < |nb;|, i=1,...,N.
We introduce and define the following multivariate linear normalized neural

network operator (v = (x1,...,TN) € (Hfil (@i, bl]))

leéanna] (k) Z‘Z (TLJT - k)
An ) 3oty = An ) = =
(f T xN) (f ZE) Z,&”anﬂ (n,]j _ k')

[nb1 ] [nb2 | [nbN ] k N
zklzlfnal] Zkgz(nag] EkN N[naN] ( n’t TN) (Hi:l wq (nxl - kl))
N [nb; | ’
Hi:l ( ki=[na; ] 7’L.’IJ1 - )
<

For large enough n € N we always obtain [na;]

a; <5 < by iff [na;] <k < |nbi),i=1,..,N.
When geC (Ht 1 lai, 67]) we define the companion operator

[nb;|, i = 1,....N. Also

e B2
n\g,T) = ZLan (nx_k.) .
F=Tna]

Clearly /Nln s a positive linear operator. We have that
N N
A,(1,z)=1, Vze (H [ai,bi]> :
i=1

Notice that A, (f) € C (Hji las, bi) ,X) and A, (g) € C (Hl . [a,,bl]).
Furthermore it holds

~ )

38
z,anbew = b) (38)

JAn (f )], <

Ve [IY, [aibi] .
N
Clearly || f]|., € C (Hi:l [ai,biD .
So, we have that

14n (£ 2, < Au (I51,2) (39)

VaoellY,laib], ¥neN, erc( ai, b, )

Letce X andgEC'( o1 lai,b ) thencgEC’(HZ l[az,bz],X).
Furthermore it holds

A, (cg,z) = cAy ( x,V:céHaz,Z. (40)



Since A, (1) =1, we get that
Ap(c)=¢, VeceX. (41)

We call Zn the companion operator of A,,.
For convenience we call

Lnb)
A (fox) =) f(> (nx —k) =

k=[na]

[nb1] [nb2 ] [nbn |

ooy LY f<k1 ’f) (ﬁwq(nxiki)>, (42)

ki=[na1] ka2=[naz] kn=[nan]

Ve (Hﬁil [ai,bz']) :

That is A (f.2)
A (f, ) : : 43
()= S (13)
Ve (Hl]\il [ai,bi]), n € N.
Hence
&, (f.2) = f () (z,i"‘?m] J(ne — k)
Ap (f,.CC) - f (JI) = [nb] : (44)
Do fnal Zy (nx — k)
Consequently we derive
(33) N [nb]
140 (F,2) = F (@), < (@ @)™ || 4} (F2) = f(2) D] Zy(a k)|
k=[na]
"(15)

v o e (T1, [on b))
We will estimate the right hand side of (45).

For the last and others we need
Definition 7 ([11], p. 274) Let M be a convex and compact subset of (RN, ||~Hp>,
p € [1,00], and (X, H||,y) be a Banach space. Let f € C(M,X). We define the

first modulus of continuity of f as

wi (f,0):= sup  [If(x) = F(®)l,, 0<0<diam(M). (46)
z,y € M :
lz—yll, <o

If § > diam (M), then

w1 (f,0) = w1 (f, diam (M)) . (47)

10



Notice wy (f,d) is increasing in ¢ > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,0) is defined similarly.

Lemma 8 ([11], p. 27/) We have wy (f,0) = 0asd | 0, iff f € C(M,X),
where M is a convex compact subset of (RN, H||p), p € [1,00].

Clearly we have also: f € Cpy (RN , X ) (uniformly continuous functions),
iff wy (f,6) — 0 as § | 0, where w; is defined similarly to (46). The space
Cp (RN , X ) denotes the continuous and bounded functions on RY.

N
Let now f € C™ (H [ai,bi]), m, N € N. Here f, denotes a partial deriva-

=1

N
tive of f, a := (a1,...,an), a; € Zy,i=1,..,N, and |a| := > a; = I, where
i=1
1=0,1,....,m. We write also f, 1= g;fj and we say it is of order [.
We denote
Wi (fash) = max wp (fash). (48)
Call also
I fallSom = lg‘lgﬁ{llfalloo}y (49)

where ||-|| is the supremum norm.

When f € Cp (RN,X) we define,

Bn (fa‘r) = Bn (faxl)'“,xN) = Z f <7I§) Zq (77,337 ]{3) =
k=—o00

k1 k'Q kN) (N nz; — k; ) 50
ZOOZOO szf( S 11 CTCEo) B
neN,VzeRYN, N eN, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neural
network operator

k

Cp(f,x):=Cy(f,21,....,zN) == Z (nN/nf(t)dt> Zy(nx — k) =

k=—o00 n

k1+1 ko41 kn+1

i i i ( / /@ /LN f(tl,...,tN)dtl...dtN>

kl 700]{,‘27 o0 k‘N — 00

n

: <H by (na; — ki)) ; (51)

i=1

11



neN, VaeRV.

Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D, (f,z), n € N, as follows.

Let 0 = (0y,....,05) € NV, r = (ry,...,7n) € Zﬂ\_', Wy = Wry ry,..ry = 0, such

0 01 02 On
that > w, = Y. > o Y Wey g ey = 1; k€ ZYN and
r=0 r1=07r2=0 rny=0

’ Er
Sk (1) = By oo (F) = D w0 f ( + ) B
’ ek 'rg() n  nd

gzli GZNU) f E_FLQ_FQ kiN_i_TiN (52)
1T, TN n mnhi’n  nby’ 7 n nly )’

’I“1:0 7’2:0 T’NZO

r._ (rL T2 N
where 7 .—( 1,92,...,0N>.
We set

D, (f,x):= D, (f,z1,....,aN) = Z Onk (f) Zyg (nx — k) = (53)

k=—o00

oo 0o 00 N
DD D Snkikeky (f) (H Y, (nx; — kz-)> ,

kl:foo k?2:700 szfoo

V2 eRN.

In this article we study the approximation properties of A,, B,,C,, D,
neural network operators and as well of their iterates, that is acting with multi-
layer neural networks. Thus the quantitative pointwise and uniform convergence
of these operators to the unit operator I.

3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 9 Let f € C’(Hij\il [ai,b,;],X>, 0<pf<l zc¢€ (Hf\; [ai,bio,
N,n € N with n*=% > 2. Then
1)
[An (f, @) = f (@), <

@@ for (£ ) #2077 sl | = o

12



and
2)
140 () =71, <2 ).
We notice that lim A, (f) Il f, pointwise and uniformly.

Above w1 is with respect to p = oo.

Proof. We observe that
[nb]

A@) = A, (f2) = (@) D Zg(ne—k)=

k=[na]

[nb] i [nb)
> (5 zme-n- X 1@ 2001 -
k=[na] k=[na]

[nb) L

2 (1) -r@) zate

Thus
[nb] N
@l < X |1(5)-rw)| zyme-n-
k=[na] 2l
L) "
> |(G)-rw| awe-n-
k = [na) K
15 -2l <3
[nb]
> () -re| zee-n<
k= [na) K
15 -2l > 75
. [nb)
a(fag) i), X zee-n's
k = [na)
15 =2l > 7
1 o (1-8)
or (1,75 ) + 20 s, |
So that .
1@, < (£5) +200 7 i

Now using (45) we finish the proof. m
We make

13
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Remark 10 ([11], pp. 263-266) Let (RN, H||p), N € N; where ||-[|,, is the Ly-

norm, 1 < p < oo. RN is a Banach space, and (RN)J denotes the j-fold product

space RN x ... x RN endowed with the max-norm [zl (gryi == max [z, where
1Ay b

z:=(x1,...,%) € (RN)j .

Let (X, ||||ﬂ/) be a general Banach space. Then the space Lj := L; ((RN)J ;X)
of all j-multilinear continuous maps g : (RN)j — X, j=1,...,m, is a Banach
space with norm

lg (@)ll,

_ 59
Y R

lgll ==1llgll., == sup llg(@)ll, = sup

”zH(RN)j =1

Let M be a non-empty convex and compact subset of R* and xo € M is fized.

Let O be an open subset of RN : M C O. Let f : O — X be a continuous
function, whose Fréchet derivatives (see [22]) f9) : O — L; = L, ((RN)] ;X)
exist and are continuous for 1 <j <m, m € N.

Call (z — x0) = (x — xg, ..., & — @) € (RVY, 2 € M.

We will work with f|pr.

Then, by Taylor’s formula ([14]), ([22], p. 124), we get

fx) = i 1o (“)j(,‘" —20) | B (wa0), allz € M, (60)
j=0 '

where the remainder is the Riemann integral

1 —u m—1
Ry (z,20) := /0 A-w™ (f("”) (zo + u(x — x0)) — ™ (mo)) (x — x0)" du,

(m—1)!
(61)
here we set f(©) (z0) (z — $0)0 = f (wo)-
We consider
wimw (f0) = w1 @@ )
x,yeEM:
lz—yll,<h
h > 0.
We obtain
| (7 oo = w0)) = £ @) (& = 20)"| <
£ @0+ w @ = 20)) = £ @0)| -l = ol <
w |z — |} F”x;ajonp-‘ ’ (63)

14



by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):

m ! U”;Efgp()” l—um_l
1R (,20)ll,, < wllz — o] /O [ ﬂ( o

P h (m—1)!
=, (|l = o], (64)
by a change of variable, where
m B 0 h (m . 1)| s = m| = J + ’ )

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

[0 (t)< ﬂerJrM VteR (66)
= m+ 1) 2m! 8(m—1)! ) ’

with equality true only at t = 0.
Therefore it holds

o ol < o (L2 e mlly” el T
m AT H07 My = (m+1)!h 2m! g(m—1)! )’
(67)
We have found that
9 (o) (w — 20)’
fl@) = i <
Jj=0 5
m—+1 m m—1
- - hllz — 0|
(TYL) h Hx xo”p ||x xo”p P 68
wl(f )( T O T o T smon ) < (68)

YV x,x9 € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f™) being continuous
on M.

One can rewrite (68) as follows:

m ) (20) (- — me )
=0 '

ol
m—+1 m m—1
- - bl — ol
) - —zoll, I+ — 2oll,, » v M. (69
wl(f )( (m+1)h T Sm_1 ) "€ , (69)

15



a pointwise functional inequality on M.
Here (- — x0)’ maps M into (RN)] and it is continuous, also f) (x¢) maps
(RN)J into X and it is continuous. Hence their composition @) (x) (- — zo)
s continuous from M into X. _ v
Clearly f (-)=>"7~ M € C(M,X), hence Hf () =20 W
C(M).
Let {ZN}N N be a sequence of positive linear operators mapping C (M) into
c (). ©
Therefore we obtain

S
v

7=0

(Jx -—x
Hf N OV ICA TG [ ) P

L To ! T L =T T
w1 (f(m),h) ( N(”( Hl)!h ))( ) ( N(” 5 0!”1’))( 0)
T m—1 2
h (LN (t(_m%'i)! )) (o) ’ (70)

VNeN,Vaxye M.

Clearly (70) is valid when M = H [a;,b;) and L, = A,,, see (37).

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,,, A, fulfill its assumptions, see (36), (37), (39), (40) and (41).

We present the following high order approximation results.

N
Theorem 11 Let O open subset of (RN, ||-||p>, p € [1,00], such that ] [a;,b;] C
i=1

O C RV, and let (X, ||H7> be a general Banach space. Let m € N and f €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

from O into X. We study the approzimation of f| . Letxg € (H [a;, L])

[ai,bs] =

andr > 0. Then
1)

16



wn (10 (G (1= 2ol ) ) @) ™) .
G (et ) )((An(||-—xo||?“))(xo>)(’"’“)

1 r mr?
- 4 I 1
{(m+1)+2+ 8}’ (7)
2) additionally if f9) (z¢) =0, j = 1,...,m, we have

1(An (£)) (zo) = [ (o)l <

3)
G () w0 = F ol < 32 5 (4 (79 o) = 207 ) )+
wi (£, I = ol ) (20)) " Y
1< (2 Tnuo ) ) ) (A (1= ol ")) () ™
' (73)
1 r mr?
Lm+n+2+23}
and
4)
L g
- ], HH f(J) (zo) (- — xo)J)) (»”CO)HV e 11_\][ o] +
w1 ( r (Zn (H _ 3:0||'1’7'L+1)> (o) ;:1:06 II_V[ [ai,bi])
rm! =
(& (1 = 2ol )) a7 (74)

N
00,20 € [ [a:,bi]
i=1

ot me?
m+1) 2 8 |

17



We give

Corollary 12 (to Theorem 11, case of m = 1) Then

1)
(A (D) (@0) = F @), < || (An (7O 0 (- = 20)) ) o)+
g (700 (B (1= 15)) 20)) (B (1= ) ) 79
[1 +r+ T:} )
and
2)
=11, 0%
W‘ £ —m)ﬂ%)vmm%@%M+
o (f(l),r (A (1= 2ol)) @) o H)
[ (i) @2y [rere D]
r > 0.
We make

Remark 13 We estimate 0 < a < 1, m,n € N:nl=® > 2,

nb m—+1
A m—+1 ZIE ]Jna] || - OH Zq (TLCL'O - k) (33)
Ay (Il = 2ol (o) = o <
N [nb] k m—+1
(@@)" > |~ w0l  Zy(nao—k) = (77)
k=[na] o0
N [nb] k m—+1
(®(q)) > H — g Zy (nxo — k) +
k= [na] >
15 = oll < 7



[nb]

If m—+1 (34)
Z -~ %o Zg (nzo — k)
{ k = [na] =
HI% = ol > 7w
1 _op(1—a) m
@@ ey + @ -z, (75)
(where b—a = (by — a1, ....,bx —an)).
N
We have proved that (V xo € [] [ai, bi])
i=1
g m 1 _opl—o) m
A (1= aoll2) o) < @ @) { gy + @ o= el | =y 0

(79)
O<a<l,mneN:nl—>2)
And, consequently it holds

Hgn (||' - $o||g+1) (x(J)HOWOE ] <

1
no(m+1)

(@ (Q))N { + Qe—znﬂfa) b — a|’gé+1} =¢;(n) =0, asn — +oo.
(80)
So, we have that p; (n) — 0, as n — +oo. Thus, when p € [1,00], from
Theorem 11 we have the convergence to zero in the right hand sides of parts (1),
Next we estimate H (/Tn (f(j) (o) (- — mo)j>> (:UO)H

We have that

Y

Sy £9) (o) (£ = w0)” Zy (nag — k)
ZIE:nb[Jna] (n{,C() - k)

(An (£9 @o) (- = 20)") ) (w0) =
When p =00, j =1,...,m, we obtain
‘ f(]) (o) (k — x())J <

We further have that

|G (59 0~ 207)) ],

J

; k
|0 ] |7 -]
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(@ (q)~ ( % F9 () (k - $0>j Zq (nwo — k)) <
k=[na] v
(P (q))N ( Hf (zo H H — o Zq (nzo — k;)) = (83)
k=[na
N 4 [nd] k j
(@ (q)) Hfm (mo)H ( 3 H — x| 2 (mco—k)> -
k=[nal oo
' [nb)] k j
(@ @) || (o) > |Ew] zwm-n
k= [na] >
i = ool < 5w
o k J (32)
+ Z H” -z _ Zy(nzog —k) p < (84)

Lol

v ol > e
(@)™ [ (o H{+Q 20 g }ﬂo, as n— oo,

That is
H( (f(y) x0) (- — xo)j)) (xO)HW — 0, as n — oo.

Therefore when p = oo, for j =1,...,m, we have proved:

(2 (5 = 20))

<
vy

@@ |10 @ {5 e a9

Y Hf(j) { +Qe > b — a’”io} =: pg; (n) < o0,

nJ

and converges to ZETO0, as n — Q.

We conclude:
In Theorem 11, the right hand sides of (73) and (74) converge to zero as

n — oo, for any p € [1, 00].
Also in Corollary 12, the right hand sides of (75) and (76) converge to zero

as n — oo, for any p € [1,00].
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Conclusion 14 We have proved that the left hand sides of (71), (72), (73),
(74) and (75), (76) converge to zero as n — oo, for p € [1,00]. Consequently
Ay — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (72). Higher speed of convergence happens also to the left hand side of (71).

We further give

Corollary 15 (to Theorem 11) Let O open subset of (RN,|-||.), such that
N
H [ai,bi] € O CRY, and let (X II]I ) be a general Banach space. Let m € N

cmd f e C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approximation of f| x . Let xg €

) [ai,bi
i=1
N
(H [ai,bi]> and r > 0. Here o1 (n) as in (79) and py; (n) as in (85), where
i=1
neN:nl=*>2 0<a<l,j=1,..m. Then

1)

(A (D) a0) = 3 55 (A (£9) @) (= 20)")) (@) <
J=0 5
w1 (m),r 1(n = . romr?
(f TE:! " )(wl(n))(m“) [(mil)+2+ 2 ] (86)

2) additionally, if f9) (x0) =0, j = 1,...,m, we have

1(An () (o) = f (o)l <

1

wi (£, (py () ™50

rm/!

)wmm%ﬂﬂhmin+;+"f], (57)

3)
J1an = 11|

< Z SDQ]
j=1

H[aw l

1

wi (F0, 7 (i ()7

)@mmwﬂﬁ (88)

rm!
= +I g mr (n) =0, asn — oo
—_— -+ —— | =: - — — 00.
(m+1) 2 8 ¥s ’

In the next we discuss further the high order of approximation by using the
smoothnedd of f, where X = R.
We give
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N
Theorem 16 Let f € C™ (H [a;, Z}), 0<B<1l nmNEeN,n=8>3

i=1
N
g>0,qg#1,z¢€ (H [ai, b ]) Then
i=1
i)

m N
PRI ITRIS of b ol PG (H e ) < @)
=1

J=1\ lal=j Hal
N Nm™ max Hbi a”m Hfa”m%itX N™ _op(=58
((I)(q)) {m'nmﬁ lrn (faa) ( e - 0o, m 2@6 2 .

A, (f2) = f @) < (@ (@)™ (90)

1 N 1
B + <H (bz — ai)o‘i> Qe—Qn( 5)1

i=1

N™ 1 16— allZS [l fallsom N™ Con(-
+m!nmﬁwrlr,lzf (fa,?’lﬂ) + ( ¢ o - >2Qe 2n! B)}.
A -1 < @@ (1)
m N
S5 | el | 1 (H - _ai)%) Q]
J=1\ |a|=j HOéz‘! i=1
=1

N b a2 | a2, N ]
4 — mg m'}x <fa7> (' || Hf' || R 2@6_2”(1 B) .
m:

N
i) Assume fo (x0) =0, for all a:|a| =1,....,m; z¢ € (H [a;,b ]> Then

i=1

A, (f.20) = f (o) < (92)

v N b= allZ LS N
(@ (9)) {m,nmﬁ 2 (fors ) + ( m, 20e-2" |

notice in the last the extremely high rate of convergence at n~Pm+1),
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Proof. As similar to [10], pp. 389-391, is omitted. m
We continue with

Theorem 17 Let f € C’B(]RN,X), 0<B<1l,zeRN ¢g>0q#1,
m,N,n € N with n'=% > 2, w; is for p = c0. Then

1)
| (f,) = £ (@)l < wn (f, nlﬁ) +2Qe72 7 |7l = re ), (93)
2)

[1Bu () =111, =22 ). (94)

Given that f € (CU (RN,X) NCg (RN,X)), we obtain lm B, (f) = f, uni-
formly.

Proof. We have that

Ba(fe)=f ) i f<i) Zy (nz — k)~ f () i Zy (nx — k) = (95)
o koo
. (7(%)-r@) zuu-n.

Hence

1B () - 1@ < 3 (&) -r@ 0~
i Hf (fb)_f@”) Zy(na =)+
(T

> (3)-re] ame-n<

k=—c
1% ==l > 77
(34)

a(rB) e, Y amen'

k=—o00

k _ H 1
Hn xoo>n5

or (1,75 ) + 20 s, | (96)

proving the claim. m
We give
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Theorem 18 Let f € C’]3(1R1\77X)7 0<pB<l,zeRY ¢g>0,q#1,
m,N,n € N with n'=% > 2, wy is for p = co. Then

1)

ICn (f.2) = £ @), eon (1.5 4+ 5 ) 2067 sl | = ha ),
(97)
2
liCa =11, _ < 2s ). (98)

Given that f € (CU (RN,X) NCg (]RN,X)) , we obtain lim C, (f) = f, uni-
formly.

Proof. We notice that

k+1 k141 ko+1 En+1

Lﬁwa()dt Lﬁln /1" .“/"L F 1 to, s ty) dtrdts...dty =

ko kN
n

/ / / (t1+t2+k tN+k)dt1 dtN:/oif(t_Ffl)dt.

(99)
Thus it holds (by (51))

Co (fo2) = 53 <WVAif(t+5)ﬁ>Z§mx—k) (100)

k=—o00

We observe that

I (fs) = £ (@), =

([ () a0 & sz -
S (w1t a) s e -

,Q_ioo@/oqi (f (”fz)f <x>>df>2q<nwk>vg (101)

> ([

k=—o0

5 (o)

f@+§>ﬂm

f(t+fL) )

dt) Zy(nx —k) =

dt) Zy (nx — k) +
v
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> (nN/ f(t+’;)—f<x>
or (Ll + |2 -

dt> Zg(nx —k) <
-

) dt) Zy (nx — k) +

(Tt

2[ist, | fﬁ Z, (jnz —k|) | <
k=—
” 7:6” nﬁ
1 1 5, (1-8)
@ (fv nt W) +2Qe7 51| (102)

proving the claim. m
We also present

Theorem 19 Let f € C’]3(1R1\77X)7 0<pB<l,zeRY ¢g>0,q#1,
m,N,n € N with n'=% > 2, wy is for p = co. Then

1)

1D (2) = £ @I, <on (£3+ 53 ) +20 71 | =),
(103)
g
[1Dw (5= 11| < 2. (104)

Given that [ € (C'U (]RN,X) NCp (RN,X)), we obtain lim D, (f) = f,

uniformly.
Proof. Similar to the proof of Theorem 18, as such is omitted. m
Definition 20 Let f € Cp (RV,X), N€N, ¢ >0, g # 1, where (X, H”’v) is

a Banach space. We define the general neural network operator

Z bk (f) Zg (nx — k) =

k=—o0
Co (fym), if luk (f) :an ) dt, (105)
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Clearly Ik, (f) is an X-valued bounded linear functional such that ||l (f)[, <
]

Hence F,, (f) is a bounded linear operator with HHF” (f)||7H < H”f”'YH .
We need ~ ~

Theorem 21 Let f € Cp (]RN,X), N >1. Then F, (f) € Cp (RN,X).

Proof. Clearly F), (f) is a bounded function.

Next we prove the continuity of F, (f). Notice for N =1, Z, = 1, by (10).

We will use the generalized Weierstrass M test: If a sequence of positive
constants My, Ms, M3, ..., can be found such that in some interval

(@) [[un (@), < Mp, n=1,2,3,...

(b) >~ M,, converges,

then Y u, (z) is uniformly and absolutely convergent in the interval.

Also we will use:

If {u, ()}, n =1,2,3,... are continuous in [a,b] and if }_ u, () converges
uniformly to the sum S (z) in [a,b], then S (z) is continuous in [a,b]. Le. a
uniformly convergent series of continuous functions is a continuous function.
First we prove claim for N = 1.

We will prove that 7 lnk (f) ¥, (nz — k) is continuous in z € R.

nl
There always exists A € N such that nx € [-), A]. Call \* := X + F 5 ],
nl
A= |
In

Since nx < A, then —nz > —Aand k—nx > k— A\ > { q-‘,Whel’lk‘Z/\*.

2

Therefore
S gz —k)=> o (k-nz)< > Y (k=N = D (k)<L
k=A* k=A* k=A* k_[m ﬂ
So for k > \* we get

ok (DIl g (= k) < (11| s (=N, (106)
and -

i 32 e =2 < 11| (107)
0o Py [

Hence by the generalized Weierstrass M test we obtain that Y% \. ln (f) 9, (nz — k)

is uniformly and absolutely convergent on [—%, %} .
Since luk (f) ¥, (ne — k) is continuous in z, then Y7 \. i (f) ¥, (nx — k)

is continuous on [—%, %} .
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Because nz > —\, then —nz < A\, and k —nx < k+ X < {EJ, when
k < A.. Therefore

N [~
qu n —k Z¢ k —na) qu (k+A) = Z Pg-1

k=—o0 k=—o0 k=—o0 k'=—o0

So for k < A\, we get

ok (DIl g (= k) < (11| s G40, (108)
and
| Z CESVES [N (109)
Hence by Weierstrass M test we obtain that Zz;_m Ik (f) g1 (nw — k) is
uniformly and absolutely convergent on [—%, %] .

Since lnk (f) ¥, (nz — k) is continuous in z, then 22*:700 lnk (f) ¥, (nz — k)
is continuous on [f%, %} .

So we proved that Y2 \. lng (f) ¥, (nz — k) and ZQ;_OO Ink (f) g (nz — k)
are continuous on R. Since Zzzj\lﬂ lnk (f) ¥, (nz — k) is a finite sum of con-
tinuous functions on R, it is also a continuous function on R.

Writing

0o A
Db (N vy e —k) = Y L (f) ¢, (nw — k) +

k=—o0 k=—o0
AF—1
> bk () (nw— Z Lnk (f) %, (na — k) (110)
k=X.+1 k=\*

we have it as a continuous function on R. Therefore F,, (f), when N =1, is a
continuous function on R.
When N = 2 we have

f7x17$2 j{: 2{: nk nxl k1>¢q(n$2——k2)::

klz—oo kzZ—OO

Z ¢q(nw1—k1)< Z Lok (f)wq(nxg—k2)>

klzfoo k)2:700
(there always exist A1, Aa € N such that nzy € [— )\1,)\1] and nzy € [—Ag,

also call AT := A + Fnj—‘, As 1= =\ + L J Ay = Ao + [ E—‘ and

-

27



= -+ | 5]

oo A2
Z Y, (nz1 — k1) [ Z Lok (f (nxe — ka) +

ki=—o00 ko=—00

As—1
D Lk (f) g (nw2 — ko) + Z bk (f) ¥q (2 — k2)

ka=MX2.+1

o A2
q + (111)

(For convenience call

Fy (b1, k2,21, 22) i= lng (f) g (n@1 — k1) ¥y (n22 — k2) )

Thus
AT—1 Ao

Als A2
Z Z Fq (k17k2,$17$2)+ Z Z k17k2,$1,$2)—|—

ki=—00 ko=—0c0 ki=MA1«+1ko=—00

Alx As-1

A2
Z Z kl,kz,xl,xg Z Z k‘l,k‘g,l‘l,xz)-f—

k1= )\ ko=—00 ki=—00 ko=MAo,+1

AT—1 As—1 As—1

Z Z kl,k2,£1,$2 Z Z k17k2,$1,$2)+

k1=A1x+1ka=MX2,+1 k1=MAT ka=X2.+1

AT—1

A
ZI: Z (k1, ko, 1, 22) + Z Z (K1, k2, z1,22) +  (112)

ki=—00 ko= )\* ki=A1«+1 ko= )\*

oo oo
Z Z Fq(k17k27x17$2)~
k1=A7 ka=\}
Notice that the finite sum of continuous functions Fy (k1, k2, 1, z2):

22;{;;1*-«—1 222 31\2 41 Fq (K1, k2, 21, 22) is a continuous function.
The rest of the summands of F,, (f,z1,x2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.
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We will prove that ° “ar szi oo Ink (f) ¥, (nxy — k1) Y, (nae — ko) is

continuous in (z1,77) € R2.
The continuous function

ok (£, (ny = k) g (e = k2) < 71| 6ms (= A0 0gr (o + 2,

and

i) > Sy s (= M)y 1 (ka4 Ae) =

1 X* kQZ—OO

)| Z Gy (kr = Ar) ( > v, (k2+A2>> <

k1=A7 ko=—o00

ind

WL | S v || S vt | < i) @)
kf=—o00

o — "ln—"
1 2

So by the Welerstrass M test we get that
POy " S Lk (f) Y, (nx1 — k1) ¢, (nwa — ko) is uniformly and absolutely

]{)2——00
convergent. Therefore it is continuous on R2.

Next we prove continuity on R? of

-1 .
S 41 ok o bk () g (n1 = k1) b, (nw — k).
Notice here that

Ik (£, g (s = k), (n2 = ko) < 1711, 9, (n2 = k) on (ke + o)
(114)

<07 (52) s Gt 2 = A s 0,

and

tanh 1 ‘

( Ari )( > v, kzﬂz)) (115)

k1=A1.+1 ko=—o00
Ini
q
]

tanhl H”f” H (2)\1 + Fr;(ﬂ _ ran —1> Yook | <

-
kj=—00

tanh 1 Ini Ini
Pt (e |52 <[5 o

So the double series under consideration is uniformly convergent and continuous.

Clearly F,, (f,x1,x2) is proved to be continuous on RZ.
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Similarly reasoning one can prove easily now, but with more tedious work,
that F, (f,z1,...,zn) is continuous on RY, for any N > 1. We choose to omit
this similar extra work. m

Remark 22 By (586) it is obvious that H||An (f) H||fH H < 0o, and

A
A, (f)eC(H (@i, Z],X), given thatfeC(lj_V[ [a;, b;], X

i=1
Call L,, any of the operators A,, B,,Cy, D
Clearly then

o0

lez ol = 1z @] < f1zaon. | < usn|_. ao
etc.
Therefore we get
lzs ol < 1] ween, (117)
the contraction property.
Also we see that
Izl < et ol < - < {za o < (13)
Here L are bounded linear operators.
Notation 23 Here ¢ >0, q#1, N € N, 0 < 8 < 1. Denote by
()N, if L, = A,,
= {5 (z‘f))L ZJJ; ‘€. D, (119)
1 .
"B f = A’n7 an
_I5 12
ot {; L. if Ly = C, Dy, (120)
N .
0= C (an [aiabi] 7X> ’ Zan = An7 (121)
CB( N )7 ian—ancn;Dnv
and
N .
V.= il;ll [ai, bl] y Zf Ln - An7 (122)

RN7 Zan = BnaCnan-
We give the condensed
Theorem 24 Let f € Q, 0< <1, z2€Y;q9q>0,q#1, n, NN with
n'=8 > 2. Then
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(i)
1 (£.2) = £ @), < ex [wr (Frp ) +2Qe 1711 || ] =7 (),

(123)
where wy 1s for p = oo,
and
(ii)
Ew (= £1L| <7 m) =0, asn — o, (124)
For f uniformly continuous and in 2 we obtain
lim Ly, (f) = f,

pointwise and uniformly.

Proof. By Theorems 9, 17, 18, 19. m

Next we talk about iterated multilayer neural network approximation (see
also [9]).

We give

Theorem 25 All here as in Theorem 24 and r € N, 7(n) as in (123). Then

< r7(n). (125)
So that the speed of convergence to the unit operator of L, is not worse than of
L,.

Proof. As similar to [12], pp. 172-173, is omitted. m
We also present

Theorem 26 Let f € Q; g >0,q# 1, N, mi,ma,...m, € N:m; < mo <
L <m, 0< B <1 m%_ﬁ >2,i=1,...,r,x €Y, and let (Lym,,..., L, ) as
(Amyy ey Am,) or (B y ooy B, ) or (Crayy ooty Ci ) 07 (D ooy D), p = 00
Then

||Lm7- (Lmrq (c-Lim, (L mlf)))( ) — f(x)Hy <

[, (s oLy L)) = £ | <
zinuLmif—fanm <

cN Z {wl (f,o(m;)) + 2Qe ~2n!

e

ren [wi (f,0 (ma)) +2Qe ]||f||7HOO] . (126)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Ly, .

_on(1=8)
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Proof. As similar to [12], pp. 173-175, is omitted. =
We also give

Theorem 27 Let all as in Corollary 15, and r € N. Here ¢4 (n) is as in (88).
Then

[14ns = )| < v [1ans = 71| < res . (127)

Proof. As similar to [12], p. 175, is omitted. m
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