
ON SOME UPPER AND LOWER BOUNDS FOR TRACE CLASS
P -DETERMINANT OF POSITIVE OPERATORS IN HILBERT

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a complex Hilbert space. For a given operator P � 0

with P 2 B1 (H) ; the trace class associated to B (H) and tr (P ) = 1; we de�ne
the P -determinant of the positive invertible operator A by

�P (A) := exp tr (P lnA) :

In this paper we show among others that, if A is an operator satisfying the
condition 0 < mI � A �MI, then

1 � exp
�

1

2M2
tr [P (MI �A) (A�mI)]

�
� �P (A)

m
M�tr(PA)

M�m M
tr(PA)�m
M�m

� exp
�
1

2m2
tr [P (MI �A) (A�mI)]

�
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�
1

2m2
(M � tr (PA)) (tr (PA)�m)

�
� exp

"
1

8

�
M

m
� 1

�2#
:

1. Introduction

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a �nite von Neumann algebra (M; �) with a faithful normal trace.
Let T 2M be normal and jT j := (T �T )1=2 its modulus. By the spectral theorem

one can represent T as an integral

T =

Z
Sp(T )

�dE (�) ;

where E (�) is a projection valued measure and Sp (T ) is the spectrum of T: The
measure �T := � �E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T ) :
For any T 2 M the Fuglede-Kadison determinant (FK-determinant) is de�ned

by

�FK (T ) := exp

�Z 1

0

ln td�jT j

�
:

If T is invertible, then

�FK (T ) := exp (� (ln (jT j))) ;
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where ln (jT j) is de�ned by the use of functional calculus.
Let B(H) be the space of all bounded linear operators on a Hilbert space H,

and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [7], [8], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by

�x(A) := exp hlnAx; xi

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [9].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H; h�; �i) be a complex Hilbert space and feigi2I an orthonormal basis of H:

We say that A 2 B (H) is a Hilbert-Schmidt operator if

(1.1)
X
i2I

kAeik2 <1:

It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.2)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.3) kAk2 :=
 X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H:
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)1=2 :
Because kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-

Schmidt and kAk2 = kjAjk2 : From (1.2) we have that if A 2 B2 (H) ; then A� 2
B2 (H) and kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 1. We have:
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.4) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii

and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
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(ii) We have the inequalities

(1.5) kAk � kAk2
for any A 2 B2 (H) and, if A 2 B2 (H) and T 2 B (H) ; then AT; TA 2 B2 (H)
with

(1.6) kATk2 ; kTAk2 � kTk kAk2
(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) :

If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.7) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) :

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;
(iii) We have

B2 (H)B2 (H) = B1 (H) ;
(iv) We have

kAk1 = sup fhA;Bi2 j B 2 B2 (H) ; kBk2 � 1g ;
(v) (B1 (H) ; k�k1) is a Banach space.

We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.9) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.10) tr (A�) = tr (A);
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(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H),
(1.11) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;
(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) :

Now, if we assume that P � 0 and P 2 B1 (H) ; then for all T 2 B (H) ; PT;
TP 2 B1 (H) and tr (PT ) = tr (TP ) : Also, since P 1=2 2 B2 (H) ; TP 1=2 2 B2 (H),
hence P 1=2TP 1=2 and TP 1=2P 1=2 = TP 2 B1 (H) with tr

�
P 1=2TP 1=2

�
= tr (TP ) :

Therefore, if P � 0 and P 2 B1 (H) ;

tr (PT ) = tr (TP ) = tr
�
P 1=2TP 1=2

�
for all T 2 B (H) :
If T � 0; then P 1=2TP 1=2 � 0; which implies that tr (PT ) � 0 that shows that

the functional B (H) 3 T 7�! tr (PT ) is linear and isotonic functional. Also, by
(1.11), if Tn ! T for n ! 1 in B (H) then limn!1 tr (PTn) = tr (PT ) ; namely
B (H) 3 T 7�! tr (PT ) is also continuous in the norm topology.
For a survey on recent trace inequalities see [4] and the references therein.
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the P -

determinant of the positive invertible operator A by

(1.12) �P (A) := exp tr (P lnA) = exp tr ((lnA)P ) = exp tr
�
P 1=2 (lnA)P 1=2

�
:

Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: We observe that we have
the following elementary properties:

