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Abstract

Here we research the multivariate quantitative approximation of Ba-
nach space valued continuous multivariate functions on a box or RY,
N € N, by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We investigate also
the case of approximation by iterated multilayer neural network operators
of the last four types. These approximations are achieved by establish-
ing multidimensional Jackson type inequalities involving the multivariate
modulus of continuity of the engaged function or its partial derivatives.
Our multivariate operators are defined by using a multidimensional den-
sity function induced by a g-deformed and parametrized half hyperbolic
tangent sigmoid function. The approximations are pointwise and uniform.
The related feed-forward neural network are with one or multi hidden lay-
ers.
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliaguet-Euvrard and ” Squashing” types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The defining these operators
"bell-shaped” and ”squashing” functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.

Motivations for this work are the article [14] of Z. Chen and F. Cao, also by
[4)-[12], [15], [16].

Here we perform a g-deformed and parametrized, ¢ > 0, half hyperbolic
tangent sigmoid function based neural network approximations to continuous
functions over boxes or over the whole R, N € N and also iterated, multi layer
approximations. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its partial derivatives
and given by very tight multidimensional Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RV, as well
as Kantorovich type and quadrature type related operators on RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function
induced by the g-deformed and parametrized half hyperbolic tangent sigmoid
function.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(m):cho(<aj-x>+bj), zeR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z, and
o is the activation function of the network. In many fundamental network mod-
els, the activation function is the hyperbolic tangent sigmoid function. About
neural networks read [17] - [19].

2 About ¢g-deformed and parametrized half hy-
perbolic tangent function ¢,

Here we introduce and study the function

where ¢, 5 > 0.



We have that

We notice that

Tt T Loyl \ 14 len
That is
pol(—1) = —p1 (1), VLER, @
and
p1(t) = —p, (-1),
hence
@l (t) = ¢ (=1) 3)
It is
Jim g, (1) = o, (+00) = 1, @)
and 5
Jm eq (1) =, T (Zm T Z) -h )
that is
pq(—00) = ~1
We find that
o= 2" o vier, (6)
(€7 +q)

therefore ¢, is striclty increasing.
Next we obtain (¢ € R)

<p’q’(t):252qeﬁt< q_eﬁf3> eC(R), VteR. (7)

(eft +q)

We observe that

In
q—eﬁt20®qzeﬁt®lnq26t®t§7q.
So, in case of t < 1“7‘1, we have that ¢, is strictly concave up, with ¢} (%)

And in case of t > ¢ we have that 4 s strictly concave down.

ﬂ i
Clearly, ¢, is a shifted sigmoid function with ¢, (0) = }—;g, and ¢, (—)
—pg—1 (z), V x € R, (a semi-odd function), see also [13].



By 1> —1,2+ 1>z — 1, we consider the activation function

60(@) = 5 (2, 2+ 1) — 0, (2= 1)) >0, (®)

Vz € R; B,q > 0. Notice that ¢, (+00) = 0, so the z-axis is horizontal asymp-
tote.
We have that

6 () = § g (~a 4 1) — 9, (o = 1)] =

1 —qe Pt — geB=
(1 + ge—F(=z+1) 1+ qeP (= )

1 — gefletD) 1— gefla=1)
(quﬁ(‘””) * (quﬁ(w ”)) )
1, —B(z+1) _ lefﬁ(a: 1) _ 1

I +

1o—B(z+1) +1 e—B@—-1) 1 1

q¢ q

1 1 — le—BG=+1) 1 — le=BE=-1)

Z _a q

A\ \1+ fepler)) 1+ }Ie*ﬁ(m 1

1
1( %(x—I—l)— 1(;10—1)) (b%(x , VzeR.
Thus
¢y (—z) =¢1 (z), Yz eR, (10)
a deformed symmetry.
Next we have that
1
¢, (x) = Z(wq(x+1) o, (x—1)), YzeR. (11)

Letx<1n—q—1 thenz—1<z+1< lnq and ¢p, (z +1) > ¢, (. — 1) (by ¢,

being strlctly concave up for x < lnq) that is ¢ () > 0. Hence ¢, is striclty
increasing over (—oo, lnﬁq — ) .

Let now x — 1 > h%q,thenx+l >zr—1> 1%1, and ¢y (z +1) < ¢ (z — 1),
that is ¢ (z) < 0.

Therefore ¢, is strictly decreasing over (l% + 1, —|—oo> .

Next, let IHT(I —1<z< lan + 1. We have that

—

g (x) =

ﬂi B(z+1) q— eﬁ(m_‘—l) 3 _ eﬁ(z—l) q—- eﬁ(m_l) - ) (12)
2 (6/3(1""‘1) + q) (eﬁ(x_l) + q)
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[p7 (@ +1) =g (z—1)] =

»-b\’—‘



Byl%q—l <z & l%q <z+4+1<&Ing < f(xz+1) & g < At o
q- eB(z+1) <0.

By z < m%—l—l(:)m—l < lan & fr—1) <lng & LD < g e
q— el >0,

Clearly by (12) we get that ¢Z (x) <0, for z € [lnq 1, lnq + 1]

More precisely ¢, is concave down over [l% -1, h%q + 1] , and strictly con-

cave down over (ln—q -1, lnq +1

Consequently ¢, has a bell type shape over R.
Of course it holds (;5;’ (hl?q) < 0.

Atz = l%’, we have

2| (eBlat1) +q)?  (efeD 4 g)°

ﬁq eB(mTq+1) eB(IHTq_l)

9 ng 2 n 2| =

2 (eﬁ PP +q> (eﬂ ) +q)

bl e - (13)

2 (g +q)7 (e’ +q)
é B B e B _
2[(@+1)" (eF+1)

=0.

B [65 (eiﬁ + 1)2 —e P (e'B + 1)2
2] @D+

1 . . . .
Therefore at x = %, ¢, achieves a maximum, which is

g (x) = (wq(af+1) g (x—1)) =
1//1—qge Bt 1 — ge Ale=1)
(i) - (i) -

1 qe P qe P
4((1+qe pr= ) (qu ﬂ”””)) (14
1
(=

qe e 1 —qge Pzeb
1+ ge=Pre—F 1+ ge—Pzel




1 1—qge mae=h 1 —qge maeh _
4 1+ ge nae—p8 1+ ge—ngeh
1((1—e"F 1—¢’
4 \\1+e P 1+ef
1 -1 1—ef
Y € (15)
4 \\ef +1 1+e8
L(ef —1—14+€\ 1 /2 -2\
4 1+¢8 S A\ef+1 )
1P —1\ 1 /1—eP\ ¢ (1)
2\ef+1) 2\1+e?) 2 °
Conclusion: the maximum value of ¢, is

g\ _ (1=¢’) o)
%(5) 2(l+e?) 2 (16)

We give

Theorem 1 We have that

Y g lw—i)=1, Yz R, VqpB>0 (17)
Proof. We notice that
Yo (pla—i)—p,(x—1-0) =
o'} —1
Z cpq(xflfz))JrZ (goq(xfi)fcpq(xflfi)).
=0 i=—00
Furthermore (p € Z1)
D (py@—i) =y le—1-1) = (18)
=0
P
li —1) — —1—3 tel i
pi)rgo; (¢ (x—1i) — ¢, (@ i)) (telescoping sum)
= lim (o, (2) = ¢y (@ = (p+ 1)) =L+, ().
Similarly,

Y (D 1-0) = m Y (e i) g, (o1 0) =



lim (¢, (z+p) — ¢, () =1— ¢, (z).

p—00
By adding the last two limits we derive

oo

Y (pgle—i)—p,(x—1-1) =2, VazeR.

1=—00

Consequently we get

oo

Y (pgla+1-i)—p,(x—i) =2 VazeR.

i=—00

Therefore it holds

o0

S (et 1-i)—p,(x—1-) =4, VaeR,

1=—00

proving the claim. m
Thus

Z ¢y (nx—i)=1,VneN, VzeR
1=—00

Similarly, it holds

Z ¢%(:E—i):1,Vw€R.

i=—00

But ¢1 (x — i) 2 ¢, (i —z),V x € R,

Hence

Z ¢, (i—x)=1,VzeR,

and .
S g lita)=1,YzeR
It follows

Theorem 2 It holds
| @it as>0

Proof. We observe that

[ aminn 5 [ aorn 5 [ oiern

Jj=—00 j=—o0

(20)

(22)

(27)



1 [ oo 1
/0 Z ¢y (x+j)dz :/0 ldz = 1.

j=—o00

So that ¢, is a density function on R; ¢, 3 > 0.
We need the following result
Theorem 3 Let0 < a <1, andn € N withn'=® > 2; ¢, > 0. Then

o0
1 w .
Z ?q (nxz — k) < max {q’ } 2B " _ pro—pntt >’
q

k= —o00
tnx — k| > ntme

where K := max {q, %} e2h.

(28)

Proof. Let x > 1. That is 0 < z — 1 < = + 1. Applying the mean value
theorem we obtain

1 1 2Bqel¢ Bqels
O, () == |p, (z+1)—p, (z—-1)| =~ 2" = (29
that is s¢
Bge
bq(2) = ——, (30)
(et +q)
forsome 0<z—-1<¢<xz+1;4¢,8>0.
But ¢ < €% 4 ¢, and
Bq Bq Bq
That is 3
q
b, () a1 Vao>1, (32)
or, better
b, (z) < BgePe P, Vo >1 (33)

Thus, we observe that

o0
Bqe” Z e Ane—kl < qu’ﬁ/ e Py =

nl-e—1

k= —o0
s nx — k| > ntme



o0

ge” / e P*d (Br) L g /

l—a_q nl-a_1

e Ydy = qe® {—e*y|zol_a_1} =

qeﬁ {eﬁx}nl("l} _ qeﬁe_[a(nlfa_l) _ quﬁeiﬁn(lia),

oo

Therefore it holds

o0

2 8, (Inz — k) < ge?e= """
k=—o00
tnx — k| > ntme

If (nx — k) > 0, then

Y VBg>0. (35

oo

> 6, (nz — k) < qe®e P77V g g0, (36)
k= —o0
{: |nz — k| > nl=@

Similarly, it is valid (by (35))

o0

1 —«
> ek < e vpgs0. @)

k=—o0
s nx — k| > ntme

Assume now that nx — k < 0, then

oo oo

(10)
S bk S h-w-k)
= —00 k=—00
{:|nac—k|>n1_“ {:na?—k>n1_°‘
1 28,—pn0—
<ae e , YV B,q>0. (38)

Therefore, it holds (by (36), (38))

oo

1 —a
Z ¢q(n:ck:)<max{q,q}emeﬁ”(l ), Y B,q > 0. (39)
k= —o0
{: |nz — k| >nl—®

The claim is proved. m
Let [-] the ceiling of the number, and |-| the integral part of the number.



Theorem 4 Let x € [a,b] CR and n € N so that [na] < [nb]. For ¢ > 0, we
consider the number \y > zo > 0 with ¢, (20) = ¢, (0) and B, A\ > 1. Then

1 1 1
~ < max , =:0(q). (40)
LX%J ¢, (nz — k) %4 (Aa) ¢% ()%)

k=[na]

Proof. By Theorem 1 we have

Y ¢y w—i)=1,YzER,VB,q>0,

1=—00

and by (24), we have that

> bi—x)=1,VaeR, ¥pBq>0 (41)
Therefore we get
> b(jz—i)=1,VaeR, ¥pq>0. (42)

Hence

oo |nb]
L= > o (lnz—k)> DY o, (Inz—k|) > ¢, (Inz —kol),  (43)

k=—o0 k=[na]

V ko € [[na], [nb]] NZ.
We can choose kg € [[na], [nb]] N Z, such that |nz — ko| < 1.
<

Notice that [na — ko| could be = Ian. If 0 < |nzx — ko| < lan, by concavity

of ¢, over R, we can choose z € [IHTQ, +00) such that ¢, (Jnx — ko|) = ¢, (2). If
[na — ko| > 1“7‘1 we just set z := |nx — ko|. Next, we can choose large enough
A¢ > 1, and such that A, > 2o > 0 where ¢, (20) = ¢,(0). Clearly, it is
2 < 29 < Ag

Since ¢, is decreaasing over [l%, +00) we get that ¢, (|nz — ko|) > ¢, (Ag) -

Consequently,
[nb]

Y bg(ne—kl) >0, (Ag)

k=[na]
and 1 1
44
0] = 8,00 4
. ; ]ﬂéq (Inz — k|)

10



Vv 8,q > 0.
If ne — k > 0, by (44), we get

1 1
Tb] <¢q()\q), Vv 6,q > 0.
> &g (nz —k)
k=[na]
We have also that
1 1
< , VB,qg>0.
Ll 1 (Al)
> Oi(lnz—k[)  Ta\Ts
k=[na] *
Let now nz — k < 0, then
1 (10) 1 (4<6) 1
[nb] B [nb] A ’
¥ oo 3 ecmaory 4 ()
k=[na] k=[na]
Y B,q > 0.
Consequently, it holds
1 < { 1 1 }
max
b be(A\g) 4, ’
> ¢, (na—k) oo ()
k=[na]
Vv B,q > 0.
The claim is proved. m
We make
Remark 5 (i) We also notice for ¢ > 1 that
[nb] [nal—1 00
1= > ¢,(mb—k)= > ¢,(nb—k)+ > ¢, (nb—k)
k=[na] k=—o00 k=|nb]+1

> ¢, (nb— nb] — 1)
(calle :=mb— |nb],0<e<1)
— Gy~ 1) =, (~ (1)) = 61 (1-2)

(0<g<1 and0<1l-e<1)
(¢% is decreasing on [0, +00)).

>¢1 (1) > 0.

1
q

11



Therefore
[nb]

lim (1- Y ¢,(nb—k)| >0, ¢>1. (50)
k=[na]

(#) Let now 0 < g < 1, then we work as in (i), and we have

[nb]

T g (nb—k) > ¢1 (1<) (51)

k=[na]

(e:=nb—[nb],0<e<1).
Thatisézl, and choose A : 0 <1 —e <1<, where)\>h175=—m7q.

Ing

First assume that 1 — e € [— 3 ,+00). Hence

6y (1=2)> 6 (V) >0, (52)

by ¢1 being decreasing on [_mTq, +00).
q

Ifo<l—-e< —1“7‘1, then we use the concavity-bell shape of ¢,,.

So, there exists z. € (—l%,—l—oo) such that ¢1 (1 —¢) = ¢1 (z:). We also
q q
consider zp € (—1“7(1, —|—oo> such that ¢1 (z9) = ¢1 (0). Clearly it holds —h%q <
ze < zp and we choose X : zg < A. Therefore, it holds ¢1 (1 —¢) > ¢1 (0) >
q q
@1 (X) >0, by @1 being decreasing on [_lan7+OO).
Again it holds

[nb]
lim (1— > ¢,(nb—k) | >0, 0<g<1. (53)
k=[na]
(111) Similarly, (¢ >0)
[nb] [na]—1 00
1-— Z ¢y (na—k) = Z ¢, (na —k) + Z ¢, (na — k)
k=[na] k=—o00 k=|nb]+1

> ¢, (na — [nal +1)
(call m:=[nal —na, 0<n<1) (54)
= ¢q (1 - 77) , et

Acting as in (1), (ii) we derive that

Lnb)
Jim {1 > ¢, (na—k)| >0 (55)
k=[na]

12



Conclusion: (i) We have that

Lnb]

nll»r-sr-loo Z ¢, (nx — k) #1, for at least some z € [a,b], (56)
k=[na]
where B,q > 0.

(ii) Let [a,b] C R. For large n we always have [na] < |nb]. Also a < % <,
iff [na] <k < |nb]. In general it holds

[nb]|

> ¢y (nz—k) <1 (57)
k=[na]
‘We make
Remark 6 We introduce
N
Zy (21, ..y xzN) = Zg (z) == quﬁq (z:), = (x1,..,an) ERY, B,¢>0, N€N.
i=1
(58)

It has the properties:
(i) Zy(x) >0, VaeRY,

(ii)
o Zyw—k)y= > > o > Zg(wm— ke —ky) =1,
k=—oc0 k1=—00 ko=—00 kn=—o0
(59)
where k = (ky,...,k,) € ZV, V¥V z € RV,
hence
> Zynz—k)=1, (60)
k=—o0
VzeRY: neN,
and
(iv)
/ Zy(x)dx =1, (61)
RN
that is Z, is a multivariate density function.
Here denote ||z, := max {|21], ..., |zn]|}, € RY, also set 0o := (00, ..., 00),
—00 := (—00, ..., —00) upon the multivariate context, and
(na—l = ([naﬂ PEXED) [naN—Da
(62)

[nb] := (|nb1], ..., [nbN]),

13



where a := (a1, ...,an), b:= (b1, ...,by).
We obviously see that

Lnb] [nb] N
Z Zy(nx —k) = Z (H b, (n; — k1)> =

k=[na] k=[na] \i=1

[nb1) [nbw ] N N [nb;]
Yoo > (Hqﬁq(nm—ki)):H > b (nzi—ki) | . (63)

klz(nal] ]{:N:[TL(ZN] i=1 i=1 kIZ(nal]
For0< p* <1 andn €N, a fivzed z € RV, we have that

nb)
Z Zg(nx —k) =

k=[na]

[nb] [nd]
> Zy (nz — k) + > Zy(nx—k).  (64)
{ k = [na] {Hk k = [na]

15 =l < 5= — o >

In the last two sums the counting is over disjoint vector sets of k’s, because the

condition H;"; — zHOO > n% implies that there exists at least one %T — £E7-| >
n%, where r € {1,...,N}.
(v) By Theorem 3 and as in [10], pp. 379-880, we derive that
[nb] (1-8%)
Z Z,(nx — k) < Ke " , 0<B"<1, meN, (65)
{ k = [na)
15 ==l > o5
withn € N:n'=F" >2 z ¢ Hf\il [a;, b;] .
(vi) By Theorem 4 we get that
0< : < (0 ()" (66)
nb ’
St o Zq (n — k)
Vaoe (Hil [ai,bi]), n € N.
It is also clear that
(vii)
Z Zy(nx —k) < Kefﬁn(l_ﬁ*), (67)
k= —o0
15 ==l > o5

14



0<pB <1l,neN:n'""F >2 zeRY, meN.
Furthermore it holds

Lnb)
lim Y Z,(nx—k) # 1, (68)
k=[na]

N
for at least some = € (Hi:l (@i, bl]) .
Here (X, ””v) is a Banach space.

Let f € C (Hf\;l [a,;,bi],X), x = (T1,....,TN) € Hivzl [a;,b;], n € N such
that [na;| < |nb;], i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (v := (x1,...,TN) € (Hf\il [a;, bz]))

anana] (k) Zq (TLEL' - k)
An (f, 21, zn) = Ay (f,2) = ~ =
1 ! Zl£ ana'\ (nx - k)

[nb | [nbs | Lnbx ] k k
Z’ﬁ:[naﬂ Zkz;ﬁwz] Zkzv NMGN] ( SRR TN) (Hz 1 ¢ (nx; —
HL 1 ( IIJLE Hna ] nxl - )
<

For large enough n € N we always obtain [na;]
a; < k7 < b, iff [na;| < k; < |nb;],i=1,..,N.

When geC (Hl 1 lag, bl]) we define the companion operator

Z)> . (69)

[nbi], i = 1,..,N. Also

T EIE:anna'\ ( ) Zq (nm - k)

ZIE: b[Jna] (nx - k)
Clearly ﬁn is a positive linear operator. We have that
B N
A,(1,z)=1, Vze <H [ai,bi]> .
i=1
Notice that A, (f) € C(HZ l[az,bz],X) and A, (g) € c(nl . [al,bl]).
Furthermore it holds
Sk nar 11 G, Za (nz — 1)
k na q ~
4n (.21, < == =4, (Ifl,.2). ()
> Zy (nx — k)

k=[na]

Ve 1Y, [aibi].
N
Clearty |, € C (T, [os,bi])

15



So, we have that
140 (£, < Au (151, 12)

Ve [V, [a l]VneNerC( laibi], X

Letce X andgGC’(Hl 1 lai, b ) thencgEC’(Hl l[aL,bJ,X).

Furthermore it holds
An(Cg, )—CAn g,x), VxEHa“ i

Since A, (1) =1, we get that
Ay (c)=¢c, VceX.

We call A, the companion operator of A,.
For convenience we call

Lnb)
A (fox) =) f(> (nx —k) =

k=[na]

|nb1] [nb2 [nbn | k‘l N N
i=1

klz[na11 kg:]'naﬂ k‘N [naN]

vae (T lasbi).
That is

Ar (f,x)
An (fv .73) = 9
z ,E"bgm] o (nx — k)

Ve (Hil [ai,bi]), n € N.

