RGMA

UPPER AND LOWER BOUNDS FOR TRACE CLASS P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES VIA KANTOROVICH'S CONSTANT

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \ge 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A)$$
.

In this paper we show, among others that, if A is an operator satisfying the condition $0 < mI \le A \le MI,$ then

$$1 \leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} - \frac{1}{M-m}\operatorname{tr}\left(P\left|A - \frac{1}{2}(m+M)I\right|\right)\right]}$$

$$\leq \frac{\Delta_P(A)}{m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA) - m}{M-m}}}$$

$$\leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} + \frac{1}{M-m}\operatorname{tr}\left(P\left|A - \frac{1}{2}(m+M)I\right|\right)\right]} \leq K \left(\frac{M}{m}\right),$$

where $K(\cdot)$ is Kantorovich's constant.

1. Introduction

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE\left(\lambda\right),\,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (FK-determinant) is defined by

$$\Delta_{FK}\left(T\right) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

where $\ln(|T|)$ is defined by the use of functional calculus.

2

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \geq 0$) if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. In particular, A > 0 means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp \langle \ln Ax, x \rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [6].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$(1.1) \sum_{i \in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ are orthonormal bases for H and $A\in\mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}\left(H\right)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}\left(H\right)$. For $A\in\mathcal{B}_{2}\left(H\right)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i\in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_2(H), \|\cdot\|_2)$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$;

(ii) We have the inequalities

$$||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_2(H)$ and, if $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_2(H)$ with

$$(1.6) $||AT||_2, ||TA||_2 \le ||T|| \, ||A||_2$$$

(iii) $\mathcal{B}_2(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_{2}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{2}(H)$$
.

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}\left(H\right)$ is trace class if

(1.7)
$$||A||_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$. The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

- (i) $A \in \mathcal{B}_1(H)$;
- $(ii) |A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

$$||A||_1 = ||A^*||_1 \quad and \quad ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_1(H)\mathcal{B}(H)\subseteq\mathcal{B}_1(H)$$
;

(iii) We have

$$\mathcal{B}_{2}\left(H\right) \mathcal{B}_{2}\left(H\right) =\mathcal{B}_{1}\left(H\right) ;$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If
$$A \in \mathcal{B}_1(H)$$
 then $A^* \in \mathcal{B}_1(H)$ and

(1.10)
$$\operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$$

(ii) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \ \ and \ |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

- (iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$;
- (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

4

If $T \geq 0$, then $P^{1/2}TP^{1/2} \geq 0$, which implies that $\operatorname{tr}(PT) \geq 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n \to \infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the Pdeterminant of the positive invertible operator A by

$$(1.12) \quad \Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right).$$

Assume that $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_x(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \le B$ implies $\Delta_P(A) \le \Delta_P(B)$.

In the recent paper [2] we obtained the following results:

Theorem 4. Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A, B > 0and $t \in [0,1]$,

$$\Delta_P((1-t) A + tB) \ge \left[\Delta_P(A)\right]^{1-t} \left[\Delta_P(B)\right]^t.$$

and

Theorem 5. Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A > 0 and a > 0 we have the double inequality

$$a \exp \left[1 - a \operatorname{tr}\left(PA^{-1}\right)\right] \le \Delta_P(A) \le a \exp \left[a^{-1} \operatorname{tr}\left(PA\right) - 1\right].$$

In particular

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \leq \frac{\Delta_{P}\left(A\right)}{\left[\operatorname{tr}\left(PA^{-1}\right)\right]^{-1}} \leq \exp\left[\operatorname{tr}\left(PA^{-1}\right)\operatorname{tr}\left(PA\right) - 1\right].$$

We consider the Kantorovich's constant defined by

(1.13)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$

The function K is decreasing on (0,1) and increasing on $[1,\infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K(\frac{1}{h})$ for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds

$$(1.14) \qquad \left(a^{1-\nu}b^{\nu} \le K^r \left(\frac{a}{b}\right) a^{1-\nu}b^{\nu} \le (1-\nu) a + \nu b \le K^R \left(\frac{a}{b}\right) a^{1-\nu}b^{\nu}$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$.

The first inequality in (1.14) was obtained by Zou et al. in [8] while the second by Liao et al. [7].

