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Abstract

Here we research the multivariate quantitative approximation of Ba-
nach space valued continuous multivariate functions on a box or RN ,
N 2 N; by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We investigate also
the case of approximation by iterated multilayer neural network operators
of the last four types. These approximations are achieved by establish-
ing multidimensional Jackson type inequalities involving the multivariate
modulus of continuity of the engaged function or its partial derivatives.
Our multivariate operators are de�ned by using a multidimensional den-
sity function induced by a q-deformed and parametrized half hyperbolic
tangent sigmoid function. The approximations are pointwise and uniform.
The related feed-forward neural network are with one or multi hidden lay-
ers.
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the �rst to establish neural net-
work approximations to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliaguet-Euvrard and �Squashing�types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The de�ning these operators
�bell-shaped� and �squashing� functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.
Motivations for this work are the article [14] of Z. Chen and F. Cao, also by

[4]-[12], [15], [16].
Here we perform a q-deformed and parametrized, q > 0, half hyperbolic

tangent sigmoid function based neural network approximations to continuous
functions over boxes or over the whole RN , N 2 N and also iterated, multi layer
approximations. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its partial derivatives
and given by very tight multidimensional Jackson type inequalities.
We come up with the �right� precisely de�ned multivariate normalized,

quasi-interpolation neural network operators related to boxes or RN , as well
as Kantorovich type and quadrature type related operators on RN . Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function
induced by the q-deformed and parametrized half hyperbolic tangent sigmoid
function.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x, and
� is the activation function of the network. In many fundamental network mod-
els, the activation function is the hyperbolic tangent sigmoid function. About
neural networks read [17] - [19].

2 About q-deformed and parametrized half hy-
perbolic tangent function 'q

Here we introduce and study the function

'q (t) :=
1� qe��t
1 + qe��t

; 8 t 2 R; (1)

where q; � > 0:
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We have that
'q (0) =

1� q
1 + q

:

We notice that

'q (�1) =
1� qe�t
1 + qe�t

=

1
qe�t

� 1
1

qe�t
+ 1

= �
 
1� 1

q e
��t

1 + 1
q e
��t

!
= �' 1

q
(t) :

That is
'q (�t) = �' 1

q
(t) , 8 t 2 R; (2)

and
' 1

q
(t) = �'q (�t) ;

hence
'01

q
(t) = '0q (�t) : (3)

It is
lim

t!+1
'q (t) = 'q (+1) = 1; (4)

and

lim
t!�1

'q (t) = lim
t!�1

�
e�t � q
e�t + q

�
= �1; (5)

that is
'q (�1) = �1:

We �nd that

'0q (t) =
2�qe�t

(e�t + q)
2 > 0; 8 t 2 R; (6)

therefore 'q is striclty increasing.
Next we obtain (t 2 R)

'00q (t) = 2�
2qe�t

 
q � e�t

(e�t + q)
3

!
2 C (R) , 8 t 2 R: (7)

We observe that

q � e�t ? 0, q ? e�t , ln q ? �t, t 7 ln q

�
:

So, in case of t < ln q
� , we have that 'q is strictly concave up, with '

00
q

�
ln q
�

�
=

0:

And in case of t > ln q
� , we have that 'q is strictly concave down.

Clearly, 'q is a shifted sigmoid function with 'q (0) =
1�q
1+q , and 'q (�x) =

�'q�1 (x), 8 x 2 R; (a semi-odd function), see also [13].
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By 1 > �1, x+ 1 > x� 1, we consider the activation function

�q (x) :=
1

4

�
'q (x+ 1)� 'q (x� 1)

�
> 0; (8)

8x 2 R; �; q > 0. Notice that �q (�1) = 0, so the x-axis is horizontal asymp-
tote.
We have that

�q (�x) =
1

4

�
'q (�x+ 1)� 'q (�x� 1)

�
=

1

4

�
1� qe��(�x+1)
1 + qe��(�x+1)

� 1� qe
��(�x�1)

1 + qe�(�x�1)

�
=

1

4

�
�
�
1� qe�(x+1)
1 + qe�(x+1)

�
+

�
1� qe�(x�1)
1 + qe�(x�1)

��
= (9)

1

4

 
�
 
1
q e
��(x+1) � 1

1
q e
��(x+1) + 1

!
+

 
1
q e
��(x�1) � 1

1
q e
��(x�1) + 1

!!
=

1

4

  
1� 1

q e
��(x+1)

1 + 1
q e
��(x+1)

!
�
 
1� 1

q e
��(x�1)

1 + 1
q e
��(x�1)

!!
=

1

4

�
' 1

q
(x+ 1)� ' 1

q
(x� 1)

�
= � 1

q
(x) ; 8 x 2 R:

Thus
�q (�x) = � 1

q
(x) , 8 x 2 R; (10)

a deformed symmetry.
Next we have that

�0q (x) =
1

4

�
'0q (x+ 1)� '0q (x� 1)

�
; 8 x 2 R: (11)

Let x < ln q
� �1, then x�1 < x+1 < ln q

� and '0q (x+ 1) > '
0
q (x� 1) (by 'q

being strictly concave up for x < ln q
� ), that is �

0
q (x) > 0. Hence 'q is striclty

increasing over
�
�1; ln q� � 1

�
:

Let now x� 1 > ln q
� , then x+1 > x� 1 >

ln q
� , and '

0
q (x+ 1) < '

0
q (x� 1),

that is �0q (x) < 0:

Therefore �q is strictly decreasing over
�
ln q
� + 1;+1

�
:

Next, let ln q� � 1 � x � ln q
� + 1: We have that

�00q (x) =
1

4

�
'00q (x+ 1)� '00q (x� 1)

� (7)
=

�2q

2

"
e�(x+1)

 
q � e�(x+1)�
e�(x+1) + q

�3
!
� e�(x�1)

 
q � e�(x�1)�
e�(x�1) + q

�3
!#

: (12)
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By ln q
� � 1 � x , ln q

� � x + 1 , ln q � � (x+ 1) , q � e�(x+1) ,
q � e�(x+1) � 0:
By x � ln q

� + 1 , x � 1 � ln q
� , � (x� 1) � ln q , e�(x�1) � q ,

q � e�(x�1) � 0:
Clearly by (12) we get that �00q (x) � 0, for x 2

h
ln q
� � 1; ln q� + 1

i
:

More precisely �q is concave down over
h
ln q
� � 1; ln q� + 1

i
, and strictly con-

cave down over
�
ln q
� � 1; ln q� + 1

�
:

Consequently �q has a bell-type shape over R:
Of course it holds �00q

�
ln q
�

�
< 0:

At x = ln q
� , we have

�0q (x) =
1

4

�
'0q (x+ 1)� '0q (x� 1)

�
=

�q

2

"
e�(x+1)�

e�(x+1) + q
�2 � e�(x�1)�

e�(x�1) + q
�2
#
=

�q

2

264 e�(
ln q
� +1)�

e�(
ln q
� +1) + q

�2 � e�(
ln q
� �1)�

e�(
ln q
� �1) + q

�2
375 =

�q2

2

"
e�

(qe� + q)
2 �

e��

(qe�� + q)
2

#
= (13)

�

2

"
e�

(e� + 1)
2 �

e��

(e�� + 1)
2

#
=

�

2

"
e�
�
e�� + 1

�2 � e�� �e� + 1�2
(e� + 1)

2
(e�� + 1)

2

#
= 0:

Therefore at x = ln q
� ; �q achieves a maximum, which is

�q (x) =
1

4

�
'q (x+ 1)� 'q (x� 1)

�
=

1

4

��
1� qe��(x+1)
1 + qe��(x+1)

�
�
�
1� qe��(x�1)
1 + qe��(x�1)

��
=

1

4

��
1� qe��x��
1 + qe��x��

�
�
�
1� qe��x+�
1 + qe��x+�

��
= (14)

1

4

��
1� qe��xe��
1 + qe��xe��

�
�
�
1� qe��xe�
1 + qe��xe�

��
=
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1

4

��
1� qe� ln qe��
1 + qe� ln qe��

�
�
�
1� qe� ln qe�
1 + qe� ln qe�

��
=

1

4

��
1� e��
1 + e��

�
�
�
1� e�
1 + e�

��
=

1

4

��
e� � 1
e� + 1

�
�
�
1� e�
1 + e�

��
= (15)

1

4

�
e� � 1� 1 + e�

1 + e�

�
=
1

4

�
2e� � 2
e� + 1

�
=

1

2

�
e� � 1
e� + 1

�
=
1

2

�
1� e��
1 + e��

�
=
'1 (1)

2
:

Conclusion: the maximum value of �q is

�q

�
ln q

�

�
=

�
1� e��

�
2 (1 + e��)

=
'1 (1)

2
: (16)

We give

Theorem 1 We have that
1X

i=�1
�q (x� i) = 1, 8 x 2 R, 8 q; � > 0: (17)

Proof. We notice that
1X

i=�1

�
'q (x� i)� 'q (x� 1� i)

�
=

1X
i=0

�
'q (x� i)� 'q (x� 1� i)

�
+

�1X
i=�1

�
'q (x� i)� 'q (x� 1� i)

�
:

Furthermore (� 2 Z+)
1X
i=0

�
'q (x� i)� 'q (x� 1� i)

�
= (18)

lim
�!1

�X
i=0

�
'q (x� i)� 'q (x� 1� i)

�
(telescoping sum)

= lim
�!1

�
'q (x)� 'q (x� (�+ 1))

�
= 1 + 'q (x) :

Similarly,

�1X
i=�1

�
'q (x� i)� 'q (x� 1� i)

�
= lim

�!1

�1X
i=��

�
'q (x� i)� 'q (x� 1� i)

�
=
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lim
�!1

�
'q (x+ �)� 'q (x)

�
= 1� 'q (x) : (19)

By adding the last two limits we derive

1X
i=�1

�
'q (x� i)� 'q (x� 1� i)

�
= 2, 8 x 2 R: (20)

Consequently we get

1X
i=�1

�
'q (x+ 1� i)� 'q (x� i)

�
= 2, 8 x 2 R:

Therefore it holds

1X
i=�1

�
'q (x+ 1� i)� 'q (x� 1� i)

�
= 4, 8 x 2 R; (21)

proving the claim.
Thus

1X
i=�1

�q (nx� i) = 1, 8 n 2 N; 8 x 2 R: (22)

Similarly, it holds

1X
i=�1

� 1
q
(x� i) = 1, 8 x 2 R: (23)

But � 1
q
(x� i) (10)= �q (i� x), 8 x 2 R:

Hence
1X

i=�1
�q (i� x) = 1, 8 x 2 R; (24)

and
1X

i=�1
�q (i+ x) = 1, 8 x 2 R: (25)

