
SOME BOUNDS FOR TRACE CLASS P -DETERMINANT OF
HADAMARD PRODUCT OF TWO POSITIVE OPERATORS IN

HILBERT SPACES VIA TOMINAGA�S RESULTS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a complex Hilbert space. For a given operator P � 0

with P 2 B1 (H) ; the trace class associated to B (H) and tr (P ) = 1; we de�ne
the P -determinant of the positive invertible operator A by

�P (A) := exp tr (P lnA) :

In this paper we show, among others that, if 0 < m1 � A �M1 and 0 < m2 �
B �M2; then for P � 0 with P 2 B1 (H) and tr (P ) = 1;

1

S (h1)S (h2)
� �P (A �B)
�P (A � 1)�P (1 �B)

� S (h1h2) ;

where h1 =
M1
m1

> 1; h2 =
M2
m2

> 1 and S (�) is Specht�s ratio.

1. Introduction

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a �nite von Neumann algebra (M; �) with a faithful normal trace.
Let T 2M be normal and jT j := (T �T )1=2 its modulus. By the spectral theorem

one can represent T as an integral

T =

Z
Sp(T )

�dE (�) ;

where E (�) is a projection valued measure and Sp (T ) is the spectrum of T: The
measure �T := � �E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T ) :
For any T 2 M the Fuglede-Kadison determinant (FK-determinant) is de�ned

by

�FK (T ) := exp

�Z 1

0

ln td�jT j

�
:

If T is invertible, then

�FK (T ) := exp (� (ln (jT j))) ;
where ln (jT j) is de�ned by the use of functional calculus.
Let B(H) be the space of all bounded linear operators on a Hilbert space H,

and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
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means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [7], [8], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by

�x(A) := exp hlnAx; xi
and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [10].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H; h�; �i) be a complex Hilbert space and feigi2I an orthonormal basis of H:

We say that A 2 B (H) is a Hilbert-Schmidt operator if

(1.1)
X
i2I

kAeik2 <1:

It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.2)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.3) kAk2 :=
 X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H:
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)1=2 :
Because kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-

Schmidt and kAk2 = kjAjk2 : From (1.2) we have that if A 2 B2 (H) ; then A� 2
B2 (H) and kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 1. We have:
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.4) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii

and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
(ii) We have the inequalities

(1.5) kAk � kAk2
for any A 2 B2 (H) and, if A 2 B2 (H) and T 2 B (H) ; then AT; TA 2 B2 (H)
with

(1.6) kATk2 ; kTAk2 � kTk kAk2
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(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) :

If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.7) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) :

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;

(iii) We have
B2 (H)B2 (H) = B1 (H) ;

(iv) We have

kAk1 = sup fhA;Bi2 j B 2 B2 (H) ; kBk2 � 1g ;

(v) (B1 (H) ; k�k1) is a Banach space.

We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.9) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.10) tr (A�) = tr (A);

(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H),

(1.11) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;

(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) :



4 S. S. DRAGOMIR

Now, if we assume that P � 0 and P 2 B1 (H) ; then for all T 2 B (H) ; PT;
TP 2 B1 (H) and tr (PT ) = tr (TP ) : Also, since P 1=2 2 B2 (H) ; TP 1=2 2 B2 (H),
hence P 1=2TP 1=2 and TP 1=2P 1=2 = TP 2 B1 (H) with tr

�
P 1=2TP 1=2

�
= tr (TP ) :

Therefore, if P � 0 and P 2 B1 (H) ;

tr (PT ) = tr (TP ) = tr
�
P 1=2TP 1=2

�
for all T 2 B (H) :
If T � 0; then P 1=2TP 1=2 � 0; which implies that tr (PT ) � 0 that shows that

the functional B (H) 3 T 7�! tr (PT ) is linear and isotonic functional. Also, by
(1.11), if Tn ! T for n ! 1 in B (H) then limn!1 tr (PTn) = tr (PT ) ; namely
B (H) 3 T 7�! tr (PT ) is also continuous in the norm topology.
For a survey on recent trace inequalities see [4] and the references therein.
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the P -

determinant of the positive invertible operator A by [5]