Motivated by the above results, we provide in this paper some upper and lower in bounds in terms of *Kantorovich's constant* for the quantity

$$\frac{\Delta_{P}\left(A\right)}{m^{\frac{M-\operatorname{tr}\left(PA\right)}{M-m}}M^{\frac{\operatorname{tr}\left(PA\right)-m}{M-m}}}$$

under the assumptions that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, while A is an operator satisfying the condition $0 < mI \le A \le MI$.

2. Main Results

We start with the following main result:

Theorem 6. Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If A is an operator satisfying the condition $0 < mI \leq A \leq MI$, then

$$(2.1) 1 \leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} - \frac{1}{M-m}\operatorname{tr}\left(P\left|A - \frac{1}{2}(m+M)I\right|\right)\right]}$$

$$\leq \frac{\Delta_P(A)}{m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA) - m}{M-m}}}$$

$$\leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} + \frac{1}{M-m}\operatorname{tr}\left(P\left|A - \frac{1}{2}(m+M)I\right|\right)\right]} \leq K \left(\frac{M}{m}\right).$$

Proof. Assume that $t \in [m, M]$ and consider $\nu = \frac{t-m}{M-m} \in [0, 1]$. Then

$$\min \{1 - \nu, \nu\} = \frac{1}{2} - \left| \nu - \frac{1}{2} \right| = \frac{1}{2} - \left| \frac{t - m}{M - m} - \frac{1}{2} \right|$$
$$= \frac{1}{2} - \frac{1}{M - m} \left| t - \frac{1}{2} (m + M) \right|,$$

$$\max \{1 - \nu, \nu\} = \frac{1}{2} + \left|\nu - \frac{1}{2}\right| = \frac{1}{2} + \left|\frac{t - m}{M - m} - \frac{1}{2}\right|$$
$$= \frac{1}{2} + \frac{1}{M - m}\left|t - \frac{1}{2}\left(m + M\right)\right|,$$

$$(1 - \nu) m + \nu M = \frac{M - t}{M - m} m + \frac{t - m}{M - m} M = t$$

and

$$m^{1-\nu}M^{\nu} = m^{\frac{M-t}{M-m}}M^{\frac{t-m}{M-m}}$$

By using (1.14) we get

6

$$(2.2) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} \le \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} - \frac{1}{M-m} \left| t - \frac{1}{2} (m+M) \right|} m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}}$$

$$\le t \le \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} + \frac{1}{M-m} \left| t - \frac{1}{2} (m+M) \right|} m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} M$$

for $t \in [m, M]$.

By taking the log in (2.2) we get

$$(2.3) \qquad \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \left[\frac{1}{2} - \frac{1}{M-m}\left|t - \frac{1}{2}\left(m+M\right)\right|\right]\ln K\left(\frac{M}{m}\right)$$

$$+ \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \ln t \leq \left[\frac{1}{2} + \frac{1}{M-m}\left|t - \frac{1}{2}\left(m+M\right)\right|\right]\ln K\left(\frac{M}{m}\right)$$

$$+ \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \ln K\left(\frac{M}{m}\right) + \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

for $t \in [m, M]$.

If $0 < mI \le A \le MI$, then by using the continuous functional calculus for selfadjoint operators we get from (2.3) that

$$(2.4) \qquad \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}$$

$$\leq \left[\frac{1}{2}I - \frac{1}{M - m} \left| A - \frac{1}{2} (m + M) I \right| \right] \ln K \left(\frac{M}{m} \right)$$

$$+ \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}$$

$$\leq \ln A \leq \left[\frac{1}{2}I + \frac{1}{M - m} \left| A - \frac{1}{2} (m + M) I \right| \right] \ln K \left(\frac{M}{m} \right)$$

$$+ \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}$$

$$\leq \ln K \left(\frac{M}{m} \right) I + \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}.$$

If we multiply the inequality (2.4) both sides by $P^{1/2}$ we get

$$\begin{aligned} &(2.5) \qquad \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m} \\ &\leq \left[\frac{1}{2}P - \frac{1}{M - m}P^{1/2} \left| A - \frac{1}{2}\left(m + M\right)I \right| P^{1/2} \right] \ln K \left(\frac{M}{m}\right) \\ &+ \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m} \\ &\leq P^{1/2} \left(\ln A\right) P^{1/2} \\ &\leq \left[\frac{1}{2}P + \frac{1}{M - m}P^{1/2} \left| A - \frac{1}{2}\left(m + M\right)I \right| P^{1/2} \right] \ln K \left(\frac{M}{m}\right) \\ &+ \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m} \\ &\leq \ln K \left(\frac{M}{m}\right) P + \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m}. \end{aligned}$$