(i) continuity : the map A! �P (A) is norm continuous;
(ii) power equality: �P (At) = �P (A)t for all t > 0;
(iii) homogeneity : �P (tA) = t�x(A) and �P (tI) = t for all t > 0;
(iv) monotonicity : 0 < A � B implies �P (A) � �P (B).
In the recent paper [5] we obtained the following results:

Theorem 4. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A; B > 0
and t 2 [0; 1] ;

�P ((1� t)A+ tB) � [�P (A)]1�t [�P (B)]t :

and

Theorem 5. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A > 0 and
a > 0 we have the double inequality

a exp
�
1� a tr

�
PA�1

��
� �P (A) � a exp

�
a�1 tr (PA)� 1

�
:

In particular

1 � tr (PA)

�P (A)
� exp

�
tr (PA) tr

�
PA�1

�
� 1
�

and

1 � �P (A)

[tr (PA�1)]
�1 � exp

�
tr
�
PA�1

�
tr (PA)� 1

�
:

Kittaneh and Manasrah [10], [11] provided a re�nement and an additive reverse
for Young inequality as follows:

(1.13) r
�p
a�

p
b
�2
� (1� �) a+ �b� a1��b� � R

�p
a�

p
b
�2
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where a; b > 0, � 2 [0; 1]; r = min f1� �; �g and R = max f1� �; �g : The case
� = 1

2 reduces (1.13) to an identity.
For some operator versions of (1.13) see [10] and [11].
We also have the following inequality that provides a re�nement and a reverse

for the celebrated Young�s inequality

(1.14)
1

2
� (1� �) (b� a)2

max fa; bg � (1� �) a+ �b� a
1��b� � 1

2
� (1� �) (b� a)

2

min fa; bg

for any a; b > 0 and � 2 [0; 1] :
This result was obtained in 1978 by Cartwright and Field [1] who established a

more general result for n variables and gave an application for a probability measure
supported on a �nite interval.
Motivated by the above results, in this paper we show among others that, if A

is an operator satisfying the condition 0 < mI � A �MI, then

1 � exp
�
1

2M2
tr [P (MI �A) (A�mI)]

�
� �P (A)

m
M�tr(PA)

M�m M
tr(PA)�m
M�m

� exp
�
1

2m2
tr [P (MI �A) (A�mI)]

�
� exp

�
1

2m2
(M � tr (PA)) (tr (PA)�m)

�
� exp

"
1

8

�
M

m
� 1
�2#

:

2. Main Results

The �rst result is as follows:

Theorem 6. Let P � 0 with P 2 B1 (H) and tr (P ) = 1: Assume that 0 < mI �
A �MI, then

1 � �P (A)

m
M�tr(PA)

M�m M
tr(PA)�m
M�m

� exp
�
1

Mm
tr [P (MI �A) (A�mI)]

�
(2.1)

� exp
�
1

Mm
(M � tr (PA)) (tr (PA)�m)

�
� exp

�
1

4Mm
(M �m)2

�
:

Proof. In [2] we obtained the following reverses of Young�s inequality:

1 � (1� �) a+ �b
a1��b�

� exp
h
4� (1� �)

�
K
�a
b

�
� 1
�i
;

where a; b > 0, � 2 [0; 1]:
This is equivalent, by taking the logarithm, with

0 � ln ((1� �) a+ �b)� (1� �) ln a� � ln b � � (1� �) (b� a)
2

ba

where a; b > 0, � 2 [0; 1]:
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If we take a = m; b =M; t 2 [m;M ] and � = t�m
M�m 2 [0; 1] ; then we get

0 � ln t� M � t
M �m lnm� t�m

M �m lnM � (M � t) (t�m)
(M �m)2

(M �m)2

Mm

=
(M � t) (t�m)

Mm
:

Using the continuous functional calculus for selfadjoint operators, we have

0 � lnA� MI �A
M �m lnm� AP

1=2 �mI
M �m lnM � (MI �A) (A�mI)

Mm
:

If we multiply both sides by P 1=2 we get

0 � P 1=2 (lnA)P 1=2 � MP � P
1=2AP 1=2

M �m lnm� P
1=2AP 1=2 �mP
M �m lnM

� P 1=2 (MI �A) (A�mI)P 1=2
Mm

:

If we take the trace and use the fact that tr (P ) = 1; then we obtain

0 � tr (P lnA)� M � tr (PA)
M �m lnm� tr (PA)�m

M �m lnM

� 1

Mm
tr [P (MI �A) (A�mI)] :