Hence

An (fx) = f (@) (S - Zy (e — k)
Ay (f.2) — f (2) = EW,J( ’“(;x‘_k) )
k=[na]

Consequently we derive

(66) [nb|
1An (fo2) = f @), < @ @) |45 (foa) = f(2) D Zy(na—k
k=[na]

v o e (T1, [obil)
We will estimate the right hand side of (78).
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For the last and others we need

Definition 7 ([11], p. 274) Let M be a convex and compact subset of (RN, ||~Hp>,
p € [1,00], and (X, H||,y) be a Banach space. Let f € C(M,X). We define the

first modulus of continuity of f as

wi (f,6):= sup  |[f(2)=F@WI,, 0<d<diam(M). (79)
z,y €M :
lz—yll, <6

If § > diam (M), then
w1 (f,9) = wiy (f,diam (M)). (80)

Notice wy (f,9) is increasing in 6 > 0. For f € Cp (M, X) (continuous and
bounded functions) ws (f,d) is defined similarly.

Lemma 8 ([11], p. 27/) We have wy (f,0) — 0 asd | 0, iff f € C(M,X),

where M is a convex compact subset of (RN, H-||p), p € [1,00].

Clearly we have also: f € Cy (RY,X) (uniformly continuous functions),
iff wy (f,0) — 0 as § | 0, where wy is defined similarly to (79). The space
Cp (RN , X ) denotes the continuous and bounded functions on RV .

N
Let now f e C™ <H [ai,bi]), m, N € N. Here f, denotes a partial deriva-
i=1
' N
tive of f, a:= (a1,...,an), o € Zy,i=1,...,N, and |a| := > a; = I, where

=1
[=0,1,...,m. We write also f, := gw{ and we say it is of order [.

‘We denote

Wim (fa,h) = max wy(fo,h). (81)
Call also
[fallsem = max {lfalloo} (82)

where |-|| is the supremum norm.
When f € Cp (RN,X) we define,

By (f.2) 1= By (f,21,....,aN) = i f(i) Z, (nx — k) =

k=—o0

e} [eS) [eS) N
DD D f(l‘;l’jfkg) (H%(nxi—ki)), (83)

k1=—00 ka=—0 kn=—o00 =1

17



n€N,VazeRN N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neural
network operator

k

n

Cn (f,x) == Cn (f,21,...;2N) 1= Z <nN/nf(t)dt> Zg (nx — k) =

k=—o0

k141 ko+1 ky+1

DYDY ( [ f(tl,._.,tmdtl...dm)

k1=—00 ko=—00 kny=—o00 n

N
: (H ¢, (nz; — ki)> , (84)
i=1
neN, VzeRV,

Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D, (f,z), n € N, as follows.

Let 0 = (0y,....,05) € NV, r = (ry,...,7n) € Zﬂ\r’, Wy = Wry ry,..rn > 0, such

9 01 0> On
that S w,.= Y > . > Wy gy ey =1; k€ ZYN and

r=0 r1=07r2=0 rN=0

Onk (f) = On ko ko kn ()

i k T
;)wrf (n + na) =

b1 b2 Ox k1 r1 ko 9 kn N

SN D v f o —+—— |, (85)
n  néi’'n  nbs n N

r1:0r2:0 TNZO

r._ (rL T2 TN
where  := (91, R 0N) .
We set

D, (f,x):= Dy, (f,z1,....,aN) = Z Onke (f) Zyg (nx — k) = (86)

k=—o00

0o oo oo N
oD D Snkikank () (H bq (na; — ki)) ;

ki=—oc0 ka=—00 kny=—o00 i=1
VzeRY,

In this article we study the approximation properties of A,, B,,C,, D,
neural network operators and as well of their iterates, that is acting with multi-
layer neural networks. Thus the quantitative pointwise and uniform convergence
of these operators to the unit operator I.

18



3 Multivariate general Neural Network Approx-

imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 9 Let f € C(Hl 1[a1,b2],X), 0<p" <1, z¢€ (Hf\]:l [ai,bi]),
N,n € N withn'=#" > 2. Then

1)
|40 (£,2) - f @), <
(0 (q))N {wl (f, n;) + 2K et } =: A (n), (87)
and
2)
140 () = 71, <2 (88)
We notice that nh—>HoloAn (f) = Il " f, pointwise and uniformly.

Above w1 is with respect to p = oo.

Proof. We observe that

Lnb]

A(z) = A, (f, @) x) Y. Zy(nw—k)=

k=[na]

[nb] k [nb|
Z f(n) (nz —k Z f(z (nz—k) =

k=[na] k=[na]
[nb] )
szn:a] (f <n) ! w) Zo (nz = F). (89)
Thus Lnbj
@l < 3 ‘f( )-1@ RICECE
SR 11 (YR (PR

{ k = [nal !
1% =2l < 7=

19



k (60)
> "f(n)—f(m) Zy(nz — k) <
v
{ = [na]
15 =2l > 75
Lnb)
1 (65)
a(r)eein), X A
k= [na]
I =2l > 7o
1 1-p*
o (152 # 2 i | (90)
So that )
1A @)]., < w <f, nﬁ) +2Ke Bt Hllf”vHoo , (91)

Now using (78) we finish the proof. m
When X = R, next we discuss the high order of approximation.
N *
Theorem 10 Let f € C™ (H [ai,bi]), 0<pB*<1,nmNEN,n'=# >3,
i=1
N
8>0,¢g>0,z¢€ (H [ai,bi]). Then
i=1
i)

Avn (f7 .’L‘) - f (x) - Z Z M Avn (H ( - xi)ai ,.CL') < (92)

N
i=1 \lal=5 \ ]! i=1
=1

N™ 1 b—a Z(L) fa I;;aXmN7n —B*
<9<q>>N{w¥:%z‘ (fa,nﬁ*)+<” L lPlean ™) gm0,

m!

A (f2) = £ @) < 0 @) (93)

1 X (1-5%)
[nﬂ*j + (H (b; — ai)”) Ke Fn ]

i=1

D

N
i=1 \lel=i \ ]!

Nm 1 b—all || fallo, N™ -
N e (fmﬂ*>+<|| I [l fall )Me_ﬁn(lm}
n

m!

P
&

|4 - 1| < @@ (94)
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- I fallle | | 2 M a) e _nGe)
Z Z N ’I’L'B*J_F H(bL az) Ke

i=t \lal=i \ TJaa!
=1

m b —a " max , o
+ N . mdx (faa *> (” || ||f H ) 2Ke_ﬁn(1 B )}
mlnm? B m!

—

iv) Assume fo, (x0) =0, for alla: |a| =1,...,m; xg € (

i=1

A (f.0) = £ (w0)| <

[a;, b1]> . Then

(95)

N N™ Inax ||b_ ||m ||fa||max _5,”(175*)
(0 (q)) {m'mﬁ (fa, 5*) < - 2Ke ;

notice in the last the extremely high rate of convergence at n=? (m+1),

Proof. As similar to [10], pp. 389-391, is omitted. m
We continue with

Theorem 11 Let f € Cp (RY,X), 0 < " <1,z € RN, ¢ >0, 8 > 0,

m,N,n € N with n'=#" > 2, wy is for p=oo. Then

1)

1B (F.0) = £ @), < n (£ e )+ 286 i1 = v 0. 00

J
[1B. (D= 11L|_ < 2= ).

Given that f € (CU (RN,X) NCg (]RN,X)), we obtain lim B, (f)
formly.

Proof. We have that

By (fo)— fe) Y 3 1)zt -0-1 @) S Zy(na— k) =

ke —oo 2
k:iioo (f (:) —f (w)) Zg(nz — k).
Hence
||Bn<f,x>—f<m>WséwaCj) o e

21
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= f, uni-

(98)



> r(&)-re| awe-ns
s ”
15 —wHoo <
— (60)
> r(G)-re| ame-n's
k=—00 K
{||fii—x||oo>mls*
> (67)
a(iF) o], X aee-n®
k= —o00
I% - ||oo>n%

1
w1 (f ﬁ*) + 2Ke ﬁn(

proving the claim. m
We give

Theorem 12 Let f € Cp (RV,X), 0 < " <1,z € RN, ¢>0,8>0,
m,N,n € N withn'=7" > 2, wy is for p=oo. Then

1)
ICat.0) = F @I, Sen (3 + 5 ) 2R =),
(100)

2)
i 5y =11, _ <2 (101)

Given that f € (CU (RN,X) NCg (RN,X)) , we obtain lim C, (f) = f, uni-
formly.

Proof. We notice that

k+1 k141 ko+1 En+1

/ f(t)dt:/ / / " Ftte, e ty) dtydts..dty =
k LY k2 En

n n

1

// / (t1+t2+k2 tN+k”\’)dtl...dth/nf(tJrz)dt.
0

(102)

f (t + z) dt) Z, (nz — k). (103)

22

Thus it holds (by (84))

Cy, (f,x) = i <nN/O



‘We observe that
1Cn (i) = £ (@), =

k§2m<ﬁvénf(t+z>dﬁ (nz — & k};mf e

k_io ((nN/Oif (”i) dt) —f(x)) Z, (nz — k) 7
(f (t+ z> - f(m)) dt> Zy (nx — k)

; f<t+fL> — f(x) th) Z, (nz — k) =

(e
/ <t+ ’“) )

~y

(oo} 1

Zoo <nN A

k=—

< (104)

~

k=—o00
n

dt) Zq (nx — k;) +
~

{ .
e 1
> [

0

{1
I ol >

f<t+fz> - f(2)

dt) Zy (nz — k) <
Y

1

> (nN/O (f, Il Hk —a )dt) Zy(nz— k) +
k=— o0
{H’“ *w||oo < o
2171, > Zylne-i) | <
k=—00
1% ==l > o5
(f’ E)HK maa 78 I (105)

proving the claim. m
We also present
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Theorem 13 Let f € Cp (RV,X), 0 < " <1,z € RN, ¢>0,8>0,
m, N,n € N with n'="" > 2, wy is for p = oco. Then

1)

D0 (100 = F @I, S wr (54 ) 28| = xeo.
(106)

2
NGRS EEPHOE (107)

Given that [ € (CU (RN7X) NCg (RN,X)) , we obtain lim D, (f) = f,
uniformly.

Proof. Similar to the proof of Theorem 12, as such is omitted. m

Definition 14 Let f € Cp (RN,X), NeN, ¢g>0, >0, where (X, ””v) 18
a Banach space. We define the general neural network operator

Fo(fix)i= > () 2y (nz — k) =
k=—oc0
Cu(fr@), if L (f) = 0™ [ f (8)dt, (108)

Clearly l,,x, (f) is an X-valued bounded linear functional such that ||l (f)]| 4 <
..

Hence F), (f) is a bounded linear operator with H | (f)||7H < HHf”w
We need

oo

Theorem 15 Let f € Cp (RY,X), N >1,8,¢>0. Then F, (f) € Cp (RY, X).

Proof. Clearly F), (f) is a bounded function.

Next we prove the continuity of F}, (f). Notice for N =1, Z, = ¢, by (8).

We will use the generalized Weierstrass M test: If a sequence of positive
constants My, Ms, M3, ..., can be found such that in some interval

(a) |lun (@), < Mn, n=1,2,3,...

(b) > M,, converges,

then > u, (z) is uniformly and absolutely convergent in the interval.

Also we will use:

If {un (x)}, n =1,2,3,... are continuous in [a,b] and if Y u, () converges
uniformly to the sum S (z) in [a,b], then S (z) is continuous in [a,b]. Le. a
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uniformly convergent series of continuous functions is a continuous function.
First we prove claim for NV = 1.
We will prove that Y- ° _ _ lnk (f) ¢, (nz — k) is continuous in z € R.

nl
There always exists A € N such that nz € [-A,\]. Call \* ;= A\ + FT‘*—‘,

A= <A+ f“jj .

nl
Since nx < A, then —nx > —Xand k —nx > k— A\ > F “—‘, when k > \*.

Therefore

> gz —k) =Y ¢y (k—nz) < Z¢ E=X= Y ¢1(K)<1,

k=\* k=A* k=" Fnﬂ

So for k > \* we get

ok (DIl 6 (= 8) < |[I711, ]| _ 602 G =2, (109)

Hence by the generalized Weierstrass M test we obtain that Y% \. ln (f) ¢, (nz — k)
is uniformly and absolutely convergent on [—%, %] .

Since Ink (f) ¢, (n@ — k) is continuous in z, then Y77 \. Ik (f) ¢, (nx — k)
is continuous on [—2,2].

Because nz > —\, then —nz < A\, and k —nx < k+ X < {
k < A.. Therefore

and

§j¢ (k=) < I, _- (110)

In

B

. N ]
S gz —k)= > g1 (k- Z by (E+XN) = > ¢,

k=—00 k=—o00 k=—0o0 k'=—o0

b =

J , When

So for k < A\, we get

ok (DIl 8 (n = 8) < |[I711, ]| _ 602 G+ 2, (111)
and
2}¢ (k2 < i1 (112)
Hence by Weierstrass M test we obtain that 22*:—00 Ik (f) dg—1 (nx — k) is
uniformly and absolutely convergent on [—%, %] .

Since ln, (f) ¢, (nx — k) is continuous in , then 22*:700 Ink (f) ¢, (nx — k)

is continuous on [—%, %} .
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So we proved that 7 \. Ik (f) ¢, (nz — k) and 22;700 Ink (f) &, (nx — k)
are continuous on R. Since 22:;14_1 lnk (f) ¢, (nx — k) is a finite sum of con-
tinuous functions on R, it is also a continuous function on R.

Writing

0o A
Y bk (£ oy (nx—k)= Y lu ()¢, (nx — k) +

k=—o00 k=—o0
Af—1
> bk (f) ¢y (na — Z Lok (f) &, (nx — k) (113)
k=Xi+1 k=A*

we have it as a continuous function on R. Therefore F,, (f), when N =1, is a
continuous function on R.
When N = 2 we have

w (fywr,22) = Z Z Ink ( (nx1 — k1) ¢, (N2 — k) =

kl_—oo kg_—oo
Y 0 (nar — k) < D bk () &y (ns — k2)>
klzfoo k)2:700
(there always exist A1, Ao 6 N such that nz;, € [— )\1,)\ ] and nxo € [—Aa, A2,
ol

also call A% == A\, + { ] Ae = —A1 o+ L J A= Ao 4 FTW and

Ini
Now = = o + | 552 )

0 A2
= Z ¢q(nx1k1)[ Z Ink (f) ¢q (nx2 — k) +

klzfoo k)2:700
Ap—1
D bk (f) ¢y (nwn — ko) + Z bk (f) @q (N2 — k) | =
kao=MX2.,+1 ka=A3

Ao

Z Z L ( (nx1 — k1) ¢ (N2 — ko) + (114)

k1=—00 k2=—00

As—1

Z Z n:z:l 7:1431)(,25(1 (TZIITQ 7k72)+

k1=—o00 ko= )\2*+1

DD bk (f) ¢y (nar — k1) &, (nawa — ks) =: (+).

klzfoo k‘g:A;

(For convenience call

Fq (kl, kQ,l‘l,Z‘g) = lnk‘ (f) d)q (najl — ]411) ¢q (nl‘g — k‘g) . )
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Thus

Al A2 AT—1 A2
E E Fq (k‘l,kQ,xl,xQ)"‘ E § Fq (k17]€2,$1,$2)+
ki=—o00 kg=—00 k1=MA«+1ko=—c0
0o A2 Alx A5—1
E E k13k27x17x2 E E k17k23x17x2)+
k1= )\ ko=—00 ki=—00 ko=Mo,+1
AT—1 As—1 A;—1
E E Fq (k17k27x17x2 E E F klka;xlva)
k1=A14+1 ko=X2.+1 =A] k2=X2x+1
Alx AT—1
E E g (K1, k2,21, 22) + E E g (K1, ke, z1,22) + (115)
k1=—00 ko=A} ki=X+1ka=A}
E E F k17k27x1ax2)
=] k2=

Notice that the finite sum of continuous functions Fy (k1, k2, 1, Z2):
sz;ilﬁ_l Z;E;L*H F, (k1,ke,21,22) is a continuous function.