Now, if we take the trace and use the fact that tr(P) = 1, then we get

$$\ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - m}{M - m}$$

$$\leq \left[\frac{1}{2} - \frac{1}{M - m} \operatorname{tr}\left(P \left| A - \frac{1}{2}(m + M)I \right| \right) \right] \ln K \left(\frac{M}{m}\right)$$

$$+ \ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - m}{M - m}$$

$$\leq \operatorname{tr}[P(\ln A)]$$

$$\leq \left[\frac{1}{2} + \frac{1}{M - m} \operatorname{tr}\left(P \left| A - \frac{1}{2}(m + M)I \right| \right) \right] \ln K \left(\frac{M}{m}\right)$$

$$+ \ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - m}{M - m}$$

$$\leq \ln K \left(\frac{M}{m}\right) + \ln m \frac{M - P \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - m}{M - m},$$

namely

$$(2.6) \qquad \ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right)$$

$$\leq \ln K\left(\frac{M}{m}\right)^{\left[\frac{1}{2}-\frac{1}{M-m}\operatorname{tr}\left(P\big|A-\frac{1}{2}(m+M)I\big|\right)\right]} + \ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right)$$

$$\leq \operatorname{tr}\left[P\left(\ln A\right)\right]$$

$$\leq \ln K\left(\frac{M}{m}\right)^{\left[\frac{1}{2}+\frac{1}{M-m}\operatorname{tr}\left(P\big|A-\frac{1}{2}(m+M)I\big|\right)\right]} + \ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right)$$

$$\leq \ln K\left(\frac{M}{m}\right) + \ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right).$$

Now, if we take the exp in (2.6), then we get the desired result (2.1).

Corollary 1. With the assumption of Theorem 6, we have the alternative inequality

$$(2.7) 1 \leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} - \frac{1}{m^{-1} - M^{-1}} \operatorname{tr}\left(P|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I|\right)\right]}$$

$$\leq \frac{M^{\frac{m^{-1} - \operatorname{tr}\left(PA^{-1}\right)}{m^{-1} - M^{-1}}}{\Delta_{P}(A)}$$

$$\leq \left[K\left(\frac{M}{m}\right)\right]^{\left[\frac{1}{2} + \frac{1}{m^{-1} - M^{-1}} \operatorname{tr}\left(P|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I|\right)\right]} \leq K\left(\frac{M}{m}\right).$$

Proof. If we write the inequality for A^{-1} that satisfies the condition $0 < M^{-1}I \le A^{-1} \le m^{-1}I$, then

$$\begin{split} &1 \leq K \left(\frac{m^{-1}}{M^{-1}}\right)^{\left[\frac{1}{2} - \frac{1}{m^{-1} - M^{-1}} \operatorname{tr}\left(P \middle| A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I \middle|\right)\right]} \\ &\leq \frac{\Delta_P(A^{-1})}{M^{-\frac{m^{-1} - \operatorname{tr}\left(PA^{-1}\right)}{m^{-1} - M^{-1}}} m^{-\frac{\operatorname{tr}\left(PA^{-1}\right) - M^{-1}}{m^{-1} - M^{-1}}} \\ &\leq \left[K \left(\frac{m^{-1}}{M^{-1}}\right)\right]^{\left[\frac{1}{2} + \frac{1}{m^{-1} - M^{-1}} \operatorname{tr}\left(P \middle| A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I \middle|\right)\right]} \\ &\leq K \left(\frac{m^{-1}}{M^{-1}}\right), \end{split}$$

namely

8

$$1 \leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} - \frac{1}{m^{-1} - M^{-1}} \operatorname{tr}\left(P \middle| A^{-1} - \frac{1}{2} \left(M^{-1} + m^{-1}\right)I\right|\right)\right]}$$

$$\leq \frac{\left[\Delta_{P}(A)\right]^{-1}}{\left(M^{\frac{m^{-1} - \operatorname{tr}\left(PA^{-1}\right)}{m^{-1} - M^{-1}}} m^{\frac{\operatorname{tr}\left(PA^{-1}\right) - M^{-1}}{m^{-1} - M^{-1}}}\right)^{-1}}$$

$$\leq \left[K\left(\frac{M}{m}\right)\right]^{\left[\frac{1}{2} + \frac{1}{m^{-1} - M^{-1}} \operatorname{tr}\left(P \middle| A^{-1} - \frac{1}{2} \left(M^{-1} + m^{-1}\right)I\right|\right)\right]} \leq K\left(\frac{M}{m}\right),$$

which is equivalent to the desired result (2.7).