If we take the exponential, then we get

1 � exp [tr (P lnA)]

exp
h
M�tr(PA)
M�m lnm+ tr(PA)�m

M�m lnM
i(2.2)

� exp
�
1

Mm
tr [P (MI �A) (A�mI)]

�
:

Observe that

exp

�
M � tr (PA)
M �m lnm+

tr (PA)�m
M �m lnM

�
= exp

h
ln
�
m

M�tr(PA)
M�m M

tr(PA)�m
M�m

�i
= m

M�tr(PA)
M�m M

tr(PA)�m
M�m

and by (2.2) we obtain the �rst inequality in (2.1).
The function g (t) = (M � t) (t�m) is concave on [m;M ] and by Jensen�s in-

equality for trace

tr (Pg (A)) � g (tr (PA)) ;

for P � 0 with P 2 B1 (H) and tr (P ) = 1; we have

tr [(MI �A) (A�mI)] � ((M � tr (PA)) (tr (PA)�m))

which proves the third inequality in (2.1). �



ON SOME UPPER AND LOWER BOUNDS 7

Corollary 1. With the assumptions of Theorem 6,

1 � M
m�1�tr(PA�1)

m�1�M�1 m
tr(PA�1)�M�1

m�1�M�1

�P (A)
(2.3)

� exp
�
mM tr

�
P
�
m�1I �A�1

� �
A�1 �M�1I

���
� exp

�
mM

�
m�1 � tr

�
PA�1

�� �
tr
�
PA�1

�
�M�1��

� exp
�
1

4
mM (M �m)2

�
:

Proof. Observe that 0 < mI � A �MI implies that 0 < M�1I � A�1 � m�1I. If
we write the inequality (2.1) for A�1; then we get

1 � �P (A
�1)

M
�m�1�tr(PA�1)

m�1�M�1 m
� tr(PA�1)�M�1

m�1�M�1

� exp
�

1

m�1M�1 tr
�
P
�
m�1I �A�1

� �
A�1 �M�1I

���
� exp

�
1

m�1M�1
�
m�1 � tr

�
PA�1

�� �
tr
�
PA�1

�
�M�1��

� exp
�

1

4m�1M�1
�
m�1 �M�1�2� ;

which is equivalent to (2.3). �

In [3] we obtained the following re�nement and reverse of Young�s inequality:

exp

"
1

2
� (1� �)

�
1� min fa; bg

max fa; bg

�2#
(2.4)

� (1� �) a+ �b
a1��b�

� exp
"
1

2
� (1� �)

�
max fa; bg
min fa; bg � 1

�2#
;

for any a; b > 0 and � 2 [0; 1] :

Theorem 7. Let P � 0 with P 2 B1 (H) and tr (P ) = 1: Assume that 0 < mI �
A �MI, then

1 � exp
�
1

2M2
tr [P (MI �A) (A�mI)]

�
(2.5)

� �P (A)

m
M�tr(PA)

M�m M
tr(PA)�m
M�m

� exp
�
1

2m2
tr [P (MI �A) (A�mI)]

�
� exp

�
1

2m2
(M � tr (PA)) (tr (PA)�m)

�
� exp

"
1

8

�
M

m
� 1
�2#

:
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Proof. From (2.4) we have

exp

�
1

2
� (1� �)

�
1� m

M

�2�
� (1� �)m+ �M

m1��M�
� exp

"
1

2
� (1� �)

�
M

m
� 1
�2#

;

for � 2 [0; 1] :
By taking the logarithm, we obtain

1

2
� (1� �)

�
1� m

M

�2
(2.6)

� ln ((1� �)m+ �M)� (1� �) lnm� � lnM

� 1

2
� (1� �)

�
M

m
� 1
�2
;

for � 2 [0; 1] :
If we take a = m; b =M; t 2 [m;M ] and � = t�m

M�m 2 [0; 1] ; then we get

(M � t) (t�m)
2M2

� ln t� M � t
M �m lnm� t�m

M �m lnM

� (M � t) (t�m)
2m2

for t 2 [m;M ] :
As above, we get the trace inequality

1

2M2
tr [P (MI �A) (A�mI)]

� tr (P lnA)� M � tr (PA)
M �m lnm� tr (PA)�m

M �m lnM

� 1

2m2
tr [P (MI �A) (A�mI)] :

If we take the exponential, then we derive

exp

�
1

2M2
tr [P (MI �A) (A�mI)]

