UPPER AND LOWER BOUNDS FOR TRACE CLASS
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr (PlnA).

In this paper we showed among others that

1 <exp [ﬁ (tr (PA2) — [tr (PA)}Z)}

28 el o)
and
1< exp {ﬁ (tr (PAQ) — [tr (PA)b)]
Ap (A)

= tr (PA) exp (tr (PA) tr (PA—1) —1)
< exp {% (tr (PA?) - [tr (PA)]Q)} )

where A is satisfying the condition 0 < mI < A < M1 for some constants
m < M and P > 0 with P € By (H) and tr (P) = 1.

1. INTRODUCTION

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (),
Sp(T)

where E (X) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).
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For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntd,uT) .
0

If T is invertible, then
Ark (T) :=exp (7 (In(|T1))),

where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [9].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B(H) then

(1.2) Do lAell* =Y 1A =141

i€l jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) Al = (erm)
iel
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5 . From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4°]l,-

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:
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Theorem 1. We have:
(i) (B2 (H), ||-ll5) s a Hilbert space with inner product

(14) <A, B>2 = Z<A6i,B€Z‘> = Z<B*A€Z‘,€i>
iel icl

and the definition does not depend on the choice of the orthonormal basis {e;};c;;

(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) IAT |y, I TAll, <IN Al

(iii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C B2 (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1A = (Al esse) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

e;;..7. We denote by by the set of trace class operators in .
ier - Wed by By (H) th f 1 in B(H
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = [[A"][, and [[All, < [ All,
forany A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C By (H);
(iti) We have
By (H) By (H) = By (H);
(iv) We have
[Ally = sup{{A,B), | BBz (H), |Bll, <1};
(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) =Y (Aej,e;),
icl
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since PY/2 € By (H), TP'? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (Pl/QTPl/Q)

forall T € B(H).

If T >0, then PY/2T P2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [4] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tA,(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [5] we obtained the following results:

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],

(1.13) Ap((1—t)A+tB) > [Ap (A)]' "' [Ap (B)].
and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(1.14) aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr(PA) —1].

In particular

tr (PA) 1
(1.15) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
(1.16) 1< Br) - <exp [tr (PA™Y) tr (PA) —1].

- e (PATH]
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The first inequalities in (1.15) and 1.16) are best possible from (1.14).

Motivated by the above results, in this paper we showed among others that

1 <exp [221\4 (tr (PA?%) — [tr (PA)]Z)}

< ijﬁ; < exp [an (v (PA2) ~[tr (PA)]QH

and

1 <exp ﬁ (tr (PA?) — [tr(PA)]2>}

_ Ap (4)
tr (PA)exp (tr (PA) tr (PA-1) — 1)

(tr (PA?) — [tr (PA)]Q)] )

where A is satisfying the condition 0 < mI < A < M for some constants m < M
and P > 0 with P € By (H) and tr (P) = 1.

<

< (1
S eXp (o —
2m

2. MAIN RESULTS
We also have the following lower and upper bounds:

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1, then for the operator A
satisfying the condition 0 < mI < A < M1 for some constants m < M and a > 0
we have the inequalities

(2.1) 1 <exp [; min {a®,m*} (a7% = 2a" " tr (PA™") + tr (PA—2))}

o aexp [a=ttr (PA) — 1]
B Ap (4)

< exp B max {a®, M?} (a? —2a" " tr (PA™") + tr (PAQ))]
and
(22) 1<exp [; min {a®,m?} (a7% — 2a" " tr (PA™Y) +tr (PA—2))}

Ap (A)
~ aexp(atr (PA-1) —1)

o B max {a®, M*} (a™* = 2a™" tr (PA™) + tr (PA_Z))] _

Proof. Observe that

b b b
b—t 9 1 b—a
(2.3) /a e dt:b/a t dt—/a Edt: o —Inb+1Ina

for any a, b > 0.
If b > a, then

1(b—a)’ bh—t 1(b—a)’
. — > > — .
(2.4) 5 7/@ dt > 3
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If @ > b then ,

b—1t “h—t Yt—b

[t [t [t

a U p U p U
and

1(b—a)’ @b 1(b—a)’
2. — > dt > — .
25) el R e

Therefore, by (2.4) and (2.5) we have for any a, b > 0 that

/bbtdt>1 (b—a)® 1 (b—a)’a??

. 12 7 2max2{a,b} 2 a2b?max? {a,b}
1 (b— a)* min?{a, b}

B a’b?

(ail — b71)2 min {aQ, b2}

N = N

and

/bb—tdt< 1 (b—a)’® 1 (b—a)®a®®
o t? = 2min%{a,b}  2a2b2min’{a,b}
1 (b—a)’max? {a,b}
2 a?b?