Corollary 2. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If $0 < mI \le A$, $B \le MI$ for positive numbers m, M, then

(2.8)
$$\Theta(A, B, m, M, P) \leq \frac{\int_0^1 \Delta_P((1-t) A + tB) dt}{\frac{m^{\frac{M-1}{M-m}} M^{\frac{1-m}{M-m}}}{\ln(\frac{M}{m})}}$$
$$\leq K\left(\frac{M}{m}\right) \Theta(A, B, m, M, P),$$

where

$$\Theta\left(A,B,m,M,P\right) := \begin{cases} \frac{\left(\frac{M}{m}\right)^{\frac{\operatorname{tr}\left[P\left(B-A\right)\right]}{M-m}-1}}{\frac{\operatorname{tr}\left[P\left(B-A\right)\right]}{M-m}} & \text{if } \operatorname{tr}\left[P\left(B-A\right)\right] \neq 0, \\ 1 & \text{if } \operatorname{tr}\left[P\left(B-A\right)\right] = 0. \end{cases}$$

Proof. From (2.7) we get

$$\begin{split} & m^{\frac{M-\operatorname{tr}(P[(1-t)A+tB])}{M-m}} M^{\frac{\operatorname{tr}(P[(1-t)A+tB])-m}{M-m}} \\ & \leq \Delta_P \big((1-t)\,A+tB \big) \\ & \leq K \left(\frac{M}{m} \right) m^{\frac{M-\operatorname{tr}(P[(1-t)A+tB])}{M-m}} M^{\frac{\operatorname{tr}(P[(1-t)A+tB])-m}{M-m}} \end{split}$$

for $t \in [0, 1]$.

If we take the integral over $t \in [0, 1]$, then we get

(2.9)
$$\int_{0}^{1} m^{\frac{M - \operatorname{tr}(P[(1-t)A + tB])}{M - m}} M^{\frac{\operatorname{tr}(P[(1-t)A + tB]) - m}{M - m}} dt$$

$$\leq \int_{0}^{1} \Delta_{P}((1-t)A + tB) dt$$

$$\leq K \left(\frac{M}{m}\right) \int_{0}^{1} m^{\frac{M - \operatorname{tr}(P[(1-t)A + tB])}{M - m}} M^{\frac{\operatorname{tr}(P[(1-t)A + tB]) - m}{M - m}} dt.$$

Observe that

$$\begin{split} & \int_{0}^{1} m^{\frac{\operatorname{tr}(P[(1-t)A+tB])}{M-m}} M^{\frac{\operatorname{tr}(P[(1-t)A+tB])-m}{M-m}} dt \\ & = m^{\frac{M}{M-m}} M^{\frac{-m}{M-m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{\frac{\operatorname{tr}(P[(1-t)A+tB])}{M-m}} dt \\ & = m^{\frac{M}{M-m}} M^{\frac{-m}{M-m}} \left(\frac{M}{m}\right)^{\frac{1}{M-m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{t^{\frac{\operatorname{tr}[P(B-A)]}{M-m}}} dt \\ & = m^{\frac{M-1}{M-m}} M^{\frac{1-m}{M-m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{t^{\frac{\operatorname{tr}[P(B-A)]}{M-m}}} dt. \end{split}$$

Since for a > 0, $a \neq 1$ and $b \in \mathbb{R}$ we have

$$\int_0^1 a^{bx} dx = \frac{a^b - 1}{b \ln a},$$

then for $\operatorname{tr}\left[P\left(B-A\right)\right]\neq0$

$$\int_0^1 \left(\frac{M}{m}\right)^{t\frac{\operatorname{tr}[P(B-A)]}{M-m}} dt = \frac{\left(\frac{M}{m}\right)^{\frac{\operatorname{tr}[P(B-A)]}{M-m}} - 1}{\frac{\operatorname{tr}[P(B-A)]}{M-m} \ln\left(\frac{M}{m}\right)}$$

and by (2.9) we derive (2.8).

