UPPER AND LOWER BOUNDS FOR TRACE CLASS
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES VIA KANTOROVICH’S CONSTANT

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr (PlnA).
In this paper we show, among others that, if A is an operator satisfying the
condition 0 < mI < A < MI, then

) [%_ e tr(P|A—%(m+]\l)I‘)}

1<K (%
Ap (A)

= M—tr(PA) tr(PA)—m
m_ M-m )N~ M-m

P )
m m

where K (-) is Kantorovich’s constant.

1. INTRODUCTION

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T / ME (),
Sp(T)

where E ()) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7o F becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntduT> .
0

Apk (T) := exp (1 (In([T7))),

If T is invertible, then
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where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z| = 1, defined by

AL (A) :=exp (ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [6].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > [l Aei|* < 0.

el
It is well know that, if {e;},.; and {f;},; are orthonormal bases for H and A €
B (H) then

(1.2) Do lAeil® =D AL =D 1A f1?

il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) lAll, = (ZAeil )
i€l
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)"/?.

Because |||A| z|| = ||Az]| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A||, = |||A||l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4"l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B)y =Y (Ae;,Be;) = > (B*Aeie;)
el el

and the definition does not depend on the choice of the orthonormal basis {e;};c;;
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(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, ([T Ally < 1T 1Al

(iti) Bo (H) is an operator ideal in B (H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) Al == (Al e, e:) < o0.
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) A€ Bi(H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have
(1.8) [A[ly = 1A%, and [|A]l; < [[Ally
for any A € By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C B (H);
(11i) We have
By (H)By (H) =B, (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};
(v) (Bi(H),||l;) is a Banach space.
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = > (Aei,e;),
icl
where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
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(1) If A€ B (H) and T € B(H), then AT, TA € B, (H),
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, IT|;

(#3) tr (+) is a bounded linear functional on By (H) with |tr|| = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we agssume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP) . Also, since P'/? € By (H), TPY? € By (H),
hence PY/2T P2 and TPY2PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (PI/QTP”Q)

forall T € B(H).

If T > 0, then PY/2TP'Y/2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((In A) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(i) power equality: Ap(A') = Ap(A)* for all t > 0;
(ili) homogeneity: Ap(tA) = tA,(A) and Ap(tI) =1t for all t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [2] we obtained the following results:
Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],
Ap((1—t) A+1tB) > [Ap (A [Ap(B)]'.

and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr (PA) —1].

In particular

tr (PA) .
1< <exp |tr (PA)tr (PA -1
< Ap(a) SO [ (PA)r (PATY) 1]
and Aid
< #)71 <exp [tr (PA™) tr (PA) —1].
[br (PA~1)]
We consider the Kantorovich’s constant defined by
h+1)°
(1.13) K= 2D o

4h
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The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K (+) for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(1.14) wbﬂwfgkﬁ(%)w—%”g(y—wa+ubgkﬁ(%)&—%”
where a,b >0, v € [0,1], r = min{l — v,v} and R = max {1 — v, v}.

The first inequality in (1.14) was obtained by Zou et al. in [8] while the second
by Liao et al. [7].

Motivated by the above results, we provide in this paper some upper and lower
in bounds in terms of Kantorovich’s constant for the quantity

Ap(A)

M—tr(PA) tr(PA)—m
m~ M-m N T M-m

under the assumptions that P > 0 with P € By (H) and tr (P) = 1, while A is an
operator satisfying the condition 0 < mI < A < M.

2. MAIN RESULTS

We start with the following main result:

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1. If A is an operator
satisfying the condition 0 < mI < A < MI, then

M\ 3wt ee(PlA= 5 (man )]
(2.1) 1<K<)
m
Ap(A)
— M—tr(PA) tr(PA)—m

m~ M-m N T M-m

[+ 3755 tr(P|A— L (m+M)1])]
<x() =R (5)
m

Proof. Assume that t € [m, M] and consider v = 72 € [0,1]. Then

, 1 1 1 [t-m 1
min{l —v,v} =5 - ‘2' 2_M—m_2'
1 1 1
— - t— = (m+M
2 M—m‘ g (m+ *
1 1 1 |t-m 1
1— = — —_ = = = —_ =
max { v,v} 2—1—1/ 2’ 5 ‘Mm 2’
1 1
== t— = (m+M
2+M—m‘ (m + w
M—t t—m
1 M= M=t
(L =v)m+vM = grrm+

and

1— Mt t—m
m VMY = mM—m M M—m
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By using (1.14) we get

1_ 1 |y 1
1—t t—m MY |2 wris [t= 3 (0| Mt
) — mM= mMM
m

1 1 1,
brarmleded] L,
mM—m ] M=m

A
IA
=

7 N\

ShIS

for t € [m, M].
By taking the log in (2.2) we get

(2.3) - __;1 Inm + J\Z__”;l In M
[ T ()
+M77I;Inm+M7 In M
Slntﬁ[i—!—M mt—m—&—M)Han(%)
+M:mlnm+At4_TZ%lnM
gan(Jn\Q n J\]\f:; Inm + ]\Z_—mm In M

for t € [m, M].

If 0 < mI <A < MI, then by using the continuous functional calculus for
selfadjoint operators we get from (2.3) that

MI—-A A—mlI
2.4 1 ——— +InM
(2:4) an—m+n M—m

< {11 L ‘A;(erM)IH an<]\ﬂ/;r)
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If we multiply the inequality (2.4) both sides by P'/? we get

MP—P1/2AP1/2 PI/QAP1/27mP
(2.5) Inm 7 +InM =

1 1 1 M
<|Zp__~- pl/2 _ - 1/2
_{2P 7 P/elA 2(m—i—M)I‘P ]lnk(m>

—m

MP_P1/2AP1/2 P1/2AP1/2_mP
+Inm +In M
M —-—m M—m

< PY2(InA) P'/?

1 1
<|zP+-——pl/2
- {2 JrM—m

Al (m+ M) I‘ PW] In K (M>
2 m

I MP — PY/2ApPY/? 1MP1/2AP1/2me
— 1/2 1/2 1/2 1/2_
<k () ppmnMEZETAL Ty P TADT P
m M—m ——
Now, if we take the trace and use the fact that tr (P) = 1, then we get
lnmw_g_lnMw
-m M—m
1 1 ) "
< 9 - a5 -
< [2 Mmtr<P‘A Q(m—i—M)I‘)}an(m)
M — tr (PA) tr (PA) —m
‘Hani_m—HnMMi_m
< tr[P (In A)]
S 3 PlA— - M) I nk [ =
_{2+M—mtr< ‘ 5 (m+ M) m n <m>
M —tr (PA PA) —
M) (P
“m M
<InK (M) +1nmw —l—lnMw,
m M—_m U=

M—tr(PA) tr(PA)—m)

(2.6) 1n(m M—m M M=m

[4 -3 tr(P|A— L (m+M)I])] By .
<K (M) v ln (mMMi(:;A) M r(;f)7n7rL)
m

<tr[P(InA)]
M [543k tr(PlA=3 (m+aD)1])] M—tr(PA)  tx(PA)—m
<InK < ) + In (m M—m M—m )
m

<InK <M> +1n (m M;;i(f:A) Mtr(}\lzé)wtm) .
m

Now, if we take the exp in (2.6), then we get the desired result (2.1).
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Corollary 1. With the assumption of Theorem 6, we have the alternative inequality

K M [%*Wtr(P|A_1*%(M_1+m_1)ID]
2.7 1< —
en  1=x ()
m*lfn-(PAfl) tr(PA’l)—AI’1
M mi-mM-1 5 mI-m-1

AéfiAle tr(PlAT =3 (M~ +m 1 )1])
pavl! J M

m m

IN

Proof. If we write the inequality for A~! that satisfies the condition 0 < M 1T <
A~ <m™!], then

. <m1 > (3 ety r(PlAT = (M m )1
1<
<K (5=

—1
Ap(ATY)
m—1l_tr(PA—1) tr(PA—1)—m—1
m—1_pM—1 mi m—1_p—1

[K (E—ll)} [+ =t tr(PlA =3 (a1 pm ) 1)

m-1
<K (]\/[1> )

<

IN

namely
M\ B e a(PlAT =3 (0w )1])]
()
m
[Ap(4)] "
- m—1—tr(PA=1)  tr(PA—1)—M—1 —1
(M m-1-M-1 gy m-I-mM-1 >
[3+ g tr(P[AT =3 (M w1 )]
< [K (Mﬂ i . (M> |
" m
which is equivalent to the desired result (2.7). 0

Corollary 2. Let P> 0 with P € By (H) and tr (P) =1. If 0 <mI < A, B< MI
for positive numbers m, M, then

1
(2.8) © (A, B,m,M,P) < Jo




UPPER AND LOWER BOUNDS

where
PB4
(H T M=m -1
O (A4 B.m. M. P) CEIGERY if tr[P(B—A)]#0
, b, m, ) = -

1if tr[P(B—A)] =
Proof. From (2.7) we get

M—tr(P[(1—t)A+4tB]) tr(P[(1—t)A4tB])—m
m M—m M—m

< Ap((1—t)A+tB)

M M—tr(P[(1—t)A+tB]) tr(P[(1—t) A+tB])—m
<K ( m M—m M M—m
m

for t € [0,1].
If we take the integral over ¢ € [0,1], then we get

M—m M M—m

M—tr(P[(1—t)A+tB]) tr(P[(1—t) A+tB])—m
(2.9) / m dt

/ Ap((1—t)A+tB)dt

M— tr(P[(l t)A+tB]) tr(P[(1— t)A+tB]) m
( )/ m M T—m dt
1
tr(P[(1—t)A+tB]) tr(P[(1— t)A+tB]) m
/ m M—m M dt
0
M—m
dt

