
Approximation of Time Separating Stochastic Processes by

Neural Networks

George A. Anastassiou

Department of Mathematical Sciences

University of Memphis, Memphis, TN 38152, U.S.A.

ganastss@memphis.edu

Dimitra Kouloumpou

Section of Mathematics

Hellenic Naval Academy, Piraeus, 18539, Greece

dimkouloumpou@hna.gr

Abstract

Here we study the univariate quantitative approximation of time separating stochastic

process over a compact interval or all the real line by quasi-interpolation neural network

operators. We perform also the related fractional approximation. These approximations

are derived by establishing Jackson type inequalities involving the modulus of continuity of

the engaged stochastic function or its high order derivative or fractional derivatives. Our

operators are defined by using a density function induced by a general sigmoid function.

The approximations are pointwise and with respect to the uniform norm. The feed-forward

neural networks are with one hidden layer. We finish with a lot of interesting applications.
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1 Introduction

The first author in [1] and [2], see Chapters 2-5, was the first to establish neural network

approximation to continuous functions with rates by very specifically defined neural network

operators of Cardaliaguet-Euvrard and ”Squashing” types, by employing the modulus of con-

tinuity of the engaged function or its high order derivative, and producing very tight Jackson

type inequalities. He treats there both the univariate and multivariate cases. The defining

these operators ”bell-shaped” and ”squashing” functions are assumed to be of compact suport.
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Also in [2] he gives the Nth order asymptotic expansion for the error of weak approximation

of these two operators to a special natural class of smooth functions, see Chapters 4-5 there.

The first author inspired by [15], continued his studies on neural networks approximation by

introducing and using the proper quasi interpolation operators of sigmoidal and hyperbolic

tangent type which resulted into [3]-[7], by treating both the univariate and multivariate cases.

He did also the corresponding fractional case [8]. In this article we are also inspired by the

related works [16], [17]. The authors here use general sigmoid function based neural network

quantitative approximations to continuous functions over compact intervals of the real line

or over the whole R with values to R. All convergences here are with rates expressed via

the modulus of continuity of the involved function or its high order derivative, or fractional

derivatives and given by very tight Jackson type inequalities. More precisely, here we perform

quantitative approximations of time separating stochastic processes by neural networks. We

give plenty of varied and interesting applications. Specific motivations came by:

1. Stationary Gaussian processes with an explicit representation such as

Xt = cos (αt) ξ1 + sin (αt) ξ2, α ∈ R,

where ξ1, ξ2 are independent random variables with the standard normal distribution,

see [19],

2. by the “Fourier model” of a stationary process, see [20].

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks

we deal with in this article, are mathematically expressed as

Nn (x) =
n
∑

j=0

cjσ (〈aj · x〉+ bj) , x ∈ R
s, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ R
s are the connection weights, cj ∈ X

are the coefficients, 〈aj · x〉 is the inner product of aj and x, and σ is the activation function of

the network. In many fundamental neural network models, the activation function is derived

from various specific sigmoid functions. Here we work for a general sigmoid function. About

neural networks in general read [18], [21],[23]. See also [9] for a complete study of real valued

approximation by neural network operators.

2 Background

Here we follow [14].

2.1 Basics on Neural Network

Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly increasing, h(0) =

0, h(−x) = −h(x) for every x ∈ R, h(+∞) = 1, h(−∞) = −1. Also h is strictly convex over

(−∞, 0] and strictly concave over [0,+∞), with h(2) ∈ C (R).

Some examples of related sigmoid functions follow: 1
1+e−x ; tanhx;

2
π
arctan

(

π
2x
)

; x
2m
√
1+x2m

,m ∈
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N; 2
π
gd(x); x

(1+|x|λ)
1

λ

, λ is odd ; erf
(√

π
2 x
)

; 1
1+e−µx ; tanh(µx), µ > 0 for all x ∈ R,

We consider the activation function

ψ(x) :=
1

4
(h(x+ 1)− h(x− 1)) , x ∈ R, , (1)

As in [13], p.285, we get that

ψ(−x) = ψ(x), for every x ∈ R.

Thus ψ is an even function.

Since x+ 1 > x− 1, then h(x+ 1) > h(x− 1), and ψ(x) > 0, for all x ∈ R.

We see that

ψ(0) =
h(1)

2
. (2)

Let x > 1, we have that

ψ′(x) =
1

4

(

h′(x+ 1)− h′(x− 1)
)

< 0, (3)

by h′ be strictly decreasing on [0,+∞).

Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds h′(x − 1) = h′(1 − x) >

h′(x+ 1), so that again ψ′(x) < 0. Consequently ψ is strictly decreasing on (0,+∞). Clearly

ψ is strictly increasing on (−∞, 0) and ψ′(0) = 0. See that

lim
x→+∞

ψ(x) =
1

4
(h(+∞)− h(+∞)) = 0,

and

lim
x→−∞

ψ(x) =
1

4
(h(−∞)− h(−∞)) = 0.

(4)

That is the x-axis is the horizontal asymptote on ψ .

Conclusion, ψ is a bell symmetric function with maximum ψ(0) = h(1)
2 .

We need

Theorem 1. ([14]) We have that

+∞
∑

i=−∞
ψ(x− i) = 1, for every x ∈ R. (5)

Theorem 2. ([14]) It holds
∫ +∞

−∞
ψ(x)dx = 1. (6)

Thus, ψ(x) is a density function on R.

We give

Theorem 3. ([14]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞
∑











k = −∞
: |nx− k| ≥ n1−α

ψ (nx− k) <

(

1− h
(

n1−α − 2
))

2
. (7)

Notice that

lim
n→+∞

(

1− h
(

n1−α − 2
))

2
= 0.
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Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the number.