It follows

Theorem 2 It holds Z 1

�1
�q (x) dx = 1; q; � > 0: (26)

Proof. We observe thatZ 1

�1
�q (x) dx =

1X
j=�1

Z j+1

j

�q (x) dx =
1X

j=�1

Z 1

0

�q (x+ j) dx = (27)
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Z 1

0

0@ 1X
j=�1

�q (x+ j) dx

1A =

Z 1

0

1dx = 1:

So that �q is a density function on R; q; � > 0:
We need the following result

Theorem 3 Let 0 < � < 1, and n 2 N with n1�� > 2; q; � > 0. Then
1X

8<: k = �1
: jnx� kj � n1��

�q (nx� k) < max
�
q;
1

q

�
e2�e��n

(1��)
= Ke��n

(1��)
;

(28)

where K := max
n
q; 1q

o
e2� :

Proof. Let x � 1: That is 0 � x � 1 < x + 1: Applying the mean value
theorem we obtain

�q (x) =
1

4

�
'q (x+ 1)� 'q (x� 1)

�
=
1

4
� 2 � 2�qe��

(e�� + q)
2 =

�qe��

(e�� + q)
2 ; (29)

that is

�q (x) =
�qe��

(e�� + q)
2 ; (30)

for some 0 � x� 1 < � < x+ 1; q; � > 0:
But e�� < e�� + q, and

�q (x) <
�q

e�� + q
<
�q

e��
<

�q

e�(x�1)
; x � 1: (31)

That is

�q (x) <
�q

e�(x�1)
; 8 x � 1; (32)

or, better
�q (x) < �qe

�e��x; 8 x � 1: (33)

Thus, we observe that

1X
8<: k = �1
: jnx� kj � n1��

�q (jnx� kj) <

�qe�
1X

8<: k = �1
: jnx� kj � n1��

e��jnx�kj � �qe�
Z 1

n1���1
e��xdx =

8



qe�
Z 1

n1���1
e��xd (�x)

(y=�x)
= qe�

Z 1

n1���1
e�ydy = qe�

n
�e�y

��1
n1���1

o
=

(34)

qe�
�
e��x

��n1���1
1

�
= qe�e��(n

1���1) = qe2�e��n
(1��)

:

Therefore it holds

1X
8<: k = �1
: jnx� kj � n1��

�q (jnx� kj) < qe2�e��n
(1��)

; 8 �; q > 0: (35)

If (nx� k) > 0, then
1X

8<: k = �1
: jnx� kj � n1��

�q (nx� k) < qe2�e��n
(1��)

; 8 �; q > 0: (36)

Similarly, it is valid (by (35))

1X
8<: k = �1
: jnx� kj � n1��

� 1
q
(jnx� kj) < 1

q
e2�e��n

(1��)
; 8 �; q > 0: (37)

Assume now that nx� k � 0, then
1X

8<: k = �1
: jnx� kj � n1��

�q (nx� k)
(10)
=

1X
8<: k = �1
: jnx� kj � n1��

f 1
q
(� (nx� k))

<
1

q
e2�e��n

(1��)
; 8 �; q > 0: (38)

Therefore, it holds (by (36), (38))

1X
8<: k = �1
: jnx� kj � n1��

�q (nx� k) < max
�
q;
1

q

�
e2�e��n

(1��)
; 8 �; q > 0: (39)

The claim is proved.
Let d�e the ceiling of the number, and b�c the integral part of the number.
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Theorem 4 Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. For q > 0, we
consider the number �q > z0 > 0 with �q (z0) = �q (0) and �; �q > 1. Then

1
bnbcP

k=dnae
�q (nx� k)

< max

8<: 1

�q (�q)
;

1

� 1
q

�
� 1
q

�
9=; =: � (q) : (40)

Proof. By Theorem 1 we have

1X
i=�1

�q (x� i) = 1; 8 x 2 R; 8 �; q > 0;

and by (24), we have that

1X
i=�1

�q (i� x) = 1; 8 x 2 R; 8 �; q > 0: (41)

Therefore we get

1X
i=�1

�q (jx� ij) = 1; 8 x 2 R; 8 �; q > 0: (42)

Hence

1 =
1X

k=�1
�q (jnx� kj) >

bnbcX
k=dnae

�q (jnx� kj) > �q (jnx� k0j) ; (43)

8 k0 2 [dnae ; bnbc] \ Z.
We can choose k0 2 [dnae ; bnbc] \ Z; such that jnx� k0j < 1:
Notice that jnx� k0j could be S ln q

� . If 0 � jnx� k0j <
ln q
� ; by concavity

of �q over R, we can choose z 2 [ ln q� ;+1) such that �q (jnx� k0j) = �q (z). If
jnx� k0j � ln q

� we just set z := jnx� k0j. Next, we can choose large enough
�q > 1, and such that �q > z0 > 0 where �q (z0) = �q (0). Clearly, it is
z � z0 < �q:
Since �q is decreaasing over [

ln q
� ;+1) we get that �q (jnx� k0j) � �q (�q) :

Consequently,
bnbcX

k=dnae

�q (jnx� kj) > �q (�q) ;

and
1

bnbcP
k=dnae

�q (jnx� kj)
<

1

�q (�q)
; (44)
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8 �; q > 0:
If nx� k > 0, by (44), we get

1
bnbcP

k=dnae
�q (nx� k)

<
1

�q (�q)
; 8 �; q > 0: (45)

We have also that

1
bnbcP

k=dnae
� 1
q
(jnx� kj)