3. Related Results

We also have:

Theorem 7. Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If A is an operator satisfying the condition $0 < mI \leq A \leq MI$, then

$$(3.1) 1 \leq \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|}$$

$$\leq \frac{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M}{\Delta_P(A)}$$

$$\leq \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|} \leq K \left(\frac{M}{m} \right).$$

Proof. Assume that $m^{1-\nu}M^{\nu} = \exp s$, then $s = (1-\nu)\ln m + \nu \ln M \in [\ln m, \ln M]$ which gives that

$$\nu = \frac{s - \ln m}{\ln M - \ln m}.$$

Also

$$\min \{1 - \nu, \nu\} = \frac{1}{2} - \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|$$

and

$$\max\{1 - \nu, \nu\} = \frac{1}{2} + \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|$$

From (1.14) we have

$$\begin{split} \exp s & \leq \exp s \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|} \\ & \leq \frac{\ln M - s}{\ln M - \ln m} m + \frac{s - \ln m}{\ln M - \ln m} M \\ & \leq \exp s \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|} \end{split}$$

namely

$$\begin{split} 1 &\leq \left[K\left(\frac{M}{m}\right)\right]^{\frac{1}{2} - \frac{1}{\ln M - \ln m}\left|s - \frac{\ln M + \ln m}{2}\right|} \\ &\leq \frac{\frac{\ln M - s}{\ln M - \ln m}m + \frac{s - \ln m}{\ln M - \ln m}M}{\exp s} \\ &\leq \left[K\left(\frac{M}{m}\right)\right]^{\frac{1}{2} + \frac{1}{\ln M - \ln m}\left|s - \frac{\ln M + \ln m}{2}\right|} \end{split}$$

for $s \in [\ln m, \ln M]$.

If $0 < m \le A \le M$ and $P \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P) = 1$, then $\ln m \le \operatorname{tr}(P \ln A) \le \ln M$ and for $s = \operatorname{tr}(P \ln A)$ we deduce

$$1 \leq \left[K\left(\frac{M}{m}\right)\right]^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|}$$

$$\leq \frac{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M}{\exp\left[\operatorname{tr}\left(P \ln A\right)\right]}$$

$$\leq \left[K\left(\frac{M}{m}\right)\right]^{\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|}$$

and the inequality (3.1) is proved.

Corollary 3. With the assumption of Theorem 6, we have

(3.2)
$$1 \leq \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \text{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|} \\ \leq \frac{\Delta_P(A)}{\left(\frac{\text{tr}(P \ln A) - \ln m}{\ln M - \ln m} M^{-1} + \frac{\ln M - \text{tr}(P \ln A)}{\ln M - \ln m} m^{-1} \right)^{-1}} \\ \leq \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| \text{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|} \leq K \left(\frac{M}{m} \right).$$

Proof. If we write the inequality (3.1) for A^{-1} that satisfies the condition $0 < M^{-1}I \le A^{-1} \le m^{-1}I$, then we obtain

$$1 \leq K \left(\frac{m^{-1}}{M^{-1}}\right)^{\frac{1}{2} - \frac{1}{\ln m^{-1} - \ln M^{-1}}} \left| \operatorname{tr}(P \ln A^{-1}) - \frac{\ln m^{-1} + \ln M^{-1}}{2} \right|$$

$$\leq \frac{\frac{\ln m^{-1} - \operatorname{tr}(P \ln A^{-1})}{\ln m^{-1} - \ln M^{-1}} M^{-1} + \frac{\operatorname{tr}(P \ln A^{-1}) - \ln M^{-1}}{\ln m^{-1} - \ln M^{-1}} m^{-1}}{\Delta_x (A^{-1})}$$

$$\leq K \left(\frac{m^{-1}}{M^{-1}}\right)^{\frac{1}{2} + \frac{1}{\ln m^{-1} - \ln M^{-1}}} \left| \operatorname{tr}(P \ln A^{-1}) - \frac{\ln m^{-1} + \ln M^{-1}}{2} \right| \leq M \left(\frac{m^{-1}}{M^{-1}}\right),$$

namely

$$\begin{split} 1 &\leq K \left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln m + \ln M}{2} \right|} \\ &\leq \frac{\frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M^{-1} + \frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m^{-1}}{\Delta_x (A^{-1})} \\ &\leq K \left(\frac{M}{m}\right)^{\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln m + \ln M}{2} \right|} \leq K \left(\frac{M}{m}\right), \end{split}$$

for $P \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P) = 1$. This proves (3.2).

REFERENCES

[1] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].

- [2] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.
- [3] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530.
- [4] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.
- [5] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [6] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645
- [7] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [8] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa