SOME BOUNDS FOR TRACE CLASS P-DETERMINANT OF
HADAMARD PRODUCT OF TWO POSITIVE OPERATORS IN
HILBERT SPACES VIA TOMINAGA’S RESULTS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by
Ap (A) :=exptr(PlnA).
In this paper we show, among others that, if 0 < m; < A < M;p and 0 < ma <
B < My, then for P > 0 with P € By (H) and tr (P) =1,
1 Ap(AoB
< PAD) <5 (hih),
S (h1)S(h2) = Ap(Aol)Ap(1oB)

where h1 = % > 1, ha = % > 1 and S (-) is Specht’s ratio.

1. INTRODUCTION

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (N),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure pp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp (/ lntduT> .
0

Apk (T) = exp (7 (In (|T1))),

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0

If T is invertible, then
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means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z|| = 1, defined by

A (A) :=exp (ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [10].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) > [l Aei|* < 0.
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

(1.2) o lAel® =Y 1AL =D l1ATf)
iel jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = (ZAeil )
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that |-, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)l/Q.

Because |||A| z|| = ||Az| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4°]l-

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),||||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y (B*Ae;e;)
icl i€l
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities
(1.5) 1A < [l1All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) ATy, (T Ally < 1T Al

iel’
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(iii) Bo (H) is an operator ideal in B (H), i.e.
B(H)B: (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =D (|4l eiye) < oo
iel
The definition of [|Al|; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H).
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [A[ly = 1A%, and [|A]l; < [[Ally
for any A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B, (H)B(H) C By (H);
(i1i) We have
By (H) By (H) =B (H);
(iv) We have
|All, =sup{(A,B), | Be B2 (H), |B|y <1}
(v) (B1 (H),||ly) s a Banach space.
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = (Ae;,e;),
icl
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A") = tr (A);
(1)) If A€ By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, IT|;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 5 T —— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [4] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by [5]

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
We have the following result [5]:

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],

(1.13) Ap((1—t)A+tB) > [Ap (A)]' " [Ap (B)] .
Also, we have that
r(PA 1
1< tAL}()A; < exp [tr (PA) tr (PA™") — 1]
and A
Ap (A .
< W < exp [tr (PA™!) tr (PA) — 1],

for A>0 and P >0 with P € By (H) and tr (P) = 1.
We recall that Specht’s ratio is defined by [11]

1
hR—1

mifhe(o,l)u(l,oo)

h—1

(1.14) S (h) :=
1if h=1.

It is well known that lim,_, S (h) = 1, S(h) = S(3) > 1 for h > 0, h # 1. The

function is decreasing on (0, 1) and increasing on (1, 00).

The following inequality provides a refinement and a multiplicative reverse for
Young’s inequality
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(1.15) a7 < S ((%)T) a7V <(1-v)a+vb< S (%) at vy,

where a, b > 0, v € [0,1], r = min {1 — v, v}.
The second inequality in (1.15) is due to Tominaga [12] while the first one is due
to Furuichi [9].

In [12] Tominaga also obtained the following additive reverse inequality

(1.16) 0<(1—v)atvb—a="b" SL(a,b)lnS(%)
where the logarithmic mean of two positive numbers a, b is defined by
lnb_lna if b 7& a,
L(a,b) :=
aif b = a.

Motivated by the above results, in this paper we show, among others that, if
0<m <A< M and 0 < mg < B < My, then for P > 0 with P € By (H) and
tr (P) =1,

1 < Ap (Ao B)
S(hl)S(hg) — Ap (AO 1) Ap (1 OB)

where h; = %—1 >1, hy = %—; > 1 and S (-) is Specht’s ratio.

< S (hha),

2. MULTIPLICATIVE INEQUALITIES

We start to the following operator inequalities involving positive operators and
positive linear maps:

Lemma 1. Assume that the selfadjoint operator V satisfies the condition 0 < m <
V < M for some constants, m, M and ® a unital positive linear map from B (H)
into B(K). Then

M — (V) o (V)—m
o (M 3wk [ (V) — M| Lo M—2V) o B(V) —m
< M M=) A7
- m> thme et M—-m
M- (V) o(V)—m M
< < _— =y _—
<In® (V) <lnm 7 —m +InM T —m +InS -
and
M- (V) (V) —m
(2.2) Inm T —m +InM T
M - |V m+M| M (I)(V) ( ) m
< R
cos{ () e g
<o (InV)
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Proof. From (1.15) we get, by taking the logarithm, that
(2.3) (I1-v)lna+vind

< S((%)T) +(1—-v)lna+vinb<In[(1-v)a+ vb
<InS (%) +(1—v)lna+vinb,

where a, b > 0, v € [0,1], r = min {1 — v, v}.

Assume that 0 < a < b. We take v = £=2 € [0,1] for ¢ € [a,b] and observe that

b—t t—
(1—V)a+l/b:ma+b_z

b=t

and

t— b—t
min{v,1 —v} = min{a }

b—a'b—a
17 1 7a+b
2 b-—a 2 |
From (2.3) we get
b—t t—a
2.4 1 Inb
(2:4) b—ana+b—an
a3~ |- 24 b—t t—a
< —
S((b) >+b—alna+b—alnb
b—t t—a a
< < hd
<Int< _alna+b_alnb+ln5’(b)

for all t € [a, b].

By utilizing the continuous functional calculus for selfadjoint operators T" with
spectra Sp (T') C [a,b], we obtain from (2.4) that

b—-T T—a
2. 1 1
(2.5) na;— +nbb_
ay 3 —v=a|T— 5] b-—T T—a
< Z
_S<(b) )—i—lnaba—l—lnbba
b—T T—a a
< < — .
_lnT_lnab_a +1nbb—a +lnS(b>

Now if 0 <m <V < M, then 0 < m < ®(V) < M and by (2.5) we get for
T=®(V),a=mand b= M that

M—®(V) o(V)—m
R T M

m 5~ e [2(V)— 5| M—® (V) ®(V)—m
< — - ~r 7 N7
S((M) )—i—lnm — +InM =

M- o (V) o(V)—m m
< < -~ 7 PR S — _
<@ (V) < lnm—— 4 In M — +1nS(M>

and the inequality (2.1) is proved.
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If we take T =V, a =m and b = M in (2.5) and then apply ® we obtain

M-V V—-—m
@(lan —|—lnMM )

—m —m

M\ |V M-V V-m
<o — 1 In M
- S<<m) >+an—m+n M—m]

—m

M-V V—m M
< < -
_éan_CP[lan —|—1nM]V[_m—|—1r15<m>}7
which is equivalent to (2.2). O

Corollary 1. With the assumptions of Lemma 1 we have the chain of inequalities

M—3(V) o (V) —m
2. nhm——4+InM-——F"——
(2.6) nm— +In A=
M P Vo M- (V) ®(V)—m
< -
< oS (m) +Inm U —m +InM =
<O(InV)<In® (V)
% (V) —m M
< -~ 7 il AV o
<Inm U —m +1In M U= +1InS -

<P(InV)+InS <J\Wf) :

Proof. Second inequality follows by Jensen’s operator inequality for the operator
concave function In, while the last inequality follows by the fact that

M—-3(V) o (V)—m
<
Inm T +InM S <®(InV)
from the first part of (2.6). O

We have the following inequalities for the determinant Ap (Ao B) for P > 0
with P € By (H) and tr (P) = 1.

Theorem 5. Assume that 0 < m; < A < My and 0 < mg < B < Ms, then for
P >0 with P € By (H) and tr (P) =1,

M—tr[P(AoB)] _  tr[P(AoB)]—m
(2.7) m M—m M M—m

<m IVI—tX/[IP_(;:oB)] Mtr[P(]Go_B;z]—m,

3~ 7 [A®B— = |
PU*S <<M> > u
m

<exptr[PU* (In(A® B))U] < Ap (Ao B)

M —tr[P(AoB tr[P(AoB)]—
< S(M>m HEGem) | P (eB)lom
- m

X exp tr

<S8 (?j) exptr [PU* (In (A ® B))U],

where m = myms, M = My Ms.
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Proof. Since 0 < m; < A< M; and 0 < mg < B < My, then 0 < mymo =m <
V=A®B <M = M M,. From (2.6) for ® (V) =U*(A® B)U = Ao B we get

M—-AoB AoB—m

M -t [AB- |
gu*s(( ) u
m

M—AoB AoB—m
1 In M
+inm M—-—m +n M—m

<U"(In(A® B))U <In(AoB)

M—-AoB AoB—m M
< R
<Inm — +1InM — +1nS<m>

<U*(In(A®B)U+InS <]‘nf> .

If we multiply the inequality (2.8) to the left and to the right with P'/2 then we
get

MP—PYV2(AoB) P> | PY2(A0B) PV —mP
(2.9) Inm T —m +InM T —m
1_1 _|A®B— m+M
§P1/2U*S<<M)2 M | 2 >UP1/2
m

+1lnm

MP — P2 (Ao B) P'/? PY2 (Ao B)PY? —mP
M—-m +in M M—m
< PY24* (In (A ® B))UPY? < PY/21In (Ao B) PY/?
MP — P2 (Ao B) P'/? PY2(Ao B)PY? —mP
m an; ) +In M ( 3\4)—m m

+InS (M) P
m

< PY2U*® (In (A® B))UPY? +1n S (M) P.
m

<lIn

If we take the trace in (2.9) and use its properties and the fact that tr (P) = 1,
then we get

M —tr[P (Ao B)] tr[P(AoB)]—m
U —m Inm +In M T —m

3t [AeB— 1M |
PU*S((A:L) )u

M —tr[P (Ao B)] tr[P(AoB)]—m
M—-m i M M—-m

(2.10)

<tr

+Inm




SOME BOUNDS FOR TRACE CLASS P-DETERMINANT 9

<tr[PU" (In(A® B))U] < tr[Pln(Ao B)]

Slanftr[P(AOB)] +lthr[P(AOB)]fm+1nS M
M—-—m M—-m m

M
<tr[PU* (In(A® B))U]+1InS (m) P.
Now, if we take the exponential in (2.10), then we get the desired result (2.7). O

3. ADDITIVE INEQUALITIES
We also have the following inequalities:

Theorem 6. Assume that the selfadjoint operator V satisfies the condition 0 <
m <V < M for some constants, m, M and ® a unital positive linear map from

B (H) into B (K). Then
B1) (i)

<o (InV)

M—®(V) P(V)—m
M

<In®((V)<In [mM—mM—m +L(m,M)InS (M)] .
m

Proof. From (1.16) we have
(3.2) a7y < (1—-v)a+vb<a "V + L(a,b)InS (%)

for a,b > 0 and v € [0,1].
Assume that 0 < a < b. We take v = =2 € [0,1] for t € [a,b], then by (3.2) we
get
at=ebi=s <t < at=eb=¢ + L(a,b)InS (%)
and by taking the logarithm, we get

b—t Ina+ t—a
b—a b—a
for ¢t € [a,b] C (0,00).
By utilizing the continuous functional calculus for selfadjoint operators T" with
spectra Sp (T') C [a,b], we obtain from (3.3) that
b—-T nat T—-a
b—a b—a
Now if 0 <m <V < M, then 0 < m < ® (V) < M and by the second part of (3.4)
we get for T =®(V), a=m and b = M the inequality

(3.3)

Inb < Int < In [a%b% 4 L(a,b)InS (%)}

(3.4) Inb<InT <In {a%b% +L(a,b)ln5(%>}.

M—®(V)  &(V)—m M
In® (V) <ln|m ¥m M Mm —|—L(m,M)lnS<)}
m

From the first part of (3.4) we have

M — _
Vi Y =™ <y,
M—m

—-m —

Inm

If we take the positive linear map ® we obtain

M-0(V) o 2V)-m

<P (1
M—m M—-—m 7®(nV),

Inm
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which is equivalent to

(V)—m

In (mMA;fg) M =m ) <d(InV).

Now, by operator Jensen’s inequality we have ® (In V') <In® (V). By collecting all
these inequalities we obtain the desired result (3.1). O

Corollary 2. With the assumptions of Theorem 6,
M—2(V) D(V)—m
(3.5) In (mﬂ MW)
<P(InV)<In®(V)
M—2(V) @(V)—m
<In (mWMW)

s () P S|
d P

g@(lnv)JrL(maM)l”S(Z) [

cotav) oo (21 ms (1),

Proof. By the concavity of the function In we have z, y > 0 that
Inzx —lny < f—1.
Y

This implies that
In(t+k) <Int+kt*

for all ¢, kK > 0.
By the functional calculus we get in the operator order

In(T+k)<InT+kT™!

for all operators T > 0 and k > 0.

n |:mMM®£:)M®§\¥)Mm + ) (m,M) IHS (M>:|
m

<t (5 D) 4 L G, 0 s (0 ) (5 0 )
m

By the geometric mean-harmonic mean inequality we have

M—®(V) (V)—m M —-® (V) 1 P (V) -m -1
M=—m N M-m > | —r — 7 M >
mn - ( M—m + M—m =
which implies that
(m* 2t < M-2(WV) 1, 2V)=m, 1 _
M—-—m M—m
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Therefore

M—®(V) <1>(v) m
In {m ™ ™=m" M "M-m"

#Limans (3]

<t (m 5 0 ) 4 L o, b s () (m )

<In (mMA?fEX)M%) m
+L(m,M>1ns<f‘7g> {Mj\ffnwm +¢§4V - ]
<I>(1nV)+L(m7M)1n5<]\n/;[> [MM cI>7(nV) )_ }

and by Theorem 6 we derive the third and fourth inequalities in (3.5). The last
part is obvious. O

Theorem 7. Assume that 0 < m; < A < M; and 0 < me < B < Ms, then for
P >0 with P € By (H) and tr (P) =1

M—AoB AoB—7n)

(36) AP (m M—-m N M—-m
<exptr[PU* (In(A® B))U] < Ap (Ao B)

M—AoB AoB—m

S AP (m M—m (M) M—m )

M L("L’M)[Al—tzgli(;‘:oB)] ,rn—l_’_tr[P(]SciB;Z]fnLM—l]
x S| —

m

M Lm, M)[JVI tigi(éos)] +tr[P(](}iB;i]me—l]
<S|—

m

x exptr [PU* (In (A ® B))U]

L(2 1)
<S (AW{) exptr [PU* (In (A ® B))U],

where m = myimsg and M = M; M.

Proof. Since 0 <m; < A< M; and 0 < mg < B < My, then 0 < m = mymsy <
V =A®B < M = M, M. From (3.5) form=m, M = M, ®(V)=U* (AR B)U =
Ao B we get

(3.7) In ((m) SR (M) )
<U* (In(A® B))U <In(AoB)

M—AoB AoB—m M
<In ((m) o (M) )+L(m,M) In S (m)

o) |

" M—AoB( )1+AoB—m
M—m m M—-—m
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<U*(In(A@ B))U+ L(m, M)InS (]\n{)
[ e

<U* (In(A® B)U+ L (%1) In S (M> .

m

If we multiply the inequality (3.7) to the left and to the right with P'/2, take the
trace, then we get

tr [P ((m) = () )]
<tr[PU* (In(A® B))U] < tr[Pln(Ao B)]
< tr [P In ((m) S (M) )]

+L(m,M)InS (%)

_M—tr[P(AoB)]m_l+tr[P(AoB)]—m
M—-m M—-m

(M —tr[P(AoB)] _, tr[P(AoB)]—-m
M—-m moet M—-m

X Mt

<tr[PU* (In(A® B))U] +L(m,M)1nS(

S

X M1

< t_r [PU* (In (A® B))U] + L (Anf 1) In S (%) .

If we take the exponential, then we get

exp tr {P In ((m) R (M) R )]
<exptr[PU" (In(A® B))U] < exptr[Pln (Ao B)]
< exptr [P In ((m) R (M) Ry )}

1, tr[P(AoB)]—m

M L(m!M)[M7t$i(£OB)]m_ + M—m M_l]
xS

<exptr[PU*" (In(A® B))U]

Y L(m,M)[Ivfft;/[[}i(TgoB)]m—l_"_tr[P(]\z;‘}tiB;rZ]fvanl]
x S <)

m

L(W,l)
<5 (ﬁf) exptr [PU* (In (A ® B)U]

and the inequality (3.6) is proved. O

4. CONNECTION TO OPPENHEIM’S INEQUALITIES

In the finite dimensional case, if we consider the matrices A = (a;5), B = (b;;) €
M,, (C), then A o B has an associated matrix A o B = (a;;b;;) in M,, (C).
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Recall Hadamard determinant inequality [13, p. 218] for A > 0
det A <det(Aol) (= ﬁan)
i=1
and Oppenheim’s inequality [13, p. 242] for A, B > 0
det Adet B < det (Ao B) <det(Aol)det(Bol) ( ﬁ aiibii> .
i=1

We recall that for an operator () > 0 we consider the normalized determinant
defined by [7]

A, (Q) = exp (In Qu, )
forx € H, ||z|| = 1.

In the recent paper [10], S. Hiramatsu and Y. Seo obtained the following inter-
esting Oppenheim’s type inequalities

1 A, (Ao B)

S(h1)S (h2) = Az (Ao1)A, (10 B)
for x € H, ||z|| = 1, provided that 0 < m; < A< M; and 0 < mg < B < M.

We have the following similar inequalities for the trace determinant:

(4.1)

< S (h1h2)

Theorem 8. Assume that 0 < m; < A < M; and 0 < mg < B < My, then for
P >0 with P € By (H) and tr (P) =1,

1 Ap (AOB)
S (h1)S (h2) ~ Ap(Aol)Ap(loB)

whereh1:%>1,h2:%>l.

(4.2)

< S (hiha),

Proof. By the properties of the tensorial product, we have that
A®B=(A®1)(1® B)

where A ® 1 and 1 ® B are commutative operators.
Therefore

mh(A®B)=ln[(A®1)(1®B)=h(A®1)+In(l® B)
and

U (In(A® B)U

U n(A®1)+In(l® B)U
U (In(A1)U+U" (In(1® B))U.

Using Jensen’s operator inequality for the operator concave function ln, we also
have

U Imh(A1)U <In(U*(A®1)U)=In(Ao1)
and
U Ih(QleB)U<IhU" (1®B)U)=In(loB).
These imply for P > 0 with P € By (H) and tr (P) =1 that
PY2u* (In (A ® B))UPY? < PY?In (Ao 1) PY2 + PY/21n (10 B) P'/?
and by taking the trace
tr [PU* (In(A® B))U] <tr[Pln(Aol)]+tr[Pln (1o B)].
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If we take the exponential we then obtain

(4.3)  exptr[PU* (In(A® B))U] <exp(tr[Pln(Aol)]+tr[Pln (1o B)])
=exp(tr[Pln(Ao1)])exptr[Pln (10 B)]
=Ap(Aol)Ap(loB).

Since by (2.7) we have for M = M;Ms and m = mima, that

(4.4) Ap(AoB)<S <Z\W4L> exptr [PU* (In (A ® B))U],
then by (4.3) and (4.4) we get
Ap (Ao B) <S(Jn\f> Ap(Aol)Ap(loB),

which proves the second part of (4.2).
From (2.6) we have, see also [10]

1n<I>(V)<<I>(1nV)+1nS<J\W{)

provided that 0 <m <V < M.
Now, if we take in this inequality 0 < m; <V = A® 1 < Mj, then we get for
O(V)=U"(A® 1)U = Aol that

In(Ao1)<InS <M> +U (In(A® 1)U
mi
while for 0 <me <V =1Q B < My
In(loB)<InS (A/[Q) +U* (In(1® B))U,
ma
which gives, by addition, that
In(Aol)+In(loB)—InS <M> —InS <%>
mq mo
<U (m(A)U+U" (In(1@B)U =U"(In(A® B))U.
These imply for P > 0 with P € By (H) and tr (P) = 1 that
PY2In(Ao1)PY2 4+ PY2In(10 B)PY? —1InS <Ml) P—-InS <MQ> P
ma mo
< PY2U* (In (A ® B))UPY/?
and by taking the trace we get
tr[Pln(Ao1)]+tr[Pln(loB)]—InS (M> —InS <A42>
my
<tr[PU* (In(A® B))U].
Finally, by taking the exponential we derive
exptr[Pln(Ao1)]exptr[Pln (1o B)]

()2
Since by (2.7)

(4.6) exptr [PU* (In(A® B))U] < Ap(AoB),

(4.5) <exptr[PU" (In (A ® B))U].



SOME BOUNDS FOR TRACE CLASS P-DETERMINANT 15

hence by (4.5) and (4.6) we derive the first inequality in (4.2). O
Remark 1. In [10] the authors showed that

S (h1) S (h2) < S (hihs)
for all hy, hy > 1. Therefore, by (4.2) we get the more symetrical result

—1 Ap (Ao B)
(4.7) S (h1h2>§AP(A:1)Ap(1oB)

wherehlzj\m/[—i>1,h2:%>l.

< S (h1hg),
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