ON SOME UPPER AND LOWER BOUNDS FOR TRACE CLASS
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr (PlnA).

In this paper we show among others that, if A is an operator satisfying the
condition 0 < mI < A < MI, then

1
1 <exp EnE tr[P(MI— A)(A— ml)}}
< Ap(A)
— M—tr(PA) tr(PA)—m
m- M-m M M-m
< exp 2tr[P(MI—A)(A—mI)]i|
[ 2m
1 1 /(M 2
< exp 2 (M —tr (PA)) (tr (PA) — m)} < exp |:8 (E — 1) :l .

1. INTRODUCTION

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (),
Sp(T)

where E (X) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp </ lntd,uT> .
0

If T is invertible, then
Apg (T) = exp (t (In (|T7))) ,
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where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z| = 1, defined by

AL (A) :=exp (ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [9].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > [l Aei|* < 0.

el
It is well know that, if {e;},.; and {f;},; are orthonormal bases for H and A €
B (H) then

(1.2) Do lAeil® =D AL =D 1A f1?

il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) lAll, = (ZAeil )
i€l
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)"/?.

Because |||A| z|| = ||Az]| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A||, = |||A||l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4"l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B)y =Y (Ae;,Be;) = > (B*Aeie;)
el el

and the definition does not depend on the choice of the orthonormal basis {e;};c;;
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(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, ([T Ally < 1T 1Al

(iti) Bo (H) is an operator ideal in B (H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) Al == (Al e, e:) < o0.
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) A€ Bi(H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have
(1.8) [A[ly = 1A%, and [|A]l; < [[Ally
for any A € By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C B (H);
(11i) We have
By (H)By (H) =B, (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};
(v) (Bi(H),||l;) is a Banach space.
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = > (Aei,e;),
icl
where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
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(1) If A€ B (H) and T € B(H), then AT, TA € B, (H),
(1.11) tr (AT) = tr (TA) and |tx (AT)| < | A, [T

(i) tr (+) s a bounded linear functional on By (H) with |tr|| = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we agssume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP) . Also, since P'/% € By (H), TPY? € By (H),
hence PY/2T P2 and TPY/2PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € By (H),

tr (PT) = tr (TP) = tr (Pl/QTPl/Q)

forall T € B(H).

If T >0, then PY/2TP'Y/? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 3 T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr (PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [4] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(i) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) = tA,(A) and Ap(tI) =t for all ¢ > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [5] we obtained the following results:

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],
Ap((1—t) A+tB) > [Ap (A)]' " [Ap (B).

and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

aexp [l —atr (PA™")] < Ap(A) <aexp[a ' tr(PA) —1].

In particular

r(PA 1
1< tA](sz; < exp [tr (PA) tr (PA™") — 1]
and

Ap (4) B
S pa T S ol (PAT) r(PA) 1]

Kittaneh and Manasrah [10], [11] provided a refinement and an additive reverse
for Young inequality as follows:

(1.13) r(\f—\/g)zg(l—u)a—i—ub_al—ubySR(I_\/B)Q
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where a, b > 0, v € [0,1], r = min {1 — v,v} and R = max {1l —v,v}. The case
v = % reduces (1.13) to an identity.

For some operator versions of (1.13) see [10] and [11].

We also have the following inequality that provides a refinement and a reverse
for the celebrated Young’s inequality

1 (b_ a’)2 1—viv 1 (b_a)2
(1.14) iy(l—u)m <(1l-v)a+vb—a Vb < iy(l—u)m
for any a, b > 0 and v € [0,1].

This result was obtained in 1978 by Cartwright and Field [1] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

Motivated by the above results, in this paper we show among others that, if A
is an operator satisfying the condition 0 < mI < A < M1, then

1
< _— _ _
1 <exp BE tr[P(MI—A) (A mI)]}
Ap(A)
M—tr(PA) tr(PA)—m
m~ M-m N M-m

<

< exp 572 tr[P(MI—A)(A- mI)]}
< exp ﬁ (M —tr (PA)) (tr (PA) — m)} < exp |é <Aﬂf - 1> ] .

2. MAIN RESULTS

The first result is as follows:

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1. Assume that 0 < mI <
A< MI, then

AP(A) < exp {
M—tr(PA) tr(PA)—m —
m M-m M M—m Mm

21) 1< tr [P (MI — A) (A — mlI)]

< exp [Mlm (M — tr (PA)) (tr (PA) — m)}

<exp [4]\/1[m (M — m)Q} )

Proof. In [2] we obtained the following reverses of Young’s inequality:

1-— b
WD s (1(2) ).
where a, b > 0, v € [0, 1].
This is equivalent, by taking the logarithm, with

1<

(b—a)’

0<In((l—-v)a+vb)—(1—-v)lna—vinb<v(l-v) 5
a

where a, b > 0, v € [0, 1].
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If we take a =m, b= M, t € [m, M] and v = {77 € [0,1], then we get

M —t t—m (M —t) (t —m) (M —m)®
<Int-— Inm — InM <
0<Int M_mnm M—mn < (M—m)2 m
(M —t)(t—m)
h Mm '

Using the continuous functional calculus for selfadjoint operators, we have

MI— A APY? —mI (MI — A)(A—ml)
<ImA-————Inm-———"InM< .
0<ln M—-m nm M—-m = Mm

If we multiply both sides by P'/? we get

MP — PY/2ApY/? PY2APY2 —mPp
< 1/2 1/2 _
0 < P/*(nA)P T Inm = In M
- PY2(MI — A) (A —mlI)PY/?
- Mm ’

If we take the trace and use the fact that tr (P) = 1, then we obtain

_ tr(PA) -

wlnm mlnM

M —m M—-m
lmtr[P(MI—A) (A—mlI)].

0<tr(PlnA)—

<

If we take the exponential, then we get

exp [tr (Pln A)]

(2.2) 1<
exp {M_Mt%g;mlnm—i— WInM}
< exp {Mm tr[P(MI — A) (A—ml)]} .

Observe that

M —tr (PA tr (PA) — “tr b —m
exp | Mt PA) P =m0 e [m (m Mou(Pa) | A )}
M—m M—m
M—tr(PA) tr(PA)—m
=m M—m M—m

and by (2.2) we obtain the first inequality in (2.1).
The function g (t) = (M —t) (t — m) is concave on [m, M] and by Jensen’s in-
equality for trace

tr (Pg (A)) < g(tr (PA)),
for P > 0 with P € By (H) and tr (P) = 1, we have
tr [(MI — A) (A—mI)] < (M —tr (PA)) (tr (PA) —m))

which proves the third inequality in (2.1). O
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Corollary 1. With the assumptions of Theorem 6,

m~ L _tr PA_l) tr(PA_l)—J\l_l
M m1-mM—1 m;m m-I-m-1

Ap(A)
< exp [thr [P (m_ll — A_l) (A_l - M ]]
< exp [mM (mfl —tr (PAfl)) (tr (PAfl) — Mﬁl)]

(2.3) 1

IN

1
< exp ZmM (M —m)?

Proof. Observe that 0 < mI < A < MT implies that 0 < M~ T < A= <m™'I. If
we write the inequality (2.1) for A~!, then we get

—1
1< Ap(A7)

— m~l—tr(PA—T) tr(PA—1)—m—1
M~ mTI-MT T ml-M—1

[P AT (47 - M‘II)]}
i 1
|m~ 1M1
1

< exp
< exp (Trf1 —tr (PAfl)) (tr (PA*I) — Ml)}

< exp

which is equivalent to (2.3). O

In [3] we obtained the following refinement and reverse of Young’s inequality:
1 min {a, b} \*
2.4 —v(l-— 1—-——=
(24) P l?y( v) ( max{a,b}) ]

(I1-v)a+uvd
al-vpv

1 max {a, b} 2
< - _ _
< exp [2u(1 V)<min{a,b} 1> ],
for any a, b > 0 and v € [0,1].

Theorem 7. Let P > 0 with P € By (H) and tr (P) = 1. Assume that 0 < mI <
A< MI, then

(2.5) 1 <exp BE tr[P(MI—A)(A- mI)]}
< Ap(A)
—_ M—tr(PA) tr(PA)—m
m~ M-m N T M-m
[ 1
< exp 2 tr[P(MI—A)(A-— m[)]}
[ 1
< exp py (M —tr (PA)) (tr (PA) — m)}
EN2A.
S exp g E —1 .
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Proof. From (2.4) we have

exp Byu (1~ A";)T
U o[l (1)

for v € [0,1].
By taking the logarithm, we obtain

(2.6) %,, (1-v) (1 - %)2

<In(l-v)m+vM)—(1-v)lnm—vIinM
1 M ?
< — — - -
_21/(1 1/)( 1) ,
for v € [0,1].

If we take a =m, b= M, t € [m, M] and v = {7 € [0,1], then we get

(M —=1t)(t—m) M —t t—m
~— 7 2 <ZInt- 1 — In M
M2 Ve
(M —t)(t—m)
- 2m?

for t € [m, M].
As above, we get the trace inequality

1
e tr[P(MI — A) (A —mI))

<tr(PlnA) - 7M}\—4U(PA) lnm — 74 —m (]\J;A) —m
—-m —-m

tr [P (MI — A) (A —mlI)].

In M

<
— 2m2

If we take the exponential, then we derive

exp [2]1\42 tr [P (MI — A) (A — m])]]
exp [tr (P1n A)]

exp {7]\4;;1(5{4) Inm + 7“(]\1;’3)7;7” In M}

< exp {2;2 tr[P(MI—A)(A- mI)}] ,

which proves the first part of (2.5).
The second part is obvious.
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Corollary 2. With the assumptions of Theorem 6,
1
@.7) 1< exp | Tt [P (m 1 - A7) (A7) - le)]}
1n717tr(PA71) tr(PA71)7N171

\{Z m—1_pm—1 m m—1_pm—1

Ap(A)

<

< oxp | LAt [P (11— A7) (47 - M‘ll)]]

< exp 5

EWaY 2
Sexpg E—l .

3. RELATED RESULTS

Lar? (mt — ot (PATY) (1 (PATY) - M‘l)}

We also have:

Theorem 8. Let P > 0 with P € By (H) and tr (P) = 1. Assume that I < ml <
A< MI, then

(3.1) 0 < InAp(A) — (Inm) = tem (In M) Terte
< (lnM—tr(PlnA))(tr(PlnA)—lnm)1 In M
- InM —Inm n Inm
1 In M
<= - .
_4(1nM 1nm)1n<1nm>

Proof. In the recent paper [2] we obtained the following reverses of Young’s in-
equality as well:

(3.2) 0<(1—-v)a+vb—a b <v(l—v)(a—b)(Ina—Inb)

where a, b > 0, v € [0, 1].
If we take the exponential in (3.2), then we get

exp[(1 —v)a+ vb)
(33) 1 § exp (al—ubu)

b v(1—v)(b—a) b v(l—v)(b—a)
(2 (2 .
(5) =)

Ifweput (1 —v)a+vb=s>0,thenv=77=21-v= z:z and by (3.3) we obtain

<exp[v(1—v)(a—"0)(lna—Ind)]

= exp

(s—a)(b—s)
—a

T 1(b—a)
(3.4) 1< — o < (b> < (b) .
exp (ambbw) a

s}
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Now, we take a =Ilnm, s = tr (Pln A) and b = 1In M, in (3.4) to get

1< exptr (PlnA)

In M—tr(Pln A) tr(Pln A)—In m)

exp((lnm) Wi —Tam (Ip M) =Mt

(In M —tr(P1n A))(tr(Pln A)—In m)

ln M InM—Inm 11,1 M %(1]’1 M—In m)
< (i) (e

~—\Ilnm Inm

By taking the logarithm we then obtain (3.1).
We also have:

Theorem 9. With the assumption of Theorem 8, then

1 1 Inm +1InM
) <(z-— "
(3.5) 0< <2 T (P A) 5 D
2
X (\/lnM— vlnm)
In M—tr(Pln A) tr(Pln A)—Inm
S In AP(A) _ (ln m) In M—Inm (ln M) In M—Inm
1 1 Inm-+InM
<z - _ T
- <2+1nM1nm tr(PIn A) 2 D

X

2
(\/lnM —VIn m)
2
(vlnM — \/lnm) .
Proof. If we take the exponential in (1.13) we get

(3.6) 1< exp [min{l —v,v} (Va—vb) 1

exp [(1 — v)a + vb]
exp (al=vb¥)

< exp [max{1 — v, v} (f - JB) 1

IN

for a, b >0, v €[0,1].

If we put (1 —v)a+vb=s5>0, then v = =2,
1 1 a+b
1 1— = - — —_
min {1 — v, v} 5 b —al® 5|
1 1 a+b
1— = — —_— —
max {1 — v, v} 2+bfa s 5|

and by (3.6) we get

(3.7) 1geXp[(;_bla _a;-b'> (\/5_\/5)}
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for s € [a,b].
Now, we take a =Ilnm, s = tr (PIn A) and b =In M in (3.7) to get

1 1 Inm+InM 2
< - R —
1 <exp [(2 M —Tom tr (Pln A) 5 D (\/lnm \/lnM) }

exptr (Pln A)
= In M—tr(PIn A) tr(PIn A)—Inm
exp ((ln m)  mM-Tmm— (ln M) WM -Tam )

1 1 Inm 4+ In M 2
< . _ 2T ) (Vinm — V. .
< exp [(24—111 T tr (Pln A) 5 D ( Inm 1nM) }

Taking the logarithm, we obtain

1)) (- i)

tr(Pln A)—lnm
7\1) ImM—Inm

) (s - i

1 1
P -
0= (2 InM—Inm tr (Pln A)
In M—tr(Pln A)
< IHAP(A) — (]nm) In M —Tnm

(In

Inm+InM

tr (PlnA) — 5

(i
“\2 InM-Inm

2
S(vlan\/lnm> ,

which proves the desired result.

We also have:

Theorem 10. With the assumptions of Theorem 9,

(3.8) 0<l(tr(PlnA)—lnm)(lnM—tr(PlnA))
) -2 In M
In M —tr(PIn A) tr(Pln A)—Inm
In M—Inm

<IlnAp(A) — (Inm) (In M)~ wrr=tam
1(tr(PInA) —Inm)(In M —tr (Pln A))
2 Inm

(InM —Inm)>.

IN

IN

8lnm

Proof. If we take the exponential in (1.14), then we get

1 (b —a)®
(39) 1 S exp _§V (1 — V) Inax{aqb}‘|
exp[(1 —v)a+ v
S e)_(p (alfubl/)
1 (b —a)®
< exp _§y (1-v) mm{a,b}]

for a, b> 0, v € [0,1].
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If we put (1 —v)a+wvb=s>0,then v = $=% 1 — v = 2=2 and by (3.9) we
derive
1(s—a)(b—ys)
1 -
(3.10) P {2 max {a, b}
1(s— _
S LI [M@S)} _
exp (ambbfa> 2  min{a,b}

Now, we put a =Ilnm, s =tr (PIn A) and b =In M in (3.10) to get

<

1(tr(PInA) —Inm)(InM —tr (PlnA
L < o [JIPIA) ) (0 (P )
exptr(PlnA)

In M—tr(Pln A tr(PlnA)—lnm)

exp ((ln m)W (In M)~ 8r=Twom
1(tr(PlnA) —lnm)(InM —tr(Pln A
SeXp |:2( ( ) lr)l(Tn ( )):l

and by taking the logarithm we obtain the first part of (3.8).
The second part is obvious. O

In [3] we also obtained the following result
1
(3.11) 5Y (1—v)(na—Inb)’min{a,b} < (1 —v)a+vb—a'~b"

< v (1 —v)(Ina —Inb)* max {a, b}

1
2
for any a, b> 0 and v € [0,1].

Theorem 11. With the assumptions of Theorem 9,

(3.12) 0< % (tr (PInA) —Inm) (In M — tr (Pln A))

e

In M —tr(Pln A) tr(Pln A)—Inm

<InAp(A) — (Inm) ®¥-=m (In M) =M-=m

< %(tr(PlnA) “lum) (In M — tr (PIn A))

L
< é [In (In M) — In (Inm)]* In (In M) .

Proof. If we take the exponential in (3.11), then we get
1
1 <exp {21/ (I1-v)(Ina—1In b)2 min {a, b}]

o &P [(1-v)a+ vb]
~  exp(al7vbV)

< exp Ey (1-v)(Ina—Inb)? max{a,b}]
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any a, b> 0 and v € [0,1].
By utilizing a similar argument to the one from Theorem 10 we deduce the

desired result (3.12).

(1]

2]

The details are omitted. O
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