�
� exp [tr (P lnA)]

exp
h
M�tr(PA)
M�m lnm+ tr(PA)�m

M�m lnM
i

� exp
�
1

2m2
tr [P (MI �A) (A�mI)]

�
;

which proves the �rst part of (2.5).
The second part is obvious. �
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Corollary 2. With the assumptions of Theorem 6,

1 � exp
�
1

2
m2 tr

�
P
�
m�1I �A�1

� �
A�1 �M�1I

���
(2.7)

� M
m�1�tr(PA�1)

m�1�M�1 m
tr(PA�1)�M�1

m�1�M�1

�P (A)

� exp
�
1

2
M2 tr

�
P
�
m�1I �A�1

� �
A�1 �M�1I

���
� exp

�
1

2
M2

�
m�1 � tr

�
PA�1

�� �
tr
�
PA�1

�
�M�1��

� exp
"
1

8

�
M

m
� 1
�2#

:

3. Related Results

We also have:

Theorem 8. Let P � 0 with P 2 B1 (H) and tr (P ) = 1: Assume that I < mI �
A �MI, then

0 � ln�P (A)� (lnm)
lnM�tr(P lnA)

lnM�lnm (lnM)
tr(P lnA)�lnm

lnM�lnm(3.1)

� (lnM � tr (P lnA)) (tr (P lnA)� lnm)
lnM � lnm ln

�
lnM

lnm

�
� 1

4
(lnM � lnm) ln

�
lnM

lnm

�
:

Proof. In the recent paper [2] we obtained the following reverses of Young�s in-
equality as well:

(3.2) 0 � (1� �) a+ �b� a1��b� � � (1� �) (a� b) (ln a� ln b)

where a; b > 0, � 2 [0; 1]:
If we take the exponential in (3.2), then we get

1 � exp [(1� �) a+ �b]
exp (a1��b�)

� exp [� (1� �) (a� b) (ln a� ln b)](3.3)

= exp

"
ln

�
b

a

��(1��)(b�a)#
=

�
b

a

��(1��)(b�a)
:

If we put (1� �) a+ �b = s > 0; then � = s�a
b�a ; 1� � =

b�s
b�a and by (3.3) we obtain

(3.4) 1 � exp s

exp
�
a
b�s
b�a b

s�a
b�a

� � � b
a

� (s�a)(b�s)
b�a

�
�
b

a

� 1
4 (b�a)

:
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Now, we take a = lnm; s = tr (P lnA) and b = lnM; in (3.4) to get

1 � exp tr (P lnA)

exp
�
(lnm)

lnM�tr(P lnA)
lnM�lnm (lnM)

tr(P lnA)�lnm
lnM�lnm

�
�
�
lnM

lnm

� (lnM�tr(P lnA))(tr(P lnA)�lnm)
lnM�lnm

�
�
lnM

lnm

� 1
4 (lnM�lnm)

:

By taking the logarithm we then obtain (3.1). �

We also have:

Theorem 9. With the assumption of Theorem 8, then

0 �
�
1

2
� 1

lnM � lnm

����tr (P lnA)� lnm+ lnM2

�����(3.5)

�
�p
lnM �

p
lnm

�2
� ln�P (A)� (lnm)

lnM�tr(P lnA)
lnM�lnm (lnM)

tr(P lnA)�lnm
lnM�lnm

�
�
1

2
+

1

lnM � lnm

����tr (P lnA)� lnm+ lnM2

�����
�
�p
lnM �

p
lnm

�2
�
�p
lnM �

p
lnm

�2
:

Proof. If we take the exponential in (1.13) we get

1 � exp
�
min f1� �; �g

�p
a�

p
b
�2�

(3.6)

� exp [(1� �) a+ �b]
exp (a1��b�)

� exp
�
max f1� �; �g

�p
a�

p
b
�2�

for a; b > 0, � 2 [0; 1]:
If we put (1� �) a+ �b = s > 0; then � = s�a

b�a ;

min f1� �; �g = 1

2
� 1

b� a

����s� a+ b2
���� ;

max f1� �; �g = 1

2
+

1

b� a

����s� a+ b2
���� ;

and by (3.6) we get

1 � exp
��
1

2
� 1

b� a

����s� a+ b2
������pa�pb�2�(3.7)

� exp s

exp
�
a
b�s
b�a b

s�a
b�a

�
� exp

��
1

2
+

1

b� a

����s� a+ b2
������pa�pb�2�
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for s 2 [a; b] :
Now, we take a = lnm; s = tr (P lnA) and b = lnM in (3.7) to get