(1.12) �P (A) := exp tr (P lnA) = exp tr ((lnA)P ) = exp tr
�
P 1=2 (lnA)P 1=2

�
:

Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: We observe that we have
the following elementary properties

(i) continuity : the map A! �P (A) is norm continuous;
(ii) power equality: �P (At) = �P (A)t for all t > 0;
(iii) homogeneity : �P (tA) = t�P (A) and �P (tI) = t for all t > 0;
(iv) monotonicity : 0 < A � B implies �P (A) � �P (B).
We have the following result [5]:

Theorem 4. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A; B > 0
and t 2 [0; 1] ;

(1.13) �P ((1� t)A+ tB) � [�P (A)]1�t [�P (B)]t :

Also, we have that

1 � tr (PA)

�P (A)
� exp

�
tr (PA) tr

�
PA�1

�
� 1
�

and

1 � �P (A)

[tr (PA�1)]
�1 � exp

�
tr
�
PA�1

�
tr (PA)� 1

�
;

for A > 0 and P � 0 with P 2 B1 (H) and tr (P ) = 1:

We recall that Specht�s ratio is de�ned by [11]

(1.14) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1)

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
The following inequality provides a re�nement and a multiplicative reverse for

Young�s inequality
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(1.15) a1��b� � S
��a
b

�r�
a1��b� � (1� �) a+ �b � S

�a
b

�
a1��b� ;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g.
The second inequality in (1.15) is due to Tominaga [12] while the �rst one is due

to Furuichi [9].
In [12] Tominaga also obtained the following additive reverse inequality

(1.16) 0 � (1� �) a+ �b� a1��b� � L (a; b) lnS
�a
b

�
where the logarithmic mean of two positive numbers a; b is de�ned by

L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

Motivated by the above results, in this paper we show, among others that, if
0 < m1 � A � M1 and 0 < m2 � B � M2; then for P � 0 with P 2 B1 (H) and
tr (P ) = 1;

1

S (h1)S (h2)
� �P (A �B)
�P (A � 1)�P (1 �B)

� S (h1h2) ;

where h1 = M1

m1
> 1; h2 =

M2

m2
> 1 and S (�) is Specht�s ratio.

2. Multiplicative Inequalities

We start to the following operator inequalities involving positive operators and
positive linear maps:

Lemma 1. Assume that the selfadjoint operator V satis�es the condition 0 < m �
V � M for some constants, m; M and � a unital positive linear map from B (H)
into B (K) : Then

lnm
M � � (V )
M �m + lnM

� (V )�m
M �m(2.1)

� S
 �

M

m

� 1
2�

1
M�m j�(V )�m+M

2 j!
+ lnm

M � � (V )
M �m + lnM

� (V )�m
M �m

� ln� (V ) � lnmM � � (V )
M �m + lnM

� (V )�m
M �m + lnS

�
M

m

�
and

lnm
M � � (V )
M �m + lnM

� (V )�m
M �m(2.2)

� �S
 �

M

m

� 1
2�

1
M�m jV�m+M

2 j!
+ lnm

M � � (V )
M �m + lnM

� (V )�m
M �m

� � (lnV )

� lnmM � � (V )
M �m + lnM

� (V )�m
M �m + lnS

�
M

m

�
:



6 S. S. DRAGOMIR

Proof. From (1.15) we get, by taking the logarithm, that

(1� �) ln a+ � ln b(2.3)

� S
��a
b

�r�
+ (1� �) ln a+ � ln b � ln [(1� �) a+ �b]

� lnS
�a
b

�
+ (1� �) ln a+ � ln b;

where a; b > 0, � 2 [0; 1]; r = min f1� �; �g.
Assume that 0 < a < b. We take � = t�a

b�a 2 [0; 1] for t 2 [a; b] and observe that

(1� �) a+ �b = b� t
b� aa+

t� a
b� ab = t

and

min f�; 1� �g = min

�
t� a
b� a;

b� t
b� a

�
=

1

2
� 1

b� a

����t� a+ b2
���� :