1

3 (a_l — b_l)2 max {az, b2}

By the representation (2.3) we then get

IN

b—a

(2.6) %(a‘l—b_1)2min{a2,b2} < " —Inb+1Ina
< % (a_l — b_l)zmax {a2,b2}
for a, b > 0.
By swapping a with b in (2.6) we derive
(2.7) %(ail—bflfmin{a{bz}§lnb—lna—bia
< % (ail — bil)QmaX {a2,b2}
for a, b > 0.
Since 0 < mI < A < MI, then by (2.6),
% (a_l — b_1)2min {aQ,mQ} < b;a —Inb+1na
1

IN

3 (a_l — b_l)Qmax {aQ,MZ} .

Now, if we use the functional calculus for A > 0 and a > 0, then we get
L. 22\, —2 —1 4—1 -2
§m1n{a ,m*}(a™?—2aTAT + A7?)
<a'A—-mmA+Ina-1

< -max {a®, M*} (a™® =227 "AT + A7?).

1
2
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If we multiply both sides by P'/2 and take the trace, then we get,
% min {a®,m*} (a7% — 2a" " tr (PA™') 4+ tr (PA™?))
<a 'tr (PA) —tr(PlnA) +1na—1

< %max {a®>, M?} (a™ = 227" tr (PA™!) +tr (PAT?)).

By taking the exponential, we get

exp [; min {a®,m*} (a7% = 24" tr (PA™") + tr (PA_Q))]
aexp [a~!tr (PA) — 1]
exp [tr (P1n A)]

< oxp [ max {02, 07} (077 = 207t (PAT) - (PA))|.

which proves (2.1).
From (2.7) we get

% (a_ll—A_l)zmin {az,mQ} <InA—-Ina—1I+aA"?!

< % (aill — A71)2max{a2,M2}.

If we multiply both sides by P'/? and take the trace, then we get the desired result
(2.2). O

Corollary 1. Let P > 0 with P € By (H) and tr (P) = 1, then for the operator A
satisfying the condition 0 < ml < A < M1 for some constants m < M,

(2.8) 1 <exp [;mz (tr (PA7?) — [tr (PAl)]2>]

- [tr (PA™Y)] “exp [tr (PA™!) tr (PA) — 1]
B Ap (A)

< exp BMQ (tr (PA™?) = [tr (PAl)]Z)}

and
(2.9) 1 <exp Bmz (tr (PA*Q) — [tr (PAl)]Q)}
_Ar(4)
Sl (PA)

< exp [;MQ (tr (PA72) [t (PA‘l)]Qﬂ .

Proof. Since 0 < M1 <A1 <m™' hence M~! < tr (PA_l) <m™1, namely
m < [tr (PA’l)]fl < M. Then for a = [tr (PA’l)]fl we have

min {a®, m*} = min { [tr (PA™Y)] -2 ,m2} =m?,

max {aZ,MQ} = max{[tr (PA_I)]72,M2} = M?>



8 S.S. DRAGOMIR

and
a™?—2a""tr (PA™Y) +tr (PA™?)
= [tr (PAY)])* =2 [tr (PA™Y)] tr (PA™Y) + tr (PA™2)
=t (PA2) — [or (P47’

and by (2.1) and (2.2) we derive (2.8) and (2.9).

Theorem 7. With the assumptions of Theorem 6 we have
1
2max? {a, M}

aexp [a~!tr (PA) — 1]
- Ap(A)
1

2min? {a,m}

(2.10) 1 <exp [ (a* — 2atr (PA) + tr (PAZ))]

< exp { (a® —2atr (PA) + tr (PAQ))} .

and
1
2max? {a, M'}
Ap(4)
~ aexp(atr (PA~1Y) —1)
1

2min? {a,m}

(2.11) 1 <exp [ (a® — 2atr (PA) + tr (PAQ))}

< exp [ (a® — 2atr (PA) +tr (PAQ))} .

Proof. From the above considerations, we also have

1 (b—a)’ b—a 1 (b—a)?
2.12 = < —Inb+hnae< =—5——
(2.12) 2max?{a,b} — a notmaes 2 min® {a, b}
and

1 (b—a)’ b—a 1 (b—a)?

F Gl I R NP <z

2 max? {a,b} — " e b~ 2min?{a,b}

for all a,b > 0.
If b € [m, M] C (0,00), then by (2.12) we get

(2.13) b-a?<’"% lnbimna
a

2max? {a, M'}
1

So I

2min* {a, m}

(b—a)’.

Using the functional calculus, we get

1

—————(a® — 2aA + A*
2max2{a,M}(a ad+4%)

<a'A—-lmA+lha-1< (a2—2aA—|—A2)

2min? {a,m}

foralla>0and 0 <mlI <A< MI.

If we multiply both sides by P/ and take the trace, then we get (2.10).

O
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Corollary 2. With the assumptions of Corollary 1,

(2.14) 1 <exp {2]1\4 (tr (P4?) ~ [tr (PA)]Q)}
< fo:ﬁ; < exp [;n (tr (P42) = [tr (PA)]Qﬂ
and
1 2
(2.15) 1 <exp {2]\4 (tr (PAQ) — [tr (PA)] ﬂ

< Ap(A)
= 5 (PA) oxp (tr (PA) tr (PA 1) — 1)

< exp {27171 (tr (PA2) — [tr (PA)]2)] .

Proof. Observe that m < tr (PA) < M and by taking a = tr (PA) in (2.10) and
(2.11), we derive (2.14) and (2.15). |

3. SOME RELATED RESULTS
In [2] we proved among others that, if P € B (H), A, B € B(H) and

(3.1a) (A—mB)(MB—A)>0,m M €R
with M > m, then
(3.2) 0 < tr (PA?) tr (PB?) — [tr (PBA)]?

< [(M tr (PB?) — tr (PBA)) (tr (PAB) — mtr (PB?))]

< 3 (M —m)* [ir (PB))’
and
(3.3) 0 <tr(PA?) tr (PB?) — [tr (PBA)]?

(M —m)? [tr (PB)]” — tr (PB?) tr [P (A — mB) (MB — A)]

IN

1
4
L ar —m? [ (PB2))?.

IN
S

If we take B = I and assume that (A —mlI)(MI — A) > 0, then we get for P €
B (H) with tr (P) =1 that

(3.4) 0 < tr (PA?) — [tr (PA))® < [(M — tr (PA)) (tr (PA) —m))]

(3.5) 0 < tr (PA?) — [tr (PA)]?

(M —m)* —tr[P(A—mI) (MI—A)] <= (M—-m)*.

| =
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It is clear that, if 0 < mI < A < MI then the inequalities (3.4) and (3.5) are
valid. Since 0 < M~1 < A=! <m~!, then by applying (3.4) and (3.5) we also get

(3.6) 0 < tr (PA2) — [tr (PA))]* < [(m~" — tr (PA™Y)) (tx (PA™Y) — M)

1M —m)
-4 mM
and
(3.7) 0<tr(PA™%) — [tr (PA™Y)]?
< T [P (a7 - M) (- A7)
1M —m)?
—4 mM

Proposition 2. Let P > 0 with P € By (H) and tr (P) = 1, then for the operator
A satisfying the condition 0 < mI < A < MI for some constants m < M,

[tr (PA™Y)] “exp [tr (PA™Y) tr (PA) — 1]

(3.8) _ A ]
< exp _;MQ (tr (PA72) = [i (pA—l)f)}
< exp éw [(m" — tr (PA™Y)) (tr (PAY) — M‘l)]}
and
Ap(4) [1 2 -2} _ [tp —1\12
39) Py S e :iM (tr (PA™2) = [ir (PA7Y)] )}
<exp | 102 [t~ (PATY) (1 (PA™Y) - Ml)ﬂ
[1(M —m)*M
= o _sml'

The proof follows by Corollary 1 and the inequality (3.6). Similar upper bounds
may be obtained by employing the inequality (3.7).

Proposition 3. With the assumptions of Proposition 2,

(3.10) m < exp :2171 (tr (PA2) — [tr (PA)]Q)}
< exp % (M —tr (PA)) (tr (PA) — m)}
<o [
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and
Ap(4)
tr (PA)exp (tr (PA) tr (PA~1) — 1)
! <tr (PA?) — [t (PA)]2>]

m

(3.11)

< exp

< exp —% (M —tr (PA)) (tr (PA) — m)]

(M —m)*

1
< —
< eXp 8 m

The proof follows by Corollary 2 and the inequality (3.4).
In [3] we also obtained the following inequality

1 (M —m)

0 < tr (PA?) tr (PB?) — [tr (PBA)]® < 1 [tr (PBA)]?,

m

provided that A and B satisfy the condition (3.1a) and P € Bf (H).
If P> 0 with P € By (H) and tr (P) = 1, then for the operator A satisfying the
condition 0 < mI < A < MI we obtain

0 < tr (PA?) — [tr (PA)? < LM —m)opay
- —4 mM '
Therefore, from Corollary 2 we obtain the following upper bounds
tr (PA) 1(M —m)? )
) < S LA
(3.12) Ap(d) S eXP | o T [tr (PA)]
and
Ap (A
(3.13) p(4) -
tr (PA)exp (tr (PA) tr (PA=1) — 1)
1(M —m)? 2
< i S
<exp |5 T [ (Pa)
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