SOME PROPERTIES OF TRACE CLASS P-DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by
Ap (A) :=exptr(PlnA).
In this paper we present some fundamental properties of this determinant.
Among others we show that
tr (PA
< tr(PA) < exp [tr (PA) tr (PAil) —1]
Ap (A)
and

< % <exp [tr (PA™Y) tr (PA) — 1],

for A >0 and P > 0 with P € By (H) and tr (P) = 1.

1. INTRODUCTION

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / ME (),
Sp(T)

where F ()) is a projection valued measure and Sp (T') is the spectrum of T. The
measure pp := 7 o /. becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp (/ lntduT> .
0

Apg (T) := exp (7 (In(|T1))) ,
where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to

If T is invertible, then
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be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z] = 1, defined by

A, (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [8].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

(1.2) o lAeill* =Y NAL1 =141

iel jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) 14]l5 := <Z A6i|2>

icl
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in (% (I), one checks that By (H) is a vector space
and that ||-||, is a norm on Bs (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A|z|| = ||Az|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A||, = [||A]|l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[A]l, = | A",

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(1) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), =Y (Ae;,Be;) =Y _(B"Aeie;)
i€l il
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

(1.5) [A]l < [| Al

iel’
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for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, [T Ally < 1T 1Al

(#ii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1Al ==Y (|Al i, ei) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei},cr - We denote by By (H) the set of trace class operators in B (H).
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[A]l,
for any A€ By (H);

(i1) By (H) is an operator ideal in B (H), i.e.

B(H)Bi (H)B(H) < Bi(H);
(iti) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup {(A, B), | B € By (H), |Bl,<1};

(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) = (Aej,e;),

i€l

where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2TP'Y/? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [4] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) Pl/z) .

In this paper we present some fundamental properties of this determinant. Among
others we show that

tr (PA)
S Ar(A)

Ap(4)
" [tr(pATY)
for A>0and P > 0 with P € By (H) and tr (P) = 1.

1 <exp [tr (PA)tr (PA™") —1]

and
< exp [tr (PA_l) tr (PA) — 1] ,

2. MAIN PROPERTIES
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties

(i) continuity: the map A — Ap(A) is norm continuous;

(ii) power equality: Ap(A?) = Ap(A)t for all £ > 0;

(iii) homogeneity: Ap(tA) =tA;(A) and Ap(t]) =t for all ¢t > 0;

(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
We have the following result:

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € 0,1],

(2.1) Ap((L—t)A+tB) > [Ap (A)]' " [Ap(B)].
Proof. By the operator concavity of In on (0, c0) we have
In((l1-t)A+tB)>(1—t)lnA+tlnB
for all A, B> 0and ¢t € [0,1].
If we multiply both sides by P/2 then we get
PY2[In((1 —t) A+tB)] P*? > (1 —t) P*/?(In A) P*/? 4 tPY/? (In B) P'/?

for all A, B> 0 and ¢t € [0,1].
By taking the trace, we derive

tr(Pln((1—-¢t)A+tB)) > (1—t)tr (PlnA)+ttr(PlnB)
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forall A, B>0andte€0,1].
Now, if we take the exponential, then we obtain
exp[tr(Pln((1 —t)A+tB))] > exp[(l1—t)tr(PlnA)+ttr(PlnB)]
= [exp (tr (PIn A))]" " [exp (PIn B)]*
for all A, B> 0 and ¢ € [0,1], and the inequality (2.1) is proved. O
We define the logarithmic mean of two positive numbers a, b by

lng:?na if b 7& a,
L(a,b) :=

a if b= a.
The following Hermite-Hadamard type integral inequalities hold:
Corollary 1. Let P > 0 with P € By (H) and tr (P) =1, then for all A, B >0

1
(2.2) / Ap((1—t)A+tB)dt > L(Ap (A),Ap(B)).
0
Proof. If we take the integral over ¢t € [0, 1] in (2.1), then we get

/01 Ap((1 —t)A+tB)dt > /01 [Ap (A)]' " [Ap (B) dt
=L(Ap(A),Ap(B))

for all A, B > 0, which proves (2.2). |
Corollary 2. Let P > 0 with P € By (H) and tr (P) =1, then for all A, B >0
A+ B ! 1/2 1/2
(2.3) Ap > [ [Ap((1—t)A+tB)]/*[Ap (tA+ (1 —1t)B)]/"dt.
0

Proof. We get from (2.1) for t = 1/2 that
A+ B
A (257) 2 10n (AN 180 (B2,

If we replace A by (1 —t) A+ tB and B by tA + (1 — t) B we obtain

Ap <AJ2FB> > [Ap (1- ) A+ tB)'? [Ap (tA+ (1 - 1) B)]'/?.