From (2.3) we get

b� t
b� a ln a+

t� a
b� a ln b(2.4)

� S
��a

b

� 1
2�

1
b�a jt� a+b

2 j
�
+
b� t
b� a ln a+

t� a
b� a ln b

� ln t � b� t
b� a ln a+

t� a
b� a ln b+ lnS

�a
b

�
for all t 2 [a; b].
By utilizing the continuous functional calculus for selfadjoint operators T with

spectra Sp (T ) � [a; b] ; we obtain from (2.4) that

ln a
b� T
b� a + ln b

T � a
b� a(2.5)

� S
��a

b

� 1
2�

1
b�a jT� a+b

2 j
�
+ ln a

b� T
b� a + ln b

T � a
b� a

� lnT � ln ab� T
b� a + ln b

T � a
b� a + lnS

�a
b

�
:

Now if 0 < m � V � M , then 0 < m � � (V ) � M and by (2.5) we get for
T = �(V ) ; a = m and b =M that

lnm
M � � (V )
M �m + lnM

� (V )�m
M �m

� S
��m
M

� 1
2�

1
M�m j�(V )�m+M

2 j�
+ lnm

M � � (V )
M �m + lnM

� (V )�m
M �m

� ln� (V ) � lnmM � � (V )
M �m + lnM

� (V )�m
M �m + lnS

�m
M

�
and the inequality (2.1) is proved.
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If we take T = V; a = m and b =M in (2.5) and then apply � we obtain

�

�
lnm

M � V
M �m + lnM

V �m
M �m

�
� �

"
S

 �
M

m

� 1
2�

1
M�m jV�m+M

2 j!
+ lnm

M � V
M �m + lnM

V �m
M �m

#

� � lnV � �
�
lnm

M � V
M �m + lnM

V �m
M �m + lnS

�
M

m

��
;

which is equivalent to (2.2). �

Corollary 1. With the assumptions of Lemma 1 we have the chain of inequalities

lnm
M � � (V )
M �m + lnM

� (V )�m
M �m(2.6)

� �S
 �

M

m

� 1
2�

1
M�m jV�m+M

2 j!
+ lnm

M � � (V )
M �m + lnM

� (V )�m
M �m

� � (lnV ) � ln� (V )

� lnmM � � (V )
M �m + lnM

� (V )�m
M �m + lnS

�
M

m

�
� � (lnV ) + lnS

�
M

m

�
:

Proof. Second inequality follows by Jensen�s operator inequality for the operator
concave function ln; while the last inequality follows by the fact that

lnm
M � � (V )
M �m + lnM

� (V )�m
M �m � � (lnV )

from the �rst part of (2.6). �

We have the following inequalities for the determinant �P (A �B) for P � 0
with P 2 B1 (H) and tr (P ) = 1:

Theorem 5. Assume that 0 < m1 � A � M1 and 0 < m2 � B � M2; then for
P � 0 with P 2 B1 (H) and tr (P ) = 1;

m
M�tr[P (A�B)]

M�m M
tr[P (A�B)]�m

M�m(2.7)

� m
M�tr[P (A�B)]

M�m M
tr[P (A�B)]�m

M�m

� exp tr
"
PU�S

 �
M

m

� 1
2�

1
M�m jA
B�m+M

2 j!
U
#

� exp tr [PU� (ln (A
B))U ] � �P (A �B)

� S
�
M

m

�
m

M�tr[P (A�B)]
M�m M

tr[P (A�B)]�m
M�m

� S
�
M

m

�
exp tr [PU� (ln (A
B))U ] ;

where m = m1m2; M =M1M2:
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Proof. Since 0 < m1 � A � M1 and 0 < m2 � B � M2, then 0 < m1m2 = m �
V = A
B �M =M1M2: From (2.6) for � (V ) = U� (A
B)U = A �B we get

lnm
M �A �B
M �m + lnM

A �B �m
M �m(2.8)