1 � exp
��
1

2
� 1

lnM � lnm

����tr (P lnA)� lnm+ lnM2

������plnm�plnM�2�
� exp tr (P lnA)

exp
�
(lnm)

lnM�tr(P lnA)
lnM�lnm (lnM)

tr(P lnA)�lnm
lnM�lnm

�
� exp

��
1

2
+

1

lnM � lnm

����tr (P lnA)� lnm+ lnM2

������plnm�plnM�2� :
Taking the logarithm, we obtain

0 �
�
1

2
� 1

lnM � lnm

����tr (P lnA)� lnm+ lnM2

������plnM �
p
lnm

�2
� ln�P (A)� (lnm)

lnM�tr(P lnA)
lnM�lnm (lnM)

tr(P lnA)�lnm
lnM�lnm

�
�
1

2
+

1

lnM � lnm

����tr (P lnA)� lnm+ lnM2

������plnM �
p
lnm

�2
�
�p
lnM �

p
lnm

�2
;

which proves the desired result. �

We also have:

Theorem 10. With the assumptions of Theorem 9,

0 � 1

2

(tr (P lnA)� lnm) (lnM � tr (P lnA))
lnM

(3.8)

� ln�P (A)� (lnm)
lnM�tr(P lnA)

lnM�lnm (lnM)
tr(P lnA)�lnm

lnM�lnm

� 1

2

(tr (P lnA)� lnm) (lnM � tr (P lnA))
lnm

� 1

8 lnm
(lnM � lnm)2 :

Proof. If we take the exponential in (1.14), then we get

1 � exp
"
1

2
� (1� �) (b� a)2

max fa; bg

#
(3.9)

� exp [(1� �) a+ �b]
exp (a1��b�)

� exp
"
1

2
� (1� �) (b� a)

2

min fa; bg

#

for a; b > 0, � 2 [0; 1]:
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If we put (1� �) a + �b = s > 0; then � = s�a
b�a ; 1 � � =

b�s
b�a and by (3.9) we

derive

exp

�
1

2

(s� a) (b� s)
max fa; bg

�
(3.10)

� exp s

exp
�
a
b�s
b�a b

s�a
b�a

� � exp �1
2

(s� a) (b� s)
min fa; bg

�
:

Now, we put a = lnm; s = tr (P lnA) and b = lnM in (3.10) to get

1 � exp
�
1

2

(tr (P lnA)� lnm) (lnM � tr (P lnA))
lnM

�
� exp tr (P lnA)

exp
�
(lnm)

lnM�tr(P lnA)
lnM�lnm (lnM)

tr(P lnA)�lnm
lnM�lnm

�
� exp

�
1

2

(tr (P lnA)� lnm) (lnM � tr (P lnA))
lnm

�
and by taking the logarithm we obtain the �rst part of (3.8).
The second part is obvious. �

In [3] we also obtained the following result

1

2
� (1� �) (ln a� ln b)2min fa; bg � (1� �) a+ �b� a1��b�(3.11)

� 1

2
� (1� �) (ln a� ln b)2max fa; bg

for any a; b > 0 and � 2 [0; 1] :

Theorem 11. With the assumptions of Theorem 9,

0 � 1

2
(tr (P lnA)� lnm) (lnM � tr (P lnA))(3.12)

�
�
ln (lnM)� ln (lnm)

lnM � lnm

�2
ln (lnm)

� ln�P (A)� (lnm)
lnM�tr(P lnA)

lnM�lnm (lnM)
tr(P lnA)�lnm

lnM�lnm

� 1

2
(tr (P lnA)� lnm) (lnM � tr (P lnA))

�
�
ln (lnM)� ln (lnm)

lnM � lnm

�2
ln (lnM)

� 1

8
[ln (lnM)� ln (lnm)]2 ln (lnM) :

Proof. If we take the exponential in (3.11), then we get

1 � exp
�
1

2
� (1� �) (ln a� ln b)2min fa; bg

�
� exp [(1� �) a+ �b]

exp (a1��b�)

� exp
�
1

2
� (1� �) (ln a� ln b)2max fa; bg

�
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for any a; b > 0 and � 2 [0; 1] :
By utilizing a similar argument to the one from Theorem 10 we deduce the

desired result (3.12).
The details are omitted. �
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