I—m
M —m !
= mM-m N[ M—m / <
0
IrP(B—A))

—m e —M—m
— e M <M) / <M> dt
m 0 m

tr[P(B—A)]

1 [y v e=r
— 3= M m/ <M) dt.
0 m

Since for a > 0, a # 1 and b € R we have

1 b_
/ a¥®dy = 2 1,
0 blna

Observe that

tr(P[(1—t) A+tB])

35

then for tr [P (B — A)] #0

1 M ttr[fj\/gé:ﬂ/&)] (M) “[%}f;A)] 1
/ (> 4t = wip(E—m)]
tr — M
0 m M—-—m In (E)

and by (2.9) we derive (2.8).

3. RELATED RESULTS

We also have:
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Theorem 7. Let P > 0 with P € By (H) and tr (P) = 1. If A is an operator
satisfying the condition 0 < ml < A < M1, then

1 1 In M41nm
M 3 — AT [tr(P In A) - I hiHnm
3.1 1< |K (=
an =[x ()
In M—tr(Pln A) tr(PIln A)—Inm
< In M—Inm + In M—Inm M
= Ap(A)
%+m|tr(PlnA)7w‘
o) ()
m m

Proof. Assume that m!="M" = exps, then s = (1 — v)Inm+vIn M € [lnm,In M]
which gives that

s—1Inm

V= InM—Inm’

Also
in {1 — }_17 1 71nM—Hnm
foin V¥ 2 InM-—Ilnm 5 2
and
1 InM +1Inm
1— = _ _
max { v,v} 2+lnM1nm’s 2 ’

From (1.14) we have

1 1 _ InM+lnm
M 2 lnﬂlflnm|s 2 |
exps <exps |K|—
m
InM —s s—Inm
m
“InM—1Inm InM —1Inm
M %+1nM£1nm|S_lnM;mm|
<exps|K|—
m
namely
M %71 Mll ‘Silnlw-;lnm,
1< |K
m
In M—s s—Inm
< ln]wflnmm—’— lanlan
- exp s
In M+Inm
2

IN

1 1
\1 §+lnM—lnvn|Si
m

for s € [lnm,In M].



UPPER AND LOWER BOUNDS 11

If0<m<A< M and P € By (H) with tr (P) = 1, then Inm < tr(PlnA4) <
In M and for s = tr (PIn A) we deduce

1 1
M §7lnM71nm‘tr(PlnA)7
m

In M—tr(PlIn A) tr(Pln A)—Inm
In M—Inm m+ In M—Inm M

- exp [tr (Pln A)]

[ M 4 i [tr(Pln A)— nMplem |
K=

In M+1lnm |
2

<
m
and the inequality (3.1) is proved. O
Corollary 3. With the assumption of Theorem 6, we have
1 1 In M+4+Inm
M §—m|tr(PlnA)—f|
(32 1< [K (ﬂ
m

< Ap(4)

>~ —1
tr(Pln A)—Inm 4 r_1 InM—tr(PlnA) 1
( In M—Inm M + M _—Inm '

1 1 In M+Inm
M\ 3 T (P In A)— e | "
< ()] < (5):
" m

Proof. If we write the inequality (3.1) for A~! that satisfies the condition 0 <
M~ < A=' <m~1], then we obtain

1 1 —1
-1 Tm’“(m“‘ )

IN

_lnm l4mm—? ’
I E—

M—l
Inm™?! 7tr(P In Ail)

_1, tf(PmA™Y)-ImnM~"
< Inm—1-InM-1 M + nm-1_InM-1
- A (A7
1 1 1\ _Inm~l4imm—1
m_l §+ln m—1l_lnM—1 |tr(PlnA )7 2 ‘ m_l
<K|—— <M
=2\ =8\t
namely

M %_mMilnm‘tr(PlnA)_lnm_glnM|

m
tr(Pln A)—Inm 5 r— In M—tr(PInA) _
< WM L+ " InM-Inm !
= A (AT
1 1 In m4-1n M
§+m|tr(PlnA)—f|
e (%)
m m
for P € By (H) with tr (P) = 1.
This proves (3.2). O

REFERENCES

[1] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent
results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online
https://ajmaa.org/searchroot/files/pdf/vi9n1/v19ilpl.pdf].



12

2]

S.S. DRAGOMIR

S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert
spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.

B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55
(1952), 520-530.

J. L. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.

J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht’s Theorem,
Sci. Math., 1 (1998), 307-310.

S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim’s inequality, J.
Math. Inequal., Volume 15 (2021), Number 4, 1637-1645

W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with
the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.

G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math.
Inequal., 5 (2011), 551-556.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,

MELBOURNE CiTY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,

ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