The rest of the summands of F,, (f,x1,z2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.

We will prove that »-,* e Zk%_oo nk () @4 (N1 — k1) ¢, (N2 — k2) is con-
tinuous in (x1,z2) € R2.

The continuous function

Itk (£, @, (s = k1) 6, (nz = ko) < [[I71, ] @4 (= M) 60 (ko + 2a).

and
A2

Al Do D e (k= A) Gy (kat da) =

k}lz)\f kg:*OO

Z¢ (AZ By kz+A2>>_

1 )\* kg_foo

In L

I | o ) Z o () | < I71L)| - (e)
> Inl kl=—oc0
B
So by the Weierstrass M test we get that
PO " sz, oo Ink (f) ¢4 (nz1 — k1) ¢, (nz2 — ko) is uniformly and absolutely

convergent. Therefore it is continuous on R2.
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Next we prove continuity on R? of

Aol A2
>k a1 2ot oo bk () g (1 = k1) @ (N2 — k).
Notice here that

Itk (D, @, (n1 = k1) &, (na — k) <H||fH H (nv1 = k1) 61 (k2 + Aa)
(117)

[T H (mq)qb 1 (ka4 Xg) = H||f|| H ot (k2 + Aa),

and

(1) AT-1 A2x
20 (X 1) (3 i)

k1=XA1.+1 =—o00
In L
q
5]

%(UHWHJL <2A1+_1“ﬁ3_ - h; —1> D ¢k | <

A
ko=—o00

(118)

1 [In 1] In
i (o |52  [5] - bl

So the double series under consideration is uniformly convergent and continuous.
Clearly F,, (f,x1,x2) is proved to be continuous on R2.

Similarly reasoning one can prove easily now, but with more tedious work,
that F, (f,21,...,2x) is continuous on RY, for any N > 1. We choose to omit
this similar extra work. m

Remark 16 By (69) it is obvious that H”A" (f)”’VH < H||fH7H < 00, and

N N o
A, (f)eC H [a;, 2]7X) given that f € C' | [] [as, z],X)
=1
Call Ly, any of the operators Ay, By, Cy, Dy,.
Clearly then
lz2 | = 12e o] < 0za ]| < Jusm)| . @9)

etc.
Therefore we get

lizs ol <[] veen, (120)

the contraction property.
Also we see that

s o], < i o = - < o] =] o)

Here Lk are bounded linear operators.
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Notation 17 Here ¢ >0, >0, N € N, 0 < 8" < 1. Denote by

(0 (Q))N ’ Zf L, = An>
= 122
N {17 ian:Bnacnana ( )

1 .
_ ) if Ly = Apn, Bn,

- _{Hné*, if Ly = Cy, Da, (123)

N .
Q:= ¢ (Ll;ll (a3, bi ,X> P U= A (124)

CB (RN,X) ’ Zan = BnacrmDna
and
N .

Y .= il;ll [a‘i7 bZ] ’ Zf L, = An, (125)

RN; Zan = BnacnaDn'
We give the condensed

Theorem 18 Let f € Q,0< B " <1, z€Y;¢>0,8>0,n N €N with
n'=8" > 2. Then

(i)

L (2= S @I, < e [ir (oo ) + 2050 171, _] = o),

(126)
where wy 1s for p = oo,
and
(1)
L () = 11| <7 m) =0, asn — o, (127)
For f uniformly continuous and in 2 we obtain
lim L, (f) = f,
n—oo

pointwise and uniformly.

Proof. By Theorems 9, 11, 12, 13. =

Next we talk about iterated multilayer neural network approximation (see
also [9]).

We give

Theorem 19 All here as in Theorem 18 and r € N, 7(n) as in (126). Then
lizns = £lL|| < e ). (128)

So that the speed of convergence to the unit operator of L) is not worse than of
L,.
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Proof. As similar to [12], pp. 172-173, is omitted. =
We also present the more general

Theorem 20 Let f € Q; g >0, 8 >0, N, my,ma,...m, € N:m3 <mgy <
W <m,, 0< B8 <1, mg_"g* >2,i=1,.,r, 2 €Y, and let (Lym,,..., Lm,) as
(Amys s Am,) or (Bpysory Bm,) or (Crnyyooes C) 07 (Ding s ooy Din), = 00.
Then

||Lmr (Liny—s (-Ling (Lin, f))) (2) = f (x)” =

,<
[z, (Lo Ly L 1) = £ <

oo

S| Es =11, <
=1

e 3 [on (G ma) + 200 g1 | ] <

i=1
ren [wi (fy0 (m) + 26 g || ] (129)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Ly, .

Proof. As similar to [12], pp. 173-175, is omitted. =
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