We further give

Theorem 4. ([14])Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds

1
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
<

1

ψ (1)
, ∀ x ∈ [a, b] . (8)

Remark 5. We have that

lim
n→∞

⌊nb⌋
∑

k=⌈na⌉
ψ (nx− k) 6= 1, (9)

for at least some x ∈ [a, b] . See [13], p. 290, same reasoning.

Note 6. For large enough n we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n
≤ b, if and only if

⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds (by (5))

⌊nb⌋
∑

k=⌈na⌉
ψ (nx− k) ≤ 1. (10)

Let (X, ‖·‖) be a Banach space.

Definition 7. ([14]) Let f ∈ C ([a, b] , X) and n ∈ N : ⌈na⌉ ≤ ⌊nb⌋. We introduce and define

the X-valued linear neural network operators

An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(

k
n

)

ψ (nx− k)
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
, x ∈ [a, b] . (11)

Clearly here An (f, x) ∈ C ([a, b] , X). For convenience we use the same An for real valued

function when needed. We mention here the pointwise and uniform convergence of An (f, x)

to f (x) with rates. For convenience also we call

A∗
n (f, x) :=

⌊nb⌋
∑

k=⌈na⌉
f

(

k

n

)

ψ (nx− k) , (12)

(similarly A∗
n can be defined for real valued function) that is

An (f, x) =
A∗

n (f, x)
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
. (13)

So that

An (f, x)− f (x) =
A∗

n (f, x)
∑⌊nb⌋

k=⌈na⌉ ψ (nx− k)
− f (x)

=
A∗

n (f, x)− f (x)
(

∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

)

∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

. (14)

Consequently we derive

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)

∥

∥

∥

∥

∥

∥

A∗
n (f, x)− f (x)





⌊nb⌋
∑

k=⌈na⌉
ψ (nx− k)





∥

∥

∥

∥

∥

∥

. (15)
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That is

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)

∥

∥

∥

∥

∥

∥

⌊nb⌋
∑

k=⌈na⌉

(

f

(

k

n

)

− f (x)

)

ψ (nx− k)

∥

∥

∥

∥

∥

∥

. (16)

We will estimate the right hand side of (16).

For that we need, for f ∈ C ([a, b] , X) the first modulus of continuity

ω1 (f, δ)[a,b] := ω1 (f, δ) := sup

x, y ∈ [a, b]

|x− y| ≤ δ

‖f (x)− f (y)‖ , δ > 0. (17)

Similarly, it is defined ω1 for f ∈ CuB (R, X) (uniformly continuous and bounded func-

tions from R into X), for f ∈ CB (R, X) (continuous and bounded X-valued) and for f ∈
Cu (R, X) (uniformly continuous). The fact f ∈ C ([a, b] , X) or f ∈ Cu (R, X), is equivalent

to lim
δ→0

ω1 (f, δ) = 0, see [11].

Definition 8. ([14]) When f ∈ CuB (R, X), or f ∈ CB (R, X), we define

An (f, x) :=
∞
∑

k=−∞
f

(

k

n

)

ψ (nx− k) , n ∈ N, x ∈ R, (18)

the X-valued quasi-interpolation neural network operator.

Remark 9. ([14]) We have that the series

+∞
∑

k=−∞
f

(

k

n

)

ψ (nx− k)

is absolutely convergent in X, hence it is convergent in X and An (f, x) ∈ X.

We denote by ‖f‖∞ := sup
x∈[a,b]

‖f (x)‖, for f ∈ C ([a, b] , X), similarly is defined for f ∈

CB (R, X) . We mention a series of X-valued neural network approximations to a function

given with rates. We first give

Theorem 10. ([14]). Let f ∈ C ([a, b] , X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b] . Then

i)

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)

[

ω1

(

f,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖f‖∞
]

=: ρ, (19)

and

ii)

‖An (f)− f‖∞ ≤ ρ. (20)

We notice lim
n→∞

An (f) = f , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Next we give
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Theorem 11. ([14]). Let f ∈ CB (R, X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ R. Then

i)
∥

∥An (f, x)− f (x)
∥

∥ ≤ ω1

(

f,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖f‖∞ =: µ, (21)

and

ii)
∥

∥An (f)− f
∥

∥

∞ ≤ µ. (22)

For f ∈ CuB (R, X) we get lim
n→∞

An (f) = f , pointwise and uniformly. The speed of convergence

is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

In the next we discuss high order neural network X-valued approximation by using the

smoothness of f . The X-valued derivatives are as the numerical ones, see ([24]).

Theorem 12. ([14])Let f ∈ CN ([a, b] , X), n,N ∈ N, 0 < α < 1, x ∈ [a, b] and n1−α > 2.

Then

i)

‖An (f, x)− f (x)‖ ≤ 1

ψ (1)







N
∑

j=1

∥

∥f (j) (x)
∥

∥

j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(b− a)j

]

+ (23)

[

ω1

(

f (N),
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
)) ∥

∥f (N)
∥

∥

∞ (b− a)N

N !

]}

.

ii) Assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

‖An (f, x0)− f (x0)‖ ≤ 1

ψ (1)

{

ω1

(

f (N),
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
)) ∥

∥f (N)
∥

∥

∞ (b− a)N

N !

}

, (24)

and

iii)

‖An (f)− f‖∞ ≤ 1

ψ (1)







N
∑

j=1

∥

∥f (j)
∥

∥

∞
j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(b− a)j

]

+

[

ω1

(

f (N),
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
)) ∥

∥f (N)
∥

∥

∞ (b− a)N

N !

]}

. (25)

Again we obtain lim
n→∞

An (f) = f , pointwise and uniformly.

All integrals from now on are of Bochner type [22].

We need
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Definition 13. ([12]) Let [a, b] ⊂ R, X be a Banach space, α > 0; m = ⌈α⌉ ∈ N, (⌈·⌉ is

the ceiling of the number), f : [a, b] → X. We assume that f (m) ∈ L1 ([a, b] , X). We call the

Caputo-Bochner left fractional derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a

(x− t)m−α−1 f (m) (t) dt, ∀ x ∈ [a, b] . (26)

If α ∈ N, we set Dα
∗af := f (m) the ordinary X-valued derivative (defined similar to numerical

one, see [24], p. 83), and also set D0
∗af := f.

By [12], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈ L1 ([a, b] , X).

If
∥

∥f (m)
∥

∥

L∞([a,b],X)
<∞, then by [12], Dα

∗af ∈ C ([a, b] , X) , hence ‖Dα
∗af‖ ∈ C ([a, b]) .

Definition 14. ([10]) Let [a, b] ⊂ R, X be a Banach space, α > 0, m := ⌈α⌉. We assume

that f (m) ∈ L1 ([a, b] , X), where f : [a, b] → X. We call the Caputo-Bochner right fractional

derivative of order α:

(

Dα
b−f
)

(x) :=
(−1)m

Γ (m− α)

∫ b

x

(z − x)m−α−1 f (m) (z) dz, ∀ x ∈ [a, b] . (27)

We observe that
(

Dm
b−f
)

(x) = (−1)m f (m) (x) , for m ∈ N, and
(

D0
b−f
)

(x) = f (x) .

By [10],
(

Dα
b−f
)

(x) exists almost everywhere on [a, b] and
(

Dα
b−f
)

∈ L1 ([a, b] , X). If
∥

∥f (m)
∥

∥

L∞([a,b],X)
<∞, and α /∈ N, by [10], Dα

b−f ∈ C ([a, b] , X) , hence
∥

∥Dα
b−f
∥

∥ ∈ C ([a, b]) .

In the next ω1 (f, δ)[a,b] refers to a modulus of continuity. ω1 defined over [a, b].

We mention the following X−valued fractional approximation result by neural networks.

Theorem 15. ([14]). Let α > 0, N = ⌈α⌉, α /∈ N, f ∈ CN ([a, b] , X), 0 < β < 1, x ∈ [a, b],

n ∈ N : n1−β > 2. Then

i)
∥

∥

∥

∥

∥

∥

An (f, x)−
N−1
∑

j=1

f (j) (x)

j!
An

(

(· − x)j
)

(x)− f (x)

∥

∥

∥

∥

∥

∥

≤

(ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)α + ‖Dα

∗xf‖∞,[x,b] (b− x)α
)

}

, (28)

ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

‖An (f, x)− f (x)‖ ≤ (ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)α + ‖Dα

∗xf‖∞,[x,b] (b− x)α
)

}

, (29)
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iii)

‖An (f, x)− f (x)‖ ≤ (ψ (1))−1







N−1
∑

j=1

∥

∥f (j) (x)
∥

∥

j!

{

1

nβj
+ (b− a)j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)α + ‖Dα

∗xf‖∞,[x,b] (b− x)α
)

}}

, (30)

∀ x ∈ [a, b] ,

and

iv)

‖Anf − f‖∞ ≤ (ψ (1))−1







N−1
∑

j=1

∥

∥f (j)
∥

∥

∞
j!

{

1

nβj
+ (b− a)j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)























(

sup
x∈[a,b]

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ sup

x∈[a,b]
ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(b− a)α
(

sup
x∈[a,b]

∥

∥Dα
x−f

∥

∥

∞,[a,x]
+ sup

x∈[a,b]
‖Dα

∗xf‖∞,[x,b]

)}}

. (31)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain X-valued fractionally type pointwise and uniform convergence

with rates of An → I the unit operator, as n→ ∞.

Next we apply Theorem 15 for N = 1.

Corollary 16. ([14]) Let 0 < α, β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2. Then

i)

‖An (f, x)− f (x)‖ ≤

(ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
x−f

∥

∥

∞,[a,x]
(x− a)α + ‖Dα

∗xf‖∞,[x,b] (b− x)α
)

}

, (32)

and
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ii)

‖Anf − f‖∞ ≤ (ψ (1))−1

Γ (α+ 1)






















(

sup
x∈[a,b]

ω1

(

Dα
x−f,

1
nβ

)

[a,x]
+ sup

x∈[a,b]
ω1

(

Dα
∗xf,

1
nβ

)

[x,b]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(b− a)α
(

sup
x∈[a,b]

∥

∥Dα
x−f

∥

∥

∞,[a,x]
+ sup

x∈[a,b]
‖Dα

∗xf‖∞,[x,b]

)}

. (33)

When α = 1
2 we derive

Corollary 17. ([14]) Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2. Then

i)

‖An (f, x)− f (x)‖ ≤

2 (ψ (1))−1

√
π























(

ω1

(

D
1

2

x−f,
1
nβ

)

[a,x]

+ ω1

(

D
1

2∗xf,
1
nβ

)

[x,b]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)(

∥

∥

∥

∥

D
1

2

x−f

∥

∥

∥

∥

∞,[a,x]

√

(x− a) +

∥

∥

∥

∥

D
1

2∗xf

∥

∥

∥

∥

∞,[x,b]

√

(b− x)

)}

, (34)

and

ii)

‖Anf − f‖∞ ≤ 2 (ψ (1))−1

√
π























(

sup
x∈[a,b]

ω1

(

D
1

2

x−f,
1
nβ

)

[a,x]

+ sup
x∈[a,b]

ω1

(

D
1

2∗xf,
1
nβ

)

[x,b]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(b− a)

(

sup
x∈[a,b]

∥

∥

∥

∥

D
1

2

x−f

∥

∥

∥

∥

∞,[a,x]

+ sup
x∈[a,b]

∥

∥

∥

∥

D
1

2∗xf

∥

∥

∥

∥

∞,[x,b]

)}

<∞. (35)

From now on we set X = R.

2.2 Time Seperating Stochastic Processes

Let (Ω,F , P ) be a probability space, ω ∈ Ω;Y1, Y2, . . . , Ym,m ∈ N, be real-valued random

variables on Ω with finite expectations, and h1(t), h2(t), . . . hm(t) : I → R, where I is an

infinite subset of R. Typically here I is an infinite length interval of R, usualy I = R or
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I = R+.

Clearly, then

Y (t, ω) :=
m
∑

i=1

hi(t)Yi(ω), t ∈ I, (36)

is a quite common stochastic process separating time.

We can assume that hi ∈ Cr(I), i = 1, 2, ...,m; r ∈ N. Consequently, we have that the

expectation

(EY ) (t) =

m
∑

i=1

hi(t)EYi ∈ C(I) or Cr(I). (37)

A classical example of a stochastic process separating time is

(sin t)Y1(ω) + (cos t)Y2(ω), t ∈ I.

Notice that |sin t| ≤ 1 and |cos t| ≤ 1.

Another typical example is

sinh(t)Y1(ω) + cosh(t)Y2(ω), t ∈ I. (38)

In this article we will apply the main results of section 2.1, to f(t) = (EY ) (t). We will finish

with several applications. See the related [19], [20].

3 Main Results

We present the following general approximation of the seperating stochastic processes by

neural network operators.

Theorem 18. Let (EY )(t) as in (37), t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, hi ∈
C ([t1, t2]) for every i = 1, 2, ...,m, 0 < α < 1, n ∈ N : n1−α > 2. Then

i)

|An ((EY ) , t)− (EY ) (t)| ≤ 1

ψ (1)

[

ω1

(

EY,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EY ‖∞
]

=: ρ, (39)

and

ii)

‖An (EY )− EY ‖∞ ≤ ρ. (40)

We have that lim
n→∞

An (EY ) = EY , pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. Notice that when hi ∈ C ([t1, t2]) for every i = 1, 2, ...,m, then (EY ) (t) ∈ C ([t1, t2]).

Thus, the conclusion comes from Theorem 10.

We continue with,
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Theorem 19. Let (EY )(t) as in (37), hi ∈ CB (R) for every i = 1, 2, ...,m, 0 < α < 1,

n ∈ N : n1−α > 2, t ∈ R. Then

i)

∣

∣An (EY, t)− (EY ) (t)
∣

∣ ≤ ω1

(

EY,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EY ‖∞ =: µ, (41)

and

ii)
∥

∥An (EY )− EY
∥

∥

∞ ≤ µ. (42)

For EY ∈ CuB (R) we get lim
n→∞

An (EY ) = EY , pointwise and uniformly. The speed of

convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. Since that hi ∈ CB (R) for every i = 1, 2, ...,m and t ∈ R, then EX ∈ CB (R).

Therefore the results come from Theorem 11.

Furthermore, we have

Theorem 20. Let (EY )(t) as in (37), t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, hi ∈
CN ([t1, t2]) for every i = 1, 2, ...,m, n,N ∈ N, 0 < α < 1, and n1−α > 2. Then

i)

|An (EY, t)− (EY ) (t)| ≤ 1

ψ (1)







N
∑

j=1

∣

∣

∣(EY )(j) (t)
∣

∣

∣

j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+

(43)


ω1

(

(EY )(N) ,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥(EY )(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











.

ii) Assume further (EY )(j) (t0) = 0, j = 1, ..., N, for some t0 ∈ [t1, t2], it holds

|An (EY, t0)− (EY ) (t0)| ≤
1

ψ (1)






ω1

(

(EY )(N) ,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥(EY )(N)
∥

∥

∥

∞
(t2 − t1)

N

N !







, (44)

and

iii)

‖An (EY )− EY ‖∞ ≤ 1

ψ (1)







N
∑

j=1

∥

∥

∥(EY )(j)
∥

∥

∥

∞
j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+



ω1

(

(EY )(N) ,
1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥(EY )(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











. (45)

Again we obtain lim
n→∞

An (EY ) = EY , pointwise and uniformly.
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Proof. By Theorem 12.

We also present

Theorem 21. Let α > 0, N = ⌈α⌉ , α /∈ N, 0 < β < 1, t ∈ [t1, t2] where t1, t2 ∈ R, with t1 < t2,

n ∈ N : n1−β > 2. Then

i)
∣

∣

∣

∣

∣

∣

An (EY, t)−
N−1
∑

j=1

(EY )(j) (t)

j!
An

(

(· − t)j
)

(t)− (EY ) (t)

∣

∣

∣

∣

∣

∣

≤

(ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EY )‖∞,[t,t2]

(t2 − t)α
)

}

, (46)

ii) if (EY )(j) (t) = 0, for j = 1, ..., N − 1, we have

|An (EY, t)− (EY ) (t)| ≤ (ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EY )‖∞,[t,t2]

(t2 − t)α
)

}

, (47)

iii)

‖An (EY, t)− (EY ) (t)‖ ≤ (ψ (1))−1







N−1
∑

j=1

∣

∣

∣(EY )(j) (t)
∣

∣

∣

j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EY )‖∞,[t,t2]

(t2 − t)α
)

}}

, (48)

∀ t ∈ [t1, t2] ,

and

iv)

‖An (EY )− EY ‖∞ ≤ (ψ (1))−1







N−1
∑

j=1

∥

∥

∥
(EY )(j)

∥

∥

∥

∞
j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+
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1

Γ (α+ 1)























(

sup
x∈[t1,t2]

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ sup

t∈[t1,t2]
ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]
‖Dα

∗t (EY )‖∞,[t,t2]

)}}

.

(49)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain t-valued fractionally type pointwise and uniform convergence with

rates of An → I the unit operator, as n→ ∞.

Proof. By Theorem 15.

Next we apply Theorem 21 for N = 1.

Corollary 22. Let (EY )(t) as in (37), 0 < α, β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with

t1 < t2,n ∈ N : n1−β > 2. and hi ∈ C ([t1, t2]) for every i = 1, 2, ...,m. Then

i)

|An (EY, t)− (EY ) (t)| ≤

(ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EY )‖∞,[t,t2]

(t2 − t)α
)

}

, (50)

and

ii)

‖An (EY )− (EY )‖∞ ≤ (ψ (1))−1

Γ (α+ 1)






















(

sup
t∈[t1,t2]

ω1

(

Dα
t− (EY ) , 1

nβ

)

[t1,t]
+ sup

t∈[t1,t2]
ω1

(

Dα
∗t (EY ) , 1

nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EY )

∥

∥

∞,[t1,t]
+ sup

x∈[t1,t2]
‖Dα

∗t (EY )‖∞,[t,t2]

)}

.

(51)

When α = 1
2 we derive

Corollary 23. Assume again (EY )(t) as in (37). Let 0 < β < 1, t ∈ [t1, t2], where t1, t2 ∈ R,

with t1 < t2, n ∈ N : n1−β > 2 and hi ∈ C ([t1, t2]) for every i = 1, 2, ...,m. Then
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i)

|An (EY, t)− (EY ) (t)| ≤

2 (ψ (1))−1

√
π























(

ω1

(

D
1

2

t− (EY ) , 1
nβ

)

[t1,t]

+ ω1

(

D
1

2

∗t (EY ) , 1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)(

∥

∥

∥

∥

D
1

2

t− (EY )

∥

∥

∥

∥

∞,[t1,t]

√

(t− t1) +

∥

∥

∥

∥

D
1

2

∗t (EY )

∥

∥

∥

∥

∞,[t,t2]

√

(t2 − t)

)}

,

(52)

and

ii)

‖An (EY )− (EY )‖∞ ≤ 2 (ψ (1))−1

√
π























(

sup
t∈[t1,t2]

ω1

(

D
1

2

t− (EY ) , 1
nβ

)

[t1,t]

+ sup
t∈[t1,t2]

ω1

(

D
1

2

∗t (EY ) , 1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(t2 − t1)

(

sup
t∈[t1,t2]

∥

∥

∥

∥

D
1

2

t− (EY )

∥

∥

∥

∥

∞,[t1,t]

+ sup
t∈[t1,t2]

∥

∥

∥

∥

D
1

2

∗t (EY )

∥

∥

∥

∥

∞,[t,t2]

)}

<∞.

(53)

4 Applications

For the next applications we consider (Ω, F, P ) be a probability space and Y0, Y1, Y2 be real

valued random variables on Ω with finite expectations. We consider the stochastic processes

Zi(t, ω) for i = 1, 2, . . . , 9, where t ∈ R and ω ∈ Ω as follows:

Z1(t, ω) =
[

(t− t0)
µ+1 + 1

]

Y0(ω), (54)

where t0 ∈ R and µ ∈ N are fixed;

Z2(t, ω) = sin (ξt)Y1(ω) + cos (ξt)Y2(ω), (55)

where ξ > 0 is fixed;

Z3(t, ω) = sinh (µt)Y1(ω) + cosh (µt)Y2(ω), (56)

where µ > 0 is fixed;

Z4(t, ω) = sech (µt)Y1(ω) + tanh (µt)Y2(ω), (57)

where µ > 0 is fixed.

Here sechx := 1
coshx

= 2
ex+e−x , x ∈ R.

Z5(t, ω) = e−ℓ1tY1(ω) + e−ℓ2tY2(ω), (58)
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where ℓ1, ℓ2 > 0 are fixed;

Z6(t, ω) =
1

1 + e−ℓ1t
Y1(ω) +

1

1 + e−ℓ2t
Y2(ω), (59)

where ℓ1, ℓ2 > 0 are fixed;

Z7(t, ω) = e−e−µ1t

Y1(ω) + e−e−µ2t

Y2(ω), (60)

where µ1, µ2 > 0 are fixed;

Z8(t, ω) = Pm (ℓ1t)Y1(ω) + Pm (ℓ2t)Y2(ω), (61)

where ℓ1, ℓ2 > 0 and m ∈ N are fixed.

Here Pm(x) is the Legendre Polynomial of degree m ∈ N, i.e

Pm : [−1, 1] −→ [−1, 1]

such that,

Pm(x) =
1

2mm!

dm

dxm
(

x2 − 1
)m

=
1

2m

m
∑

k=0

(

m

k

)2

(x− 1)m−k (x+ 1)k , x ∈ [−1, 1] .

To define the stochastic process Z9 (t, ω), we consider the Cauchy function

f̂(x) =







e−
1

x2 , x 6= 0

0, x = 0
.

Notice that, f̂ ∈ C∞ (R) and it has f̂ (i)(0) = 0, for all i = 1, 2, . . . ,∞.

We set,

Z9(t, ω) = f̂(t)Y0(ω), (62)

The expectations of Zi, i = 1, 2, ..., 9 are

(EZ1) (t) =
[

(t− t0)
µ+1 + 1

]

E(Y0), (63)

(EZ2) (t) = sin (ξt)E(Y1) + cos (ξt)E(Y2), (64)

(EZ3) (t) = sinh (µt)E(Y1) + cosh (µt)E(Y2), (65)

(EZ4) (t) = sech (µt)E(Y1) + tanh (µt)E(Y2), (66)

(EZ5) (t) = e−ℓ1tE(Y1) + e−ℓ2tE(Y2), (67)

(EZ6) (t) =
1

1 + e−ℓ1t
E(Y1) +

1

1 + e−ℓ2t
E(Y2), (68)

(EZ7) (t) = e−e−µ1t

E(Y1) + e−e−µ2t

E(Y2), (69)

(EZ8) (t) = Pm (ℓ1t)E(Y1) + Pm (ℓ2t)E(Y2), (70)

(EZ9) (t) = f̂(t)E(Y0), (71)

For the next (EZi) (t), i = 1, 2, . . . , 9 are as defined in relations between (63) and (71) respec-

tively.

We present the following result.
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Proposition 24. Let t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, 0 < α < 1, n ∈ N : n1−α > 2.

Then for i = 1, 2, . . . , 9

i)

|An ((EZi) , t)− (EZi) (t)| ≤
1

ψ (1)

[

ω1

(

EZi,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZi‖∞
]

=: ρ,

(72)

and

ii)

‖An (EZi)− EZi‖∞ ≤ ρ. (73)

We have that lim
n→∞

An (EZi) = EZi, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. From Theorem 18.

In the cases of stochastic processes Zi (t, ω), for i = 2, 4, 6, 7 we have the next

Proposition 25. Let i ∈ {2, 4, 6, 7} , 0 < α < 1, n ∈ N : n1−α > 2, t ∈ R. Then

i)

∣

∣An (EZi, t)− (EZi) (t)
∣

∣ ≤ ω1

(

EZi,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZi‖∞ =: µ, (74)

and

ii)
∥

∥An (EZi)− EZi

∥

∥

∞ ≤ µ. (75)

For EZi ∈ CuB (R) we get lim
n→∞

An (EZi) = EZi, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. Notice that for every t ∈ R we have that:

for Z2 (t, ω), |sin (ξt)| ≤ 1 and |cos (ξt)| ≤ 1,

for Z4 (t, ω), |sech (µt)| ≤ 1 and |tanh (µt)| ≤ 1,

for Z6 (t, ω), 0 <
1

1+e−ℓ1t
< 1 and 0 < 1

1+e−ℓ2t
< 1,

for Z7 (t, ω), 0 < e−e−µ1t < 1 and 0 < e−e−µ2t < 1.

Thus, the results come from Theorem 19.

Moreover, we present the next

Proposition 26. Let i = 1, 2, . . . , 9, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, 0 < α < 1, and

n1−α > 2. Then
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i)

|An (EZi, t)− (EZi) (t)| ≤
1

ψ (1)







N
∑

j=1

∣

∣

∣
(EZi)

(j) (t)
∣

∣

∣

j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+

(76)


ω1

(

(EZi)
(N) ,

1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EZi)

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











.

ii) Assume further (EZi)
(j) (ta) = 0, j = 1, ..., N, for some ta ∈ [t1, t2], it holds

|An (EZi, ta)− (EZi) (ta)| ≤
1

ψ (1)







ω1

(

(EZi)
(N) ,

1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EZi)

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !







, (77)

and

iii)

‖An (EZi)− EZi‖∞ ≤ 1

ψ (1)







N
∑

j=1

∥

∥

∥
(EZi)

(j)
∥

∥

∥

∞
j!

[

1

nαj
+

(

1− h
(

n1−α − 2
))

2
(t2 − t1)

j

]

+



ω1

(

(EZi)
(N) ,

1

nα

)

1

nαNN !
+

(

1− h
(

n1−α − 2
))

∥

∥

∥
(EZi)

(N)
∥

∥

∥

∞
(t2 − t1)

N

N !











. (78)

Again we obtain lim
n→∞

An (EZi) = EZi, pointwise and uniformly.

Proof. By Theorem 20.

We also present

Proposition 27. Let i = 1, 2, . . . , 9, α > 0, N = ⌈α⌉ , α /∈ N, 0 < β < 1, t ∈ [t1, t2] where

t1, t2 ∈ R, with t1 < t2, n ∈ N : n1−β > 2. Then

i)
∣

∣

∣

∣

∣

∣

An (EZi, t)−
N−1
∑

j=1

(EZi)
(j) (t)

j!
An

(

(· − t)j
)

(t)− (EZi) (t)

∣

∣

∣

∣

∣

∣

≤

(ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EZi)‖∞,[t,t2]

(t2 − t)α
)

}

, (79)

ii) if (EZi)
(j) (t) = 0, for j = 1, ..., N − 1, we have

|An (EZi, t)− (EZi) (t)| ≤
(ψ (1))−1

Γ (α+ 1)
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(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EZi)‖∞,[t,t2]

(t2 − t)α
)

}

, (80)

iii)

‖An (EZi, t)− (EZi) (t)‖ ≤ (ψ (1))−1







N−1
∑

j=1

∣

∣

∣(EZi)
(j) (t)

∣

∣

∣

j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EZi)‖∞,[t,t2]

(t2 − t)α
)

}}

, (81)

∀ t ∈ [t1, t2] ,

and

iv)

‖An (EZi)− EZi‖∞ ≤ (ψ (1))−1







N−1
∑

j=1

∥

∥

∥
(EZi)

(j)
∥

∥

∥

∞
j!

{

1

nβj
+ (t2 − t1)

j

(

1− h
(

n1−β − 2
)

2

)}

+

1

Γ (α+ 1)























(

sup
x∈[t1,t2]

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]
ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
+ sup

t∈[t1,t2]
‖Dα

∗t (EZi)‖∞,[t,t2]

)}}

.

(82)

Above, when N = 1 the sum
∑N−1

j=1 · = 0.

As we see here we obtain t-valued fractionally type pointwise and uniform convergence with

rates of An → I the unit operator, as n→ ∞.

Proof. By Theorem 21.

Next we apply Proposition 27 for N = 1.

Corollary 28. Let i = 1, 2, . . . , 9, 0 < α, β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2,n ∈
N : n1−β > 2. Then

i)

|An (EZi, t)− (EZi) (t)| ≤
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(ψ (1))−1

Γ (α+ 1)







(

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
(t− t1)

α + ‖Dα
∗t (EZi)‖∞,[t,t2]

(t2 − t)α
)

}

, (83)

and

ii)

‖An (EZi)− (EZi)‖∞ ≤ (ψ (1))−1

Γ (α+ 1)






















(

sup
t∈[t1,t2]

ω1

(

Dα
t− (EZi) ,

1
nβ

)

[t1,t]
+ sup

t∈[t1,t2]
ω1

(

Dα
∗t (EZi) ,

1
nβ

)

[t,t2]

)

nαβ
+

(

1− h
(

n1−β − 2
)

2

)

(t2 − t1)
α

(

sup
t∈[t1,t2]

∥

∥Dα
t− (EZi)

∥

∥

∞,[t1,t]
+ sup

x∈[t1,t2]
‖Dα

∗t (EZi)‖∞,[t,t2]

)}

.

(84)

When α = 1
2 we derive

Corollary 29. Assume i = 1, 2, . . . , 9. Let 0 < β < 1, t ∈ [t1, t2], where t1, t2 ∈ R, with

t1 < t2, and n ∈ N : n1−β > 2. Then

i)

|An (EZi, t)− (EZi) (t)| ≤

2 (ψ (1))−1

√
π























(

ω1

(

D
1

2

t− (EZi) ,
1
nβ

)

[t1,t]

+ ω1

(

D
1

2

∗t (EZi) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)(

∥

∥

∥

∥

D
1

2

t− (EZi)

∥

∥

∥

∥

∞,[t1,t]

√

(t− t1) +

∥

∥

∥

∥

D
1

2

∗t (EZi)

∥

∥

∥

∥

∞,[t,t2]

√

(t2 − t)

)}

,

(85)

and

ii)

‖An (EZi)− (EZi)‖∞ ≤ 2 (ψ (1))−1

√
π























(

sup
t∈[t1,t2]

ω1

(

D
1

2

t− (EZi) ,
1
nβ

)

[t1,t]

+ sup
t∈[t1,t2]

ω1

(

D
1

2

∗t (EZi) ,
1
nβ

)

[t,t2]

)

n
β
2

+
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(

1− h
(

n1−β − 2
)

2

)

√

(t2 − t1)

(

sup
t∈[t1,t2]

∥

∥

∥

∥

D
1

2

t− (EZi)

∥

∥

∥

∥

∞,[t1,t]

+ sup
t∈[t1,t2]

∥

∥

∥

∥

D
1

2

∗t (EZi)

∥

∥

∥

∥

∞,[t,t2]

)}

<∞.

(86)

5 Specific Applications

Let (Ω,F , P ), where Ω is the set of non-negative integers, be a probability space, Y1,1, Y2,1 be

real-valued random variables on Ω following Poisson distributions with parameters λ1, λ2 ∈
(0,∞) respectively.

We consider the stochastic processes Zi,1(t, ω) for i = 1, 2, 3, 5, where t ∈ R and ω ∈ Ω as

follows:

Z1,1(t, ω) =
[

(t− t0)
µ+1 + 1

]

Y1,1(ω), (87)

where t0 ∈ R and µ ∈ N are fixed;

Z2,1(t, ω) = sin (ξt)Y1,1(ω) + cos (ξt)Y2,1(ω), (88)

where ξ > 0 is fixed;

Z3,1(t, ω) = sinh (µt)Y1,1(ω) + cosh (µt)Y2,1(ω), (89)

where µ > 0 is fixed;

Z5,1(t, ω) = e−ℓ1tY1,1(ω) + e−ℓ2tY2,1(ω), (90)

where ℓ1, ℓ2 > 0 are fixed.

Since E (Y1,1) = λ1 and E (Y2,1) = λ2 , the expectations of Zi,1, i = 1, 2, 3, 5, are

(EZ1,1) (t) = λ1

[

(t− t0)
µ+1 + 1

]

, (91)

(EZ2,1) (t) = λ1 sin (ξt) + λ2 cos (ξt) , (92)

(EZ3,1) (t) = λ1 sinh (µt) + λ2 cosh (µt) , (93)

(EZ5,1) (t) = λ1e
−ℓ1t + λ2e

−ℓ2t, (94)

For the next we consider (Ω,F , P ), where Ω = R, be a probability space, Y1,2, Y2,2 be real-

valued random variables on Ω following Gaussian distributions with expectations µ̂1, µ̂2 ∈ R

respectively.

We consider the stochastic processes Zi,2(t, ω) for i = 1, 2, 3, 5, where t ∈ R and ω ∈ Ω as

follows:

Z1,2(t, ω) =
[

(t− t0)
µ+1 + 1

]

Y1,2(ω), (95)

where t0 ∈ R and µ ∈ N are fixed;

Z2,2(t, ω) = sin (ξt)Y1,2(ω) + cos (ξt)Y2,2(ω), (96)

where ξ > 0 is fixed;

Z3,2(t, ω) = sinh (µt)Y1,2(ω) + cosh (µt)Y2,2(ω), (97)
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where µ > 0 is fixed;

Z5,2(t, ω) = e−ℓ1tY1,2(ω) + e−ℓ2tY2,2(ω), (98)

where ℓ1, ℓ2 > 0 are fixed.

Since E (Y1,2) = µ̂1 and E (Y2,2) = µ̂2 , The expectations of Zi,2, i = 1, 2, 3, 5 are

(EZ1,2) (t) = µ̂1

[

(t− t0)
µ+1 + 1

]

, (99)

(EZ2,2) (t) = µ̂1 sin (ξt) + µ̂2 cos (ξt) , (100)

(EZ3,2) (t) = µ̂1 sinh (µt) + µ̂2 cosh (µt) , (101)

(EZ5,2) (t) = µ̂1e
−ℓ1t + µ̂2e

−ℓ2t. (102)

Furthermore, we consider (Ω,F , P ), where Ω = [0,∞), be a probability space, Y1,3, Y2,3 be

real-valued random variables on Ω following Weibull distributions with scale parameters 1 and

shape parameters γ1, γ2 ∈ (0,∞) respectively.

We consider the stochastic processes Zi,3(t, ω) for i = 1, 2, 3, 5, where t ∈ R and ω ∈ Ω as

follows:

Z1,3(t, ω) =
[

(t− t0)
µ+1 + 1

]

Y1,3(ω), (103)

where t0 ∈ R and µ ∈ N are fixed;

Z2,3(t, ω) = sin (ξt)Y1,3(ω) + cos (ξt)Y2,3(ω), (104)

where ξ > 0 is fixed;

Z3,3(t, ω) = sinh (µt)Y1,3(ω) + cosh (µt)Y2,3(ω), (105)

where µ > 0 is fixed;

Z5,3(t, ω) = e−ℓ1tY1,3(ω) + e−ℓ2tY2,3(ω), (106)

where ℓ1, ℓ2 > 0 are fixed.

Since E (Y1,3) = Γ
(

1 + 1
γ1

)

and E (Y2,3) = Γ
(

1 + 1
γ2

)

, where Γ (·) is the Gamma function,

The expectations of Zi,3, i = 1, 2, 3, 5, are

(EZ1,3) (t) = Γ

(

1 +
1

γ1

)

[

(t− t0)
µ+1 + 1

]

, (107)

(EZ2,3) (t) = Γ

(

1 +
1

γ1

)

sin (ξt) + Γ

(

1 +
1

γ2

)

cos (ξt) , (108)

(EZ3,3) (t) = Γ

(

1 +
1

γ1

)

sinh (µt) + Γ

(

1 +
1

γ2

)

cosh (µt) , (109)

(EZ5,3) (t) = Γ

(

1 +
1

γ1

)

e−ℓ1t + Γ

(

1 +
1

γ2

)

e−ℓ2t, (110)

We present the following result.
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Proposition 30. Let t ∈ [t1, t2], where t1, t2 ∈ R, with t1 < t2, 0 < α < 1, n ∈ N : n1−α > 2.

Then for i = 1, 2, 3, 5 and k = 1, 2, 3

i)

|An ((EZi,k) , t)− (EZi,k) (t)| ≤
1

ψ (1)

[

ω1

(

EZi,k,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZi,k‖∞
]

=: ρ,

(111)

and

ii)

‖An (EZi,k)− EZi,k‖∞ ≤ ρ. (112)

We have that lim
n→∞

An (EZi,k) = EZi,k, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. From Proposition 24.

In the cases of stochastic processes Z2,k (t, ω), for k = 1, 2, 3 we have the next

Proposition 31. Let k ∈ {1, 2, 3} , 0 < α < 1, n ∈ N : n1−α > 2, t ∈ R. Then

i)

∣

∣An (EZ2,k, t)− (EZ2,k) (t)
∣

∣ ≤ ω1

(

EZ2,k,
1

nα

)

+
(

1− h
(

n1−α − 2
))

‖EZ2,k‖∞ =: µ, (113)

and

ii)
∥

∥An (EZ2,k)− EZ2,k

∥

∥

∞ ≤ µ. (114)

For EZ2,k ∈ CuB (R) we get lim
n→∞

An (EZ2,k) = EZ2,k, pointwise and uniformly.

The speed of convergence is max
(

1
nα ,
(

1− h
(

n1−α − 2
)))

.

Proof. The results come from Proposition 25.

Moreover, we present the next

Corollary 32. Assume i = 1, 2, 3, 5 and k = 1, 2, 3. Let 0 < β < 1, t ∈ [t1, t2], where

t1, t2 ∈ R, with t1 < t2, and n ∈ N : n1−β > 2. Then

i)

|An (EZi,k, t)− (EZi,k) (t)| ≤

2 (ψ (1))−1

√
π























(

ω1

(

D
1

2

t− (EZi,k) ,
1
nβ

)

[t1,t]

+ ω1

(

D
1

2

∗t (EZi,k) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)(

∥

∥

∥

∥

D
1

2

t− (EZi,k)

∥

∥

∥

∥

∞,[t1,t]

√

(t− t1) +

∥

∥

∥

∥

D
1

2

∗t (EZi,k)

∥

∥

∥

∥

∞,[t,t2]

√

(t2 − t)

)}

,

(115)
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and

ii)

‖An (EZi,k)− (EZi,k)‖∞ ≤ 2 (ψ (1))−1

√
π























(

sup
t∈[t1,t2]

ω1

(

D
1

2

t− (EZi,k) ,
1
nβ

)

[t1,t]

+ sup
t∈[t1,t2]

ω1

(

D
1

2

∗t (EZi,k) ,
1
nβ

)

[t,t2]

)

n
β
2

+

(

1− h
(

n1−β − 2
)

2

)

√

(t2 − t1)

(

sup
t∈[t1,t2]

∥

∥

∥

∥

D
1

2

t− (EZi,k)

∥

∥

∥

∥

∞,[t1,t]

+ sup
t∈[t1,t2]

∥

∥

∥

∥

D
1

2

∗t (EZi,k)

∥

∥

∥

∥

∞,[t,t2]

)}

<∞.

(116)

Proof. From Corollary 29.
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