<
1

� 1
q

�
� 1
q

� ; 8 �; q > 0: (46)

Let now nx� k � 0, then

1
bnbcP

k=dnae
�q (nx� k)

(10)
=

1
bnbcP

k=dnae
� 1
q
(� (nx� k))

(46)
<

1

� 1
q

�
� 1
q

� ; (47)

8 �; q > 0:
Consequently, it holds

1
bnbcP

k=dnae
�q (nx� k)

< max

8<: 1

�q (�q)
;

1

� 1
q

�
� 1
q

�
9=; ; (48)

8 �; q > 0:
The claim is proved.
We make

Remark 5 (i) We also notice for q � 1 that

1�
bnbcX

k=dnae

�q (nb� k) =
dnae�1X
k=�1

�q (nb� k) +
1X

k=bnbc+1

�q (nb� k)

> �q (nb� bnbc � 1) (49)

(call " := nb� bnbc, 0 � " < 1)

= �q ("� 1) = �q (� (1� ")) = � 1
q
(1� ")

(0 < 1
q � 1 and 0 < 1� " � 1)

(� 1
q
is decreasing on [0;+1)).

� � 1
q
(1) > 0:
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Therefore

lim
n!1

0@1� bnbcX
k=dnae

�q (nb� k)

1A > 0, q � 1: (50)

(ii) Let now 0 < q � 1, then we work as in (i), and we have

1�
bnbcX

k=dnae

�q (nb� k) > � 1
q
(1� ") (51)

(" := nb� bnbc, 0 � " < 1).
That is 1

q � 1; and choose � : 0 < 1� " � 1 < �, where � >
ln 1

q

� = � ln q
� :

First assume that 1� " 2 [� ln q
� ;+1): Hence

� 1
q
(1� ") > � 1

q
(�) > 0; (52)

by � 1
q
being decreasing on [� ln q

� ;+1):
If 0 < 1� " < � ln q

� , then we use the concavity-bell shape of �q:

So, there exists z" 2
�
� ln q

� ;+1
�
such that � 1

q
(1� ") = � 1

q
(z"). We also

consider z0 2
�
� ln q

� ;+1
�
such that � 1

q
(z0) = � 1

q
(0) : Clearly it holds � ln q

� <

z" � z0 and we choose � : z0 < �. Therefore, it holds � 1
q
(1� ") � � 1

q
(0) �

� 1
q
(�) > 0; by � 1

q
being decreasing on [� ln q

� ;+1).
Again it holds

lim
n!1

0@1� bnbcX
k=dnae

�q (nb� k)

1A > 0, 0 < q � 1: (53)

(iii) Similarly, (q > 0)

1�
bnbcX

k=dnae

�q (na� k) =
dnae�1X
k=�1

�q (na� k) +
1X

k=bnbc+1

�q (na� k)

> �q (na� dnae+ 1)

(call � := dnae � na; 0 � � < 1) (54)

= �q (1� �) ; etc.

Acting as in (i), (ii) we derive that

lim
n!+1

0@1� bnbcX
k=dnae

�q (na� k)

1A > 0: (55)
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Conclusion: (i) We have that

lim
n!+1

bnbcX
k=dnae

�q (nx� k) 6= 1; for at least some x 2 [a; b] ; (56)

where �; q > 0:
(ii) Let [a; b] � R. For large n we always have dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc. In general it holds

bnbcX
k=dnae

�q (nx� k) � 1: (57)

We make

Remark 6 We introduce

Zq (x1; :::; xN ) := Zq (x) :=
NY
i=1

�q (xi) , x = (x1; :::; xN ) 2 RN ; �; q > 0, N 2 N:

(58)
It has the properties:
(i) Zq (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Zq (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Zq (x1 � k1; :::; xN � kN ) = 1;

(59)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Zq (nx� k) = 1; (60)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Zq (x) dx = 1; (61)

that is Zq is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(62)
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where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Zq (nx� k) =
bnbcX

k=dnae

 
NY
i=1

�q (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

�q (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

�q (nxi � ki)

1A : (63)
For 0 < �� < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Zq (nx� k) =

bnbcX
8<: k = dnae

 k

n � x



1 � 1

n��

Zq (nx� k) +
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n��

Zq (nx� k) : (64)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition



 k
n � x




1 > 1

n��
implies that there exists at least one

��kr
n � xr

�� >
1
n��

, where r 2 f1; :::; Ng :
(v) By Theorem 3 and as in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae

 k

n � x



1 > 1

n��

Zq (nx� k) < Ke��n
(1���)

, 0 < �� < 1; m 2 N; (65)

with n 2 N : n1��� > 2, x 2
QN
i=1 [ai; bi] :

(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Zq (nx� k)
< (� (q))

N
; (66)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1

 k

n � x



1 > 1

n��

Zq (nx� k) < Ke��n
(1���)

; (67)
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0 < �� < 1, n 2 N : n1��� > 2, x 2 RN ; m 2 N:
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Zq (nx� k) 6= 1; (68)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k


�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Zq (nx� k)Pbnbc

k=dnae Zq (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1 �q (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie �q (nxi � ki)

� : (69)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When g 2 C

�QN
i=1 [ai; bi]

�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Zq (nx� k)Pbnbc

k=dnae Zq (nx� k)
: (70)

Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k
 �
Pbnbc

k=dnae


f � kn�


 Zq (nx� k)Pbnbc

k=dnae Zq (nx� k)
= eAn �kfk
 ; x� ; (71)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk
 2 C
�QN

i=1 [ai; bi]
�
:
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So, we have that

kAn (f; x)k
 � eAn �kfk
 ; x� ; (72)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (73)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (74)

We call eAn the companion operator of An.
For convenience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Zq (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

�q (nxi � ki)
!
; (75)

8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Zq (nx� k)
; (76)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Zq (nx� k)

�
Pbnbc

k=dnae Zq (nx� k)
: (77)

Consequently we derive

kAn (f; x)� f (x)k

(66)
� (� (q))

N







A�n (f; x)� f (x)
bnbcX

k=dnae

Zq (nx� k)











; (78)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (78).
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For the last and others we need

De�nition 7 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k


�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k
 , 0 < � � diam (M) : (79)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (80)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 8 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),
where M is a convex compact subset of

�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (79). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

Let now f 2 Cm
�
NQ
i=1

[ai; bi]

�
, m;N 2 N. Here f� denotes a partial deriva-

tive of f , � := (�1; :::; �N ), �i 2 Z+, i = 1; :::; N; and j�j :=
NP
i=1

�i = l, where

l = 0; 1; :::;m. We write also f� :=
@nf
@xn and we say it is of order l.

We denote
!max1;m (f�; h) := max

�:j�j=m
!1 (f�; h) : (81)

Call also
kf�kmax1;m := max

j�j=m
fkf�k1g ; (82)

where k�k1 is the supremum norm.
When f 2 CB

�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Zq (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

�q (nxi � ki)
!
; (83)
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n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Zq (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

�q (nxi � ki)
!
; (84)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=

�X
r=0

wrf

�
k

n
+
r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+
r1
n�1

;
k2
n
+
r2
n�2

; :::;
kN
n
+
rN
n�N

�
; (85)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Zq (nx� k) = (86)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

�q (nxi � ki)
!
;

8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates, that is acting with multi-
layer neural networks. Thus the quantitative pointwise and uniform convergence
of these operators to the unit operator I.
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3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 9 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < �� < 1, x 2

�QN
i=1 [ai; bi]

�
;

N; n 2 N with n1��� > 2. Then
1)

kAn (f; x)� f (x)k
 �

(� (q))
N

�
!1

�
f;

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1

�
=: �1 (n) ; (87)

and
2) 


kAn (f)� fk



1 � �1 (n) : (88)

We notice that lim
n!1

An (f)
k�k

= f , pointwise and uniformly.

Above !1 is with respect to p =1.

Proof. We observe that

�(x) := A�n (f; x)� f (x)
bnbcX

k=dnae

Zq (nx� k) =

bnbcX
k=dnae

f

�
k

n

�
Zq (nx� k)�

bnbcX
k=dnae

f (x)Zq (nx� k) =

bnbcX
k=dnae

�
f

�
k

n

�
� f (x)

�
Zq (nx� k) : (89)

Thus

k�(x)k
 �
bnbcX

k=dnae





f �kn
�
� f (x)









Zq (nx� k) =

bnbcX
8<: k = dnae

 k

n � x



1 � 1

n��





f �kn
�
� f (x)









Zq (nx� k)+
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bnbcX
8<: k = dnae

 k

n � x



1 > 1

n��





f �kn
�
� f (x)









Zq (nx� k)
(60)
�

!1

�
f;

1

n�
�

�
+ 2




kfk



1
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n��

Zq (nx� k)
(65)
�

!1

�
f;

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 : (90)

So that

k�(x)k
 � !1
�
f;

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 : (91)

Now using (78) we �nish the proof.
When X = R, next we discuss the high order of approximation.

Theorem 10 Let f 2 Cm
�
NQ
i=1

[ai; bi]

�
, 0 < �� < 1, n;m;N 2 N, n1��� � 3,

� > 0; q > 0, x 2
�
NQ
i=1

[ai; bi]

�
. Then

i)�������� eAn (f; x)� f (x)�
mX
j=1

0BB@X
j�j=j

0BB@f� (x)NQ
=1
�i!

1CCA eAn NY
i=1

(� � xi)�i ; x
!1CCA

�������� � (92)

(� (q))
N

(
Nm

m!nm�
� !

max
1;m

�
f�;

1

n�
�

�
+

 
kb� akm1 kf�k

max
1;mN

m

m!

!
2Ke��n

(1���)

)
:

ii) ��� eAn (f; x)� f (x)��� � (� (q))N (93)8>><>>:
mX
j=1

0BB@X
j�j=j

0BB@ jf� (x)jNQ
=1
�i!

1CCA
"
1

n�
�j
+

 
NY
i=1

(bi � ai)�i
!
Ke��n

(1���)

#1CCA
+

Nm

m!nm�
� !

max
1;m

�
f�;

1

n�
�

�
+

 
kb� akm1 kf�k

max
1;mN

m

m!

!
2Ke��n

(1���)

)
:

iii) 


 eAn (f)� f



1
� (� (q))N (94)
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8>><>>:
mX
j=1

0BB@X
j�j=j

0BB@kjf�jk1NQ
=1
�i!

1CCA
"
1

n�
�j
+

 
NY
i=1

(bi � ai)�i
!
Ke��n

(1���)

#1CCA
+

Nm

m!nm�
� !

max
1;m

�
f�;

1

n�
�

�
+

 
kb� akm1 kf�k

max
1;mN

m

m!