By taking the integral, we derive the desired result (2.3). O

We can provide some upper and lower bounds for Ap (A) as follows:

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(2.4) aexp [l —atr (PA™")] < Ap(A) <aexp[a” ' tr(PA) —1].

In particular

tr (PA) 4
(2.5) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
7AP (A) ex r Y r —
(2.6) < AT <exp [tr (PA™") tr (PA) —1].

The first inequalities in (2.5) and 2.6) are best possible from (2.4).
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Proof. 1t is well know that, if f is differentiable convex on an interval I, then for
all u, v € I we have

frw) (w=v) > f(u) = f(v) = f'(v) (u—0).
If we write this inequality for f (¢t) = —Int, we get for all u,v > 0 that

1 1
—a(u—v)zmv—ln’uZ—;(u—v),

namely

(2.7) 1(ufv)Slnuflnvgl(ufv)
u v

for u,v > 0.

If we use the continuous functional calculus for selfadjoint operators, we have
from (2.7) that

(2.8) I—-aA'<InA-lna<a'A-1T

for the operator A > 0 and positive number a.
If we multiply both sides of (2.8) by P'/? we get

(29) P —aP"?A7' PV < PV (nA) P'? — (na) P < a”' PY/2APY? — P,

for the operator A > 0 and positive number a.
If we take the trace in (2.9), then we get

tr P —atr (Pl/QA_lpl/Q) < tr (Pl/2 (In A) Pl/Z) — (Ina)tr P
<a ltr (Pl/QAPl/Q) —tr P,
namely
(2.10) l—atr (PA™") <tr((nA)P)—Ina<a 'tr(PA) -1
Now, if we take the exponential in (2.10) we derive

exp [tr ((In A) P)]

exp [1 —atr (PAil)] < <exp [ail tr (PA) — 1] ,

for the operator A > 0 and positive number a, which is the desired inequalities
(2.4).

The inequality (2.5) follows by (2.4) on taking a = tr (PA) while (2.6) follows
by (2.4) for a = [tr (PA’l)]f1 .

Now, consider the function f (t) = texp [t~! tr (PA) — 1], ¢t > 0, then

F1(t) =exp [t tr (PA) — 1] + texp [t tr (PA) — 1] <tr(PA))

12
=exp [t tr (PA) — 1] (1 b (fA)> .

We have that f’ (t9) = 0 for tp = tr (PA) which shows that f is strictly decreasing
on (0,tr (PA)) and strictly increasing on (tr (PA),cc). Therefore

inf | f(0) = f (ix (PA)) = tr (P4),

te (0,00

which proves that the first inequality in (2.5) is best possible.
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Also if we take the function g (¢) = texp [1 —ttr (PA™1)], ¢ > 0, then
g @) =exp[l—ttr(PA™")] —ttr (PA ) exp [l —ttr (PA™)]
= exp [1 —ttr (PAil)] (1 —ttr (PAil)) ,

which shows that ¢ is strictly increasing on (0, [tr (PA*I)]A) and strictly de-
creasing on ([tr (PA_I)} ! ,oo) , therefore

sup g (t) =g ([or (PA)]7") = [er (PAY)] ",

te(0,00)

which shows that the first inequality is best possible in (2.6) O

Corollary 3. For any A, B > 0 and a > 0, we have
1
(2.11) aexp (1—2atr [P (A—1+B—1)])
1
< / Ap((1-t)A+tB)dt < avp(a,P,A,B),
0
where
exp(a™ " (tr(PB)—tr(PA))+tr(PA)—1)—exp(tr(PA)—1)

] a~1(tr(PB)—tr(PA))
¥ (a, P, A, B) = if tr(PB) # tr (PA),

exp (tr (PA) — 1) if tr (PB) # tr (PA).

In particular, we have

(2.12) <tr {P (AlgBl)D_l < /01 Ap((1—t)A+tB)dt.

Proof. From (2.4) we have

aexp [1 —atr (P (1 —t)A—i—tB]*l)}
<Ap((1-t)A+1tB)
<aexp[a 'tr (P[(1-t)A+tB])—1],

for all ¢ € [0,1], which gives by integration that
1
a/ exp [1 —atr (P [(1—¢t)A+ tB]_l)] dt
0
1
< / Ap((1—t)A+tB)dt
0

1
< a/ exp [a” " tr (P[(1—t) A+tB]) — 1] dt.
0
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Now, observe that

/1 exp [a” ' tr (P[(1—t)A+tB]) — 1] dt

0

- /1 exp [a™' [(1—¢)tr (PA) + ttr (PB)] — 1] dt
0

1
= / exp [a™! (tr (PB) — tr (PA))t + tr (PA) — 1] dt.
0
Since
exp(atp)—expf ¢ a0,

1
/ exp (ot + B) dt =
0 expfifa=0

hence
/1 exp [a" (tr (PB) — tr (PA))t + tr (PA) — 1] dt = % (a, P, A, B),
0

which proves the second inequality in (2.11).
Using the Jensen inequality for exp we have

/01 exp [1 —atr (P (1 —t)A+tB]‘1)] dt
> ([ [1-au(Pla-n Ao )] a)
~ exp ([1 atr (p (/01 & —t)A+tB]1dt>>D ,

where for the last equality we used the continuity of the map B(H) > T +—
tr (PT).

The function g (u) = u~1, u > 0 is operator convex and by Hermite-Hadamard
inequality for operator convex functions, we have, see [1]

A+ B
2

- ' -1 L —1
> S/O((l—t)A+tB) dt < o (A7 4+ B7Y)

for A, B > 0.
By multiplying both sides by P/2? we get

—1 1
pl/2 (A;B) pl/? g/ PY2(1—t)A+tB)~" PV2dt
0

S P1/2 (Afl +B71) P1/2

DO | =

and by taking the trace, we get
(2.13)

{4+ B\ !
( )
2
Chis gives,

1—atr <P </01 (¢ t)A+tB]_1dt>) >1- %atr [P(A7'+B )],

tr < /1 tr [P((l - t)A+tB)‘1] dt < %tr [P(A™'+B7)].
0
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which implies that

1
exp ([1 —atr <P (/ (1—t)A+tB]" dt))})
0
> exp (1 - %atr [P (A71 + Bl)]>
and the first inequality is also obtained. ([l

3. RELATED RESULTS

We also have the following upper bounds:

Proposition 2. Let P > 0 with P € By (H) and tr (P) = 1. If A satisfies the
condition

(3.1) 0<mI<A<MI

for some constants 0 < m < M, then

(3.2) tr (]?A) < exp [tr (PA) tr (PA™!) — 1]
<o} MmMm (14w (Pa) P))
<o (30 [ (pa?) - ey’ )
. <1 (M m) )
- 4 mM

and

(3.3) 1 Ap (_/i) — <exp [tr (PA™!) tr (PA) — 1]

<o (3 h A a(pa)p))

< exp (;Mm&m {tr (PA?) — (tr (PA))Q} 1/2>

<e 17<M — m)2
S RV
Proof. In [2] we proved among others that, if Sp(S) C [m, M] C (0,00) and @ €

Bi (H) and @ > 0, then
tr (QS) tr (QS™1)

0 < 5 -1
[tr (Q)]
IM=m 1 (g 0r(@5)
= 2 mM tr(Q)t (’S tr (Q) ‘Q>
1M —-—m tr(QSz)_ tr (QS) 2]'/?
= 2w [n(@) (tr(@))}
< L -m)?
- 4 mM
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By taking S = A and @ = P we obtain the desired bounds in (3.2) and (3.3). O

Corollary 4. Let P > 0 with P € By (H) and tr(P) = 1. If A, B satisfy the
conditions 0 <m < A, B < M, then

(3.4)  exp (-iW) tr <P<A;B>) S/OIAP((l—t)A—HB)dt

<o(#(57))

< /O Ap ((1—1) A+tB)] " dt

and

(3.5) exp <—im> tr

{4 B\ !
( >
2

IN
N =

tr [P (A~ +B71)].
Proof. From (3.2) we get

Ap((1-t)A+tB) < tr(P((1-t)A+tB))

exp (iW) Ap((1—t)A+tB)

IN

for all t € [0,1].
If we take the integral, then we get

/OlAp((l—t)A—i—tB)dt
o(r(52)

< exp (iW) /OlAp<<1—t>A+tB>du

which proves (3.4).
From (3.3) we get

[tr (PA—l)]*l < Ap(A) <exp (leMm]W> [tr (PA_l)}—l 7

namely
tr (PA™') > [Ap (A" > exp (_4m.7\4> tr (PA™'),

which implies that

tr (p((1 —t)A+tB)*1) > [Ap((1—t)A+tB)] "

exp (1(Mm)2> tr (P((l —t) A+ tB)_1> :

Y

4 mM
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By taking the integral, we get
1
(3.6) / tr(P(=0A+tB)")at
0

z/WAﬂa—wA+ﬂm*ﬁ

> exp <—im> /Oltr (P((l A+ tB)_l) dt.

and since

{4+ B\ !
P( )
2

hence by (3.6) we get (3.5). O

tr

g/o tr [P((1—t)A+tB)‘1} dtg%tr [P(A™'+B7Y)],

Some different upper bounds are as follows:

Proposition 3. With the assumptions of Proposition 2 we have

tr (PA) _
1< Ap(A) <exp [tr (PA) tr (PA™") —1]
< exp [tr (PA)tr (PAiQ) —tr (PAil)]
( { LMty (P|A — tr (PA) 1p]) )
<exp | tr (PA) x
LM = m)tr (P[A? — 5 (PA) L )

1 M?—m? 2 2]1/2
LA [ (PA2) - (ir (PA)’]

<exp | tr (PA) x

2O =) [or (A=) — (r (a-2))?]
-1 M 2 tr (PA)
< exp 4(1+><m—1> Wi
< exp i(l+m> <J\n/;[1> ]
and.
Ap (A) —1
1< W < exp [tr (PA ) tr (PA) — 1]
< exp [ir(PAY (PA2) —1x (PA1)]
( { 1M —m? 0 (PA — tr (PA) 14]) )
<exp [ tr (PA) x
L(M —m)tr (P|A™2 —tr (PA™2) 1))
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2

VAL o (PA2) = (i (PA))?] v

<exp | tr (PA) X
e a2y

1 my\ (M 2 tr (PA)
< — - -
= &P 4(1+M><m 1) M

<o |t (1+7) MY

~<n | = AR I (el

=P U M) U

Proof. Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m, M] for some scalars m, M with m < M. If f is a continuously

differentiable convex function on [m, M] and P € By (H)\ {0}, P > 0 and tr (P) =
1, then we have [3]

(3.7 0 <t (Pf(4)) - f (tr (PA))
< tr(PF (A) A) — tr (PA)tr (Pf' (1))
L7 (M) f ()]t (P14 — t (PA) Ly
- { LM = m) tx (P (4) -t (PF (4)) L)
{ L) — 7 ()] [or (PA2) — ar (PAY?]
.
L1 —m) [ix (PLF(A)?) - (o (Pr ()]
< LU ) = f () (M = m).

Now, if we take f (t) =t~!, ¢ > 0, then we get
1

~ tr (PA)

<tr(PA)tr (PA™?) —tr (PA™Y)

IMm” 4y (P |A — tr (PA) 1x])

0<tr(PA™Y)

(M —m)tr (P|A™2 —tr (PA72) 1g])

Wosm o (PA%) — (i (P2))°] v

1/2

which gives that
tr (PA_l) tr (PA) —1
[tr (PA)tr (PA™?) —tr (PA™Y)]



SOME PROPERTIES OF TRACE CLASS P-DETERMINANT 13

LM —m? ¢ (P|A — tr (PA) 1y|)

<wpayxd 2"
- 3 (M —m)tr (P|A2 — tr (PA™?) 14|)
v o (p) e cpay]
<tr(PA) x 971/2
5 —m) [1r (PA=) — (ir (PA2))’]
1 m~ /M % tr (PA)
<1 (1+3) (B 1) =E
1 my (M ?
_4@+M)(m_g

Remark 1. Observe that for 0 < m < M, the difference
1(M=m)® 1(M+m)(M—m)

D (m, M) := 4 mM 4 m2M?2
1M -m)’ L M+m
4 mM mM

takes both negative and positive values showing that neither of the absolute upper
bounds from Propositions 2 and 3 is always best.

Proposition 4. With the assumptions of Proposition 2, we have

(3.8) 1< Z}Eij; < exp [tr (PA)tr (PA™") — 1]
(V7 —vim)° (VA7 vim)
< exp e tr (PA)| <exp B —
and
Ap (A) -1
(3.9 < W < exp [tr (PA ) tr (PA) — 1}
(VA7 vim) (V7 — vim)°
< exp -~ tr (PA)| <exp E—

Proof. If t € [m, M] C (0,00), then obviously
(M =t)(m™" —t7") >0,
which is equivalent to
m+M>mMt™ !+t

for all t € [m, M].
Using the functional calculus for selfadjoint operators, we then get

(m+M)I >mMA '+ A
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forO<ml <A< MI.
If we multiply both sides with P/? we get

(m+ M) P >mMPY2A-1pY/2 L pt/2opl/2
and is we take the trace, then we get
m+ M >mMtr (PA™") +tr (PA),

namely
m+ M _1\ | tr(PA)
- > il Sl

—" >tr (PA™Y) + —-
This gives
tr (PA™Y) — [tr (PA)] "
1 1 1
<=4 — - tr (PA) — [tr (PA)] ™"

m M mM

_ (\/% - \/%)2 _ (%TM for (PA)Y2 — [ (PA)]_1/2>2 < (\/lﬁ - &)2

which implies, by multiplying with tr (PA) that

2
tr (PA™") tr (PA) 1<< 1 L >2t (PA) < ( M_\/@
r r — —_— - — r
“\vm VM - m
The proposition is thus proved. O
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