� U�S
 �

M

m

� 1
2�

1
M�m jA
B�m+M

2 j!
U

+ lnm
M �A �B
M �m + lnM

A �B �m
M �m

� U� (ln (A
B))U � ln (A �B)

� lnmM �A �B
M �m + lnM

A �B �m
M �m + lnS

�
M

m

�
� U� (ln (A
B))U + lnS

�
M

m

�
:

If we multiply the inequality (2.8) to the left and to the right with P 1=2; then we
get

lnm
MP � P 1=2 (A �B)P 1=2

M �m + lnM
P 1=2 (A �B)P 1=2 �mP

M �m(2.9)

� P 1=2U�S
 �

M

m

� 1
2�

1
M�m jA
B�m+M

2 j!
UP 1=2

+ lnm
MP � P 1=2 (A �B)P 1=2

M �m + lnM
P 1=2 (A �B)P 1=2 �mP

M �m
� P 1=2U� (ln (A
B))UP 1=2 � P 1=2 ln (A �B)P 1=2

� lnmMP � P
1=2 (A �B)P 1=2
M �m + lnM

P 1=2 (A �B)P 1=2 �mP
M �m

+ lnS

�
M

m

�
P

� P 1=2U�� (ln (A
B))UP 1=2 + lnS
�
M

m

�
P:

If we take the trace in (2.9) and use its properties and the fact that tr (P ) = 1;
then we get

M � tr [P (A �B)]
M �m lnm+ lnM

tr [P (A �B)]�m
M �m(2.10)

� tr
"
PU�S

 �
M

m

� 1
2�

1
M�m jA
B�m+M

2 j!
U
#

+ lnm
M � tr [P (A �B)]

M �m + lnM
tr [P (A �B)]�m

M �m
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� tr [PU� (ln (A
B))U ] � tr [P ln (A �B)]

� lnmM � tr [P (A �B)]
M �m + lnM

tr [P (A �B)]�m
M �m + lnS

�
M

m

�
� tr [PU� (ln (A
B))U ] + lnS

�
M

m

�
P:

Now, if we take the exponential in (2.10), then we get the desired result (2.7). �

3. Additive Inequalities

We also have the following inequalities:

Theorem 6. Assume that the selfadjoint operator V satis�es the condition 0 <
m � V � M for some constants, m; M and � a unital positive linear map from
B (H) into B (K) : Then

ln
�
m

M��(V )
M�m M

�(V )�m
M�m

�
(3.1)

� � (lnV )

� ln� (V ) � ln
�
m

M��(V )
M�m M

�(V )�m
M�m + L (m;M) lnS

�
M

m

��
:

Proof. From (1.16) we have

(3.2) a1��b� � (1� �) a+ �b � a1��b� + L (a; b) lnS
�a
b

�
for a; b > 0 and � 2 [0; 1] :
Assume that 0 < a < b. We take � = t�a

b�a 2 [0; 1] for t 2 [a; b], then by (3.2) we
get

a
b�t
b�a b

t�a
b�a � t � a

b�t
b�a b

t�a
b�a + L (a; b) lnS

�a
b

�
and by taking the logarithm, we get

(3.3)
b� t
b� a ln a+

t� a
b� a ln b � ln t � ln

h
a
b�t
b�a b

t�a
b�a + L (a; b) lnS

�a
b

�i
for t 2 [a; b] � (0;1) :
By utilizing the continuous functional calculus for selfadjoint operators T with

spectra Sp (T ) � [a; b] ; we obtain from (3.3) that

(3.4)
b� T
b� a ln a+

T � a
b� a ln b � lnT � ln

h
a
b�T
b�a b

T�a
b�a + L (a; b) lnS

�a
b

�i
:

Now if 0 < m � V �M , then 0 < m � � (V ) �M and by the second part of (3.4)
we get for T = �(V ) ; a = m and b =M the inequality

ln� (V ) � ln
�
m

M��(V )
M�m M

�(V )�m
M�m + L (m;M) lnS

�
M

m

��
:

From the �rst part of (3.4) we have

lnm
M � V
M �m + lnM

V �m
M �m � lnV:

If we take the positive linear map � we obtain

lnm
M � � (V )
M �m + lnM

� (V )�m
M �m � � (lnV ) ;
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which is equivalent to

ln
�
m

M��(V )
M�m M

�(V )�m
M�m

�
� � (lnV ) :

Now, by operator Jensen�s inequality we have � (lnV ) � ln� (V ) : By collecting all
these inequalities we obtain the desired result (3.1). �

Corollary 2. With the assumptions of Theorem 6,

ln
�
m

M��(V )
M�m M

�(V )�m
M�m

�
(3.5)

� � (lnV ) � ln� (V )

� ln
�
m

M��(V )
M�m M

�(V )�m
M�m

�
+ L (m;M) lnS

�
M

m

��
M � � (V )
M �m m�1 +

�(V )�m
M �m M�1

�
� � (lnV ) + L (m;M) lnS

�
M

m

��
M � � (V )
M �m m�1 +

�(V )�m
M �m M�1

�
� � (lnV ) + L

�
M

m
; 1

�
lnS

�
M

m

�
:

Proof. By the concavity of the function ln we have x; y > 0 that

lnx� ln y � x

y
� 1:

This implies that

ln (t+ k) � ln t+ kt�1

for all t; k > 0:
By the functional calculus we get in the operator order

ln (T + k) � lnT + kT�1

for all operators T > 0 and k > 0:

ln

�
m

M��(V )
M�m M

�(V )�m
M�m + L (m;M) lnS

�
M

m

��
� ln

�
m

M��(V )
M�m M

�(V )�m
M�m

�
+ L (m;M) lnS

�
M

m

��
m

M��(V )
M�m M

�(V )�m
M�m

��1
:

By the geometric mean-harmonic mean inequality we have

m
M��(V )
M�m M

�(V )�m
M�m �

�
M � � (V )
M �m m�1 +

�(V )�m
M �m M�1

��1
� m;

which implies that�
m

M��(V )
M�m M

�(V )�m
M�m

��1
� M � � (V )

M �m m�1 +
�(V )�m
M �m M�1 � m�1:
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Therefore

ln

�
m

M��(V )
M�m M

�(V )�m
M�m + L (m;M) lnS

�
M

m

��
� ln

�
m

M��(V )
M�m M

�(V )�m
M�m

�
+ L (m;M) lnS

�
M

m

��
m

M��(V )
M�m M

�(V )�m
M�m

��1
� ln

�
m

M��(V )
M�m M

�(V )�m
M�m

�
+ L (m;M) lnS

�
M

m

��
M � � (V )
M �m m�1 +

�(V )�m
M �m M�1

�
� � (lnV ) + L (m;M) lnS

�
M

m

��
M � � (V )
M �m m�1 +

�(V )�m
M �m M�1

�
and by Theorem 6 we derive the third and fourth inequalities in (3.5). The last
part is obvious. �

Theorem 7. Assume that 0 < m1 � A � M1 and 0 < m2 � B � M2; then for
P � 0 with P 2 B1 (H) and tr (P ) = 1;

�P

�
m

M�A�B
M�m M

A�B�m
M�m

�
(3.6)

� exp tr [PU� (ln (A
B))U ] � �P (A �B)

� �P
�
m

M�A�B
M�m (M)

A�B�m
M�m

�
� S

�
M

m

�L(m;M)[M�tr[P (A�B)]
M�m m�1+ tr[P (A�B)]�m

M�m M�1]

� S
�
M

m

�L(m;M)[M�tr[P (A�B)]
M�m m�1+ tr[P (A�B)]�m

M�m M�1]

� exp tr [PU� (ln (A
B))U ]

� S
�
M

m

�L(Mm ;1)
exp tr [PU� (ln (A
B))U ] ;

where m = m1m2 and M =M1M2:

Proof. Since 0 < m1 � A � M1 and 0 < m2 � B � M2, then 0 < m = m1m2 �
V = A
B �M =M1M2: From (3.5) form = m;M =M; � (V ) = U� (A
B)U =
A �B we get

ln
�
(m)

M�A�B
M�m (M)

A�B�m
M�m

�
(3.7)

� U� (ln (A
B))U � ln (A �B)

� ln
�
(m)

M�A�B
M�m (M)

A�B�m
M�m

�
+ L (m;M) lnS

�
M

m

�
�
�
M �A �B
M �m (m)

�1
+
A �B �m
M �m (M)

�1
�
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� U� (ln (A
B))U + L (m;M) lnS
�
M

m

�
�
�
M �A �B
M �m (m)

�1
+
A �B �m
M �m (M)

�1
�

� U� (ln (A
B))U + L
�
M

m
; 1

�
lnS

�
M

m

�
:

If we multiply the inequality (3.7) to the left and to the right with P 1=2; take the
trace, then we get

tr
h
P ln

�
(m)

M�A�B
M�m (M)

A�B�m
M�m

�i
� tr [PU� (ln (A
B))U ] � tr [P ln (A �B)]

� tr
h
P ln

�
(m)

M�A�B
M�m (M)

A�B�m
M�m

�i
+ L (m;M) lnS

�
M

m

�
�
�
M � tr [P (A �B)]

M �m m�1 +
tr [P (A �B)]�m

M �m M�1
�

� tr [PU� (ln (A
B))U ] + L (m;M) lnS
�
M

m

�
�
�
M � tr [P (A �B)]

M �m m�1 +
tr [P (A �B)]�m

M �m M�1
�

� tr [PU� (ln (A
B))U ] + L
�
M

m
; 1

�
lnS

�
M

m

�
:

If we take the exponential, then we get

exp tr
h
P ln

�
(m)

M�A�B
M�m (M)

A�B�m
M�m

�i
� exp tr [PU� (ln (A
B))U ] � exp tr [P ln (A �B)]

� exp tr
h
P ln

�
(m)

M�A�B
M�m (M)

A�B�m
M�m

�i
� S

�
M

m

�L(m;M)[M�tr[P (A�B)]
M�m m�1+ tr[P (A�B)]�m

M�m M�1]

� exp tr [PU� (ln (A
B))U ]

� S
�
M

m

�L(m;M)[M�tr[P (A�B)]
M�m m�1+ tr[P (A�B)]�m

M�m M�1]

� S
�
M

m

�L(Mm ;1)
exp tr [PU� (ln (A
B))U ]

and the inequality (3.6) is proved. �

4. Connection to Oppenheim�s Inequalities

In the �nite dimensional case, if we consider the matrices A = (aij) ; B = (bij) 2
Mn (C) ; then A �B has an associated matrix A �B = (aijbij) in Mn (C) :
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Recall Hadamard determinant inequality [13, p. 218] for A � 0

detA � det (A � 1) (=
nY
i=1

aii)

and Oppenheim�s inequality [13, p. 242] for A; B � 0

detAdetB � det (A �B) � det (A � 1) det (B � 1)
 
=

nY
i=1

aiibii

!
:

We recall that for an operator Q > 0 we consider the normalized determinant
de�ned by [7]

�x (Q) := exp hlnQx; xi
for x 2 H; kxk = 1:
In the recent paper [10], S. Hiramatsu and Y. Seo obtained the following inter-

esting Oppenheim�s type inequalities

(4.1)
1

S (h1)S (h2)
� �x (A �B)
�x (A � 1)�x (1 �B)

� S (h1h2)

for x 2 H; kxk = 1; provided that 0 < m1 � A �M1 and 0 < m2 � B �M2:
We have the following similar inequalities for the trace determinant:

Theorem 8. Assume that 0 < m1 � A � M1 and 0 < m2 � B � M2; then for
P � 0 with P 2 B1 (H) and tr (P ) = 1;

(4.2)
1

S (h1)S (h2)
� �P (A �B)
�P (A � 1)�P (1 �B)

� S (h1h2) ;

where h1 = M1

m1
> 1; h2 =

M2

m2
> 1:

Proof. By the properties of the tensorial product, we have that

A
B = (A
 1) (1
B)
where A
 1 and 1
B are commutative operators.
Therefore

ln (A
B) = ln [(A
 1) (1
B)] = ln (A
 1) + ln (1
B)
and

U� (ln (A
B))U = U� [ln (A
 1) + ln (1
B)]U
= U� (ln (A
 1))U + U� (ln (1
B))U .

Using Jensen�s operator inequality for the operator concave function ln; we also
have

U� (ln (A
 1))U � ln (U� (A
 1)U) = ln (A � 1)
and

U� (ln (1
B))U � ln (U� ((1
B))U) = ln (1 �B) :
These imply for P � 0 with P 2 B1 (H) and tr (P ) = 1 that

P 1=2U� (ln (A
B))UP 1=2 � P 1=2 ln (A � 1)P 1=2 + P 1=2 ln (1 �B)P 1=2

and by taking the trace

tr [PU� (ln (A
B))U ] � tr [P ln (A � 1)] + tr [P ln (1 �B)] :
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If we take the exponential we then obtain

exp tr [PU� (ln (A
B))U ] � exp (tr [P ln (A � 1)] + tr [P ln (1 �B)])(4.3)

= exp (tr [P ln (A � 1)]) exp tr [P ln (1 �B)]
= �P (A � 1)�P (1 �B) :

Since by (2.7) we have for M =M1M2 and m = m1m2; that

(4.4) �P (A �B) � S
�
M

m

�
exp tr [PU� (ln (A
B))U ] ;

then by (4.3) and (4.4) we get

�P (A �B) � S
�
M

m

�
�P (A � 1)�P (1 �B) ;

which proves the second part of (4.2).
From (2.6) we have, see also [10]

ln� (V ) � � (lnV ) + lnS
�
M

m

�
provided that 0 < m � V �M:
Now, if we take in this inequality 0 < m1 � V = A 
 1 � M1; then we get for

� (V ) = U� (A
 1)U = A � 1 that

ln (A � 1) � lnS
�
M1

m1

�
+ U� (ln (A
 1))U

while for 0 < m2 � V = 1
B �M2

ln (1 �B) � lnS
�
M2

m2

�
+ U� (ln (1
B))U ;

which gives, by addition, that

ln (A � 1) + ln (1 �B)� lnS
�
M1

m1

�
� lnS

�
M2

m2

�
� U� (ln (A
 1))U + U� (ln (1
B))U = U� (ln (A
B))U :

These imply for P � 0 with P 2 B1 (H) and tr (P ) = 1 that

P 1=2 ln (A � 1)P 1=2 + P 1=2 ln (1 �B)P 1=2 � lnS
�
M1

m1

�
P � lnS

�
M2

m2

�
P

� P 1=2U� (ln (A
B))UP 1=2

and by taking the trace we get

tr [P ln (A � 1)] + tr [P ln (1 �B)]� lnS
�
M1

m1

�
� lnS

�
M2

m2

�
� tr [PU� (ln (A
B))U ] :

Finally, by taking the exponential we derive

(4.5)
exp tr [P ln (A � 1)] exp tr [P ln (1 �B)]

S
�
M1

m1

�
S
�
M2

m2

� � exp tr [PU� (ln (A
B))U ] :

Since by (2.7)

(4.6) exp tr [PU� (ln (A
B))U ] � �P (A �B) ;
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hence by (4.5) and (4.6) we derive the �rst inequality in (4.2). �
Remark 1. In [10] the authors showed that

S (h1)S (h2) � S (h1h2)
for all h1; h2 > 1: Therefore, by (4.2) we get the more symetrical result

(4.7) S�1 (h1h2) �
�P (A �B)

�P (A � 1)�P (1 �B)
� S (h1h2) ;

where h1 = M1

m1
> 1; h2 =

M2

m2
> 1:
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