!
2Ke��n

(1���)

)
:

iv) Assume f� (x0) = 0, for all � : j�j = 1; :::;m; x0 2
�
NQ
i=1

[ai; bi]

�
. Then

��� eAn (f; x0)� f (x0)��� � (95)

(� (q))
N

(
Nm

m!nm�
� !

max
1;m

�
f�;

1

n�
�

�
+

 
kb� akm1 kf�k

max
1;mN

m

m!

!
2Ke��n

(1���)

)
;

notice in the last the extremely high rate of convergence at n��
�(m+1):

Proof. As similar to [10], pp. 389-391, is omitted.
We continue with

Theorem 11 Let f 2 CB
�
RN ; X

�
; 0 < �� < 1, x 2 RN ; q > 0, � > 0;

m;N; n 2 N with n1��� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k
 � !1
�
f;

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 =: �2 (n) ; (96)

2) 


kBn (f)� fk



1 � �2 (n) : (97)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly.

Proof. We have that

Bn (f; x)�f (x)
(60)
=

1X
k=�1

f

�
k

n

�
Zq (nx� k)�f (x)

1X
k=�1

Zq (nx� k) = (98)

1X
k=�1

�
f

�
k

n

�
� f (x)

�
Zq (nx� k) :

Hence

kBn (f; x)� f (x)k
 �
1X

k=�1





f �kn
�
� f (x)









Zq (nx� k) =
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1X
8<: k = �1

 k

n � x



1 � 1

n��





f �kn
�
� f (x)









Zq (nx� k)+

1X
8<: k = �1

 k

n � x



1 > 1

n��





f �kn
�
� f (x)









Zq (nx� k)
(60)
�

!1

�
f;

1

n�
�

�
+ 2




kfk



1
1X

8<: k = �1

 k
n � x




1 > 1

n��

Zq (nx� k)
(67)
�

!1

�
f;

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 ; (99)

proving the claim.
We give

Theorem 12 Let f 2 CB
�
RN ; X

�
; 0 < �� < 1, x 2 RN ; q > 0, � > 0,

m;N; n 2 N with n1��� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k
 � !1
�
f;
1

n
+

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 =: �3 (n) ;

(100)
2) 


kCn (f)� fk



1 � �3 (n) : (101)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.

Proof. We notice thatZ k+1
n

k
n

f (t) dt =

Z k1+1
n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; t2; :::; tN ) dt1dt2:::dtN =

Z 1
n

0

Z 1
n

0

:::

Z 1
n

0

f

�
t1 +

k1
n
; t2 +

k2
n
; :::; tN +

kN
n

�
dt1:::dtN =

Z 1
n

0

f

�
t+

k

n

�
dt:

(102)
Thus it holds (by (84))

Cn (f; x) =
1X

k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Zq (nx� k) : (103)
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We observe that
kCn (f; x)� f (x)k
 =






1X
k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Zq (nx� k)�

1X
k=�1

f (x)Zq (nx� k)









=







1X

k=�1

  
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
� f (x)

!
Zq (nx� k)










=







1X

k=�1

 
nN
Z 1

n

0

�
f

�
t+

k

n

�
� f (x)

�
dt

!
Zq (nx� k)










� (104)

1X
k=�1

 
nN
Z 1

n

0





f �t+ k

n

�
� f (x)









dt

!
Zq (nx� k) =

1X
8<: k = �1

 k

n � x



1 � 1

n��

 
nN
Z 1

n

0





f �t+ k

n

�
� f (x)









dt

!
Zq (nx� k)+

1X
8<: k = �1

 k

n � x



1 > 1

n��

 
nN
Z 1

n

0





f �t+ k

n

�
� f (x)









dt

!
Zq (nx� k) �

1X
8<: k = �1

 k

n � x



1 � 1

n��

 
nN
Z 1

n

0

!1

�
f; ktk1 +





kn � x





1

�
dt

!
Zq (nx� k)+

2



kfk



1

0BBBBBB@
1X

8<: k = �1

 k
n � x




1 > 1

n��

Zq (jnx� kj)

1CCCCCCA �

!1

�
f;
1

n
+

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 ; (105)

proving the claim.
We also present
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Theorem 13 Let f 2 CB
�
RN ; X

�
; 0 < �� < 1, x 2 RN ; q > 0, � > 0,

m;N; n 2 N with n1��� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k
 � !1
�
f;
1

n
+

1

n�
�

�
+ 2Ke��n

(1���)



kfk



1 = �4 (n) ;

(106)
2) 


kDn (f)� fk



1 � �4 (n) : (107)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. Similar to the proof of Theorem 12, as such is omitted.

De�nition 14 Let f 2 CB
�
RN ; X

�
, N 2 N, q > 0, � > 0, where

�
X; k�k


�
is

a Banach space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Zq (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(108)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k
 �


kfk



1 :
Hence Fn (f) is a bounded linear operator with




kFn (f)k



1 �



kfk



1.

We need

Theorem 15 Let f 2 CB
�
RN ; X

�
, N � 1, �; q > 0. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Clearly Fn (f) is a bounded function.
Next we prove the continuity of Fn (f). Notice for N = 1, Zq = �q by (8).
We will use the generalized Weierstrass M test: If a sequence of positive

constants M1;M2;M3; :::; can be found such that in some interval
(a) kun (x)k
 �Mn, n = 1; 2; 3; :::
(b)

P
Mn converges,

then
P
un (x) is uniformly and absolutely convergent in the interval.

Also we will use:
If fun (x)g, n = 1; 2; 3; ::: are continuous in [a; b] and if

P
un (x) converges

uniformly to the sum S (x) in [a; b], then S (x) is continuous in [a; b]. I.e. a
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uniformly convergent series of continuous functions is a continuous function.
First we prove claim for N = 1.
We will prove that

P1
k=�1 lnk (f)�q (nx� k) is continuous in x 2 R.

There always exists � 2 N such that nx 2 [��; �] : Call �� := � +
l
ln 1

q

�

m
,

�� := ��+
j
ln 1

q

�

k
:

Since nx � �, then �nx � �� and k � nx � k � � �
l
ln 1

q

�

m
, when k � ��.

Therefore
1X

k=��

�q (nx� k) =
1X

k=��

�q�1 (k � nx) �
1X

k=��

�q�1 (k � �) =
1X

k0=

�
ln 1

q
�

��q�1 (k0) � 1:

So for k � �� we get

klnk (f)k
 �q (nx� k) �



kfk



1 �q�1 (k � �) ; (109)

and 


kfk



1
1X

k=��

�q�1 (k � �) �



kfk



1 : (110)

Hence by the generalizedWeierstrassM test we obtain that
P1

k=�� lnk (f)�q (nx� k)
is uniformly and absolutely convergent on

�
��
n ;

�
n

�
:

Since lnk (f)�q (nx� k) is continuous in x, then
P1

k=�� lnk (f)�q (nx� k)
is continuous on

�
��
n ;

�
n

�
:

Because nx � ��, then �nx � �, and k � nx � k + � �
j
ln 1

q

�

k
, when

k � ��. Therefore

��X
k=�1

�q (nx� k) =
��X

k=�1
�q�1 (k � nx) �

��X
k=�1

�q�1 (k + �) =

�
ln 1

q
�

�X
k0=�1

�q�1 (k
0) � 1:

So for k � �� we get

klnk (f)k
 �q (nx� k) �



kfk



1 �q�1 (k + �) ; (111)

and 


kfk



1
��X

k=�1
�q�1 (k + �) �




kfk



1 : (112)

Hence by Weierstrass M test we obtain that
P��

k=�1 lnk (f)�q�1 (nx� k) is
uniformly and absolutely convergent on

�
��
n ;

�
n

�
:

Since lnk (f)�q (nx� k) is continuous in x, then
P��

k=�1 lnk (f)�q (nx� k)
is continuous on

�
��
n ;

�
n

�
:
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So we proved that
P1

k=�� lnk (f)�q (nx� k) and
P��

k=�1 lnk (f)�q (nx� k)
are continuous on R. Since

P���1
k=��+1

lnk (f)�q (nx� k) is a �nite sum of con-
tinuous functions on R, it is also a continuous function on R.
Writing

1X
k=�1

lnk (f)�q (nx� k) =
��X

k=�1
lnk (f)�q (nx� k)+

���1X
k=��+1

lnk (f)�q (nx� k) +
1X

k=��

lnk (f)�q (nx� k) (113)

we have it as a continuous function on R. Therefore Fn (f), when N = 1, is a
continuous function on R.
When N = 2 we have

Fn (f; x1; x2) =
1X

k1=�1

1X
k2=�1

lnk (f)�q (nx1 � k1)�q (nx2 � k2) =

1X
k1=�1

�q (nx1 � k1)
 1X
k2=�1

lnk (f)�q (nx2 � k2)
!

(there always exist �1; �2 2 N such that nx1 2 [��1; �1] and nx2 2 [��2; �2],
also call ��1 := �1 +

l
ln 1

q

�

m
, �1� := ��1 +

j
ln 1

q

�

k
, ��2 := �2 +

l
ln 1

q

�

m
, and

�2� := ��2 +
j
ln 1

q

�

k
)

=
1X

k1=�1
�q (nx1 � k1)

"
�2�X

k2=�1
lnk (f)�q (nx2 � k2)+

��2�1X
k2=�2�+1

lnk (f)�q (nx2 � k2) +
1X

k2=��2

lnk (f)�q (nx2 � k2)

35 =
=

1X
k1=�1

�2�X
k2=�1

lnk (f)�q (nx1 � k1)�q (nx2 � k2)+ (114)

1X
k1=�1

��2�1X
k2=�2�+1

lnk (f)�q (nx1 � k1)�q (nx2 � k2)+

1X
k1=�1

1X
k2=��2

lnk (f)�q (nx1 � k1)�q (nx2 � k2) =: (�) :

(For convenience call

Fq (k1; k2; x1; x2) := lnk (f)�q (nx1 � k1)�q (nx2 � k2) : )
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Thus

(�) =
�1�X

k1=�1

�2�X
k2=�1

Fq (k1; k2; x1; x2) +

��1�1X
k1=�1�+1

�2�X
k2=�1

Fq (k1; k2; x1; x2)+

1X
k1=��1

�2�X
k2=�1

Fq (k1; k2; x1; x2) +

�1�X
k1=�1

��2�1X
k2=�2�+1

Fq (k1; k2; x1; x2)+

��1�1X
k1=�1�+1

��2�1X
k2=�2�+1

Fq (k1; k2; x1; x2) +
1X

k1=��1

��2�1X
k2=�2�+1

Fq (k1; k2; x1; x2)+

�1�X
k1=�1

1X
k2=��2

Fq (k1; k2; x1; x2) +

��1�1X
k1=�1�+1

1X
k2=��2

Fq (k1; k2; x1; x2)+ (115)

1X
k1=��1

1X
k2=��2

Fq (k1; k2; x1; x2) :

Notice that the �nite sum of continuous functions Fq (k1; k2; x1; x2):P��1�1
k1=�1�+1

P��2�1
k2=�2�+1

Fq (k1; k2; x1; x2) is a continuous function.
The rest of the summands of Fn (f; x1; x2) are treated all the same way and

similarly to the case of N = 1. The method is demonstrated as follows.
We will prove that

P1
k1=��1

P�2�
k2=�1 lnk (f)�q (nx1 � k1)�q (nx2 � k2) is con-

tinuous in (x1; x2) 2 R2.
The continuous function

klnk (f)k
 �q (nx1 � k1)�q (nx2 � k2) �



kfk



1 �q�1 (k1 � �1)�q�1 (k2 + �2) ;

and 


kfk



1
1X

k1=��1

�2�X
k2=�1

�q�1 (k1 � �1)�q�1 (k2 + �2) =




kfk



1
0@ 1X
k1=��1

�q�1 (k1 � �1)

1A �2�X
k2=�1

�q�1 (k2 + �2)

!
�




kfk



1
0BBB@

1X
k01=

�
ln 1

q
�

��q�1 (k01)
1CCCA
0BBB@

�
ln 1

q
�

�X
k02=�1

�q�1 (k
0
2)

1CCCA �



kfk



1 : (116)

So by the Weierstrass M test we get thatP1
k1=��1

P�2�
k2=�1 lnk (f)�q (nx1 � k1)�q (nx2 � k2) is uniformly and absolutely

convergent. Therefore it is continuous on R2:
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Next we prove continuity on R2 ofP��1�1
k1=�1�+1

P�2�
k2=�1 lnk (f)�q (nx1 � k1)�q (nx2 � k2).

Notice here that

klnk (f)k
 �q (nx1 � k1)�q (nx2 � k2) �



kfk



1 �q (nx1 � k1)�q�1 (k2 + �2)

(117)

�



kfk



1 �q

�
ln q

�

�
�q�1 (k2 + �2) =

'1 (1)

2




kfk



1 �q�1 (k2 + �2) ;
and

'1 (1)

2




kfk



1
0@ ��1�1X
k1=�1�+1

1

1A �2�X
k2=�1

�q�1 (k2 + �2)

!
= (118)

'1 (1)

2




kfk



1
 
2�1 +

&
ln 1q
�

'
�
$
ln 1q
�

%
� 1
!0BBB@

�
ln 1

q
�

�X
k02=�1

�q (k
0
2)

1CCCA �

'1 (1)

2

 
2�1 +

&
ln 1q
�

'
�
$
ln 1q
�

%
� 1
!


kfk



1 :

So the double series under consideration is uniformly convergent and continuous.
Clearly Fn (f; x1; x2) is proved to be continuous on R2:
Similarly reasoning one can prove easily now, but with more tedious work,

that Fn (f; x1; :::; xN ) is continuous on RN , for any N � 1. We choose to omit
this similar extra work.

Remark 16 By (69) it is obvious that



kAn (f)k



1 �




kfk



1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:
Clearly then




L2n (f)





1 =




kLn (Ln (f))k



1 �



kLn (f)k



1 �




kfk



1 ; (119)

etc.
Therefore we get




Lkn (f)





1 �




kfk



1 , 8 k 2 N, (120)

the contraction property.
Also we see that




Lkn (f)





1 �






Lk�1n (f)










1
� ::: �




kLn (f)k



1 �



kfk



1 : (121)

Here Lkn are bounded linear operators.
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Notation 17 Here q > 0, � > 0, N 2 N, 0 < �� < 1: Denote by

cN :=

(
(� (q))

N , if Ln = An;
1, if Ln = Bn; Cn; Dn;

(122)

' (n) :=

�
1
n��

, if Ln = An, Bn;
1
n +

1
n��

, if Ln = Cn; Dn;
(123)


 :=

8<:C
�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(124)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:
(125)

We give the condensed

Theorem 18 Let f 2 
, 0 < �� < 1, x 2 Y ; q > 0, � > 0, n; N 2 N with
n1��

�
> 2. Then

(i)

kLn (f; x)� f (x)k
 � cN
h
!1 (f; ' (n)) + 2Ke

��n(1��
�)



kfk



1i =: � (n) ;

(126)
where !1 is for p =1;
and
(ii) 


kLn (f)� fk



1 � � (n)! 0, as n!1: (127)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.

Proof. By Theorems 9, 11, 12, 13.
Next we talk about iterated multilayer neural network approximation (see

also [9]).
We give

Theorem 19 All here as in Theorem 18 and r 2 N, � (n) as in (126). Then


kLrnf � fk



1 � r� (n) : (128)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:
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Proof. As similar to [12], pp. 172-173, is omitted.
We also present the more general

Theorem 20 Let f 2 
; q > 0, � > 0, N; m1;m2; :::;mr 2 N : m1 � m2 �
::: � mr; 0 < �

� < 1; m1���
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1 ; :::; Lmr ) as

(Am1
; :::; Amr

) or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p = 1:
Then 

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
(x)� f (x)






�




Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmi
f � fk






1
�

cN

rX
i=1

h
!1 (f; ' (mi)) + 2Ke

��n(1��
�)



kfk



1i �

rcN

h
!1 (f; ' (m1)) + 2Ke

��n(1��
�)



kfk



1i : (129)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1

:

Proof. As similar to [12], pp. 173-175, is omitted.
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