RGMA

ON SOME UPPER AND LOWER BOUNDS FOR TRACE CLASS *P*-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \ge 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and tr(P) = 1, we define the *P*-determinant of the positive invertible operator A by

$$\Delta_P(A) := \exp \operatorname{tr} \left(P \ln A \right).$$

In this paper we show among others that, if A is an operator satisfying the condition $0 < mI \leq A \leq MI,$ then

$$\begin{split} &1 \leq \exp\left[\frac{1}{2M^2}\operatorname{tr}\left[P\left(MI - A\right)\left(A - mI\right)\right]\right] \\ &\leq \frac{\Delta_P(A)}{m^{\frac{M - \operatorname{tr}(PA)}{M - m}}M^{\frac{\operatorname{tr}(PA) - m}{M - m}}} \\ &\leq \exp\left[\frac{1}{2m^2}\operatorname{tr}\left[P\left(MI - A\right)\left(A - mI\right)\right]\right] \\ &\leq \exp\left[\frac{1}{2m^2}\left(M - \operatorname{tr}\left(PA\right)\right)\left(\operatorname{tr}\left(PA\right) - m\right)\right] \leq \exp\left[\frac{1}{8}\left(\frac{M}{m} - 1\right)^2\right] \end{split}$$

1. INTRODUCTION

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda) \,,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (*FK*-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_0^\infty \ln t d\mu_{|T|}\right).$$

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

RGMIA Res. Rep. Coll. 25 (2022), Art. 19, 13 pp. Received 23/02/22

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, A > 0means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \ge B$ means as usual that A - B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp\left\langle \ln Ax, x \right\rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [9].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

(1.1)
$$\sum_{i\in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i \in I}$ and $\{f_j\}_{j \in J}$ are orthonormal bases for H and $A \in \mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}(H)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}(H)$. For $A \in \mathcal{B}_{2}(H)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i \in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because ||A| x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A|||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_2(H), \|\cdot\|_2)$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$;

(ii) We have the inequalities

$$(1.5) ||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_{2}(H)$ and, if $A \in \mathcal{B}_{2}(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_{2}(H)$ with

(1.6)
$$||AT||_2, ||TA||_2 \le ||T|| ||A||_2$$

(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

 $\mathcal{B}(H) \mathcal{B}_{2}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{2}(H).$

If $\{e_i\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is trace class if

(1.7)
$$\|A\|_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$.

The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

(i) $A \in \mathcal{B}_{1}(H)$; (ii) $|A|^{1/2} \in \mathcal{B}_{2}(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

(1.8)
$$||A||_1 = ||A^*||_1 \text{ and } ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H) \mathcal{B}_{1}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{1}(H);$$

(iii) We have

$$\mathcal{B}_{2}(H)\mathcal{B}_{2}(H)=\mathcal{B}_{1}(H);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle A e_i, e_i \rangle$$

where $\{e_i\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If
$$A \in \mathcal{B}_1(H)$$
 then $A^* \in \mathcal{B}_1(H)$ and
(1.10) $\operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$

(*ii*) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \text{ and } |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

(iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$; (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and tr (PT) = tr(TP). Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with tr $(P^{1/2}TP^{1/2}) = \text{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \ge 0$, then $P^{1/2}TP^{1/2} \ge 0$, which implies that $\operatorname{tr}(PT) \ge 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n\to\infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [4] and the references therein.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *P*-determinant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right).$$

Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_x(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \leq B$ implies $\Delta_P(A) \leq \Delta_P(B)$.
- In the recent paper [5] we obtained the following results:

Theorem 4. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A, B > 0 and $t \in [0, 1]$,

$$\Delta_P((1-t)A + tB) \ge [\Delta_P(A)]^{1-t} [\Delta_P(B)]^t.$$

and

Theorem 5. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr(P) = 1, then for all A > 0 and a > 0 we have the double inequality

$$a \exp\left[1 - a \operatorname{tr}\left(PA^{-1}\right)\right] \le \Delta_P(A) \le a \exp\left[a^{-1} \operatorname{tr}\left(PA\right) - 1\right].$$

In particular

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \leq \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \leq \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right].$$

Kittaneh and Manasrah [10], [11] provided a refinement and an additive reverse for Young inequality as follows:

(1.13)
$$r\left(\sqrt{a} - \sqrt{b}\right)^2 \le (1 - \nu)a + \nu b - a^{1-\nu}b^{\nu} \le R\left(\sqrt{a} - \sqrt{b}\right)^2$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$. The case $\nu = \frac{1}{2}$ reduces (1.13) to an identity.

For some operator versions of (1.13) see [10] and [11].

We also have the following inequality that provides a refinement and a reverse for the celebrated Young's inequality

$$(1.14) \quad \frac{1}{2}\nu(1-\nu)\frac{(b-a)^2}{\max\{a,b\}} \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \le \frac{1}{2}\nu(1-\nu)\frac{(b-a)^2}{\min\{a,b\}}$$

for any a, b > 0 and $\nu \in [0, 1]$.

This result was obtained in 1978 by Cartwright and Field [1] who established a more general result for n variables and gave an application for a probability measure supported on a finite interval.

Motivated by the above results, in this paper we show among others that, if A is an operator satisfying the condition $0 < mI \le A \le MI$, then

$$1 \leq \exp\left[\frac{1}{2M^{2}}\operatorname{tr}\left[P\left(MI-A\right)\left(A-mI\right)\right]\right]$$

$$\leq \frac{\Delta_{P}(A)}{m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}}$$

$$\leq \exp\left[\frac{1}{2m^{2}}\operatorname{tr}\left[P\left(MI-A\right)\left(A-mI\right)\right]\right]$$

$$\leq \exp\left[\frac{1}{2m^{2}}\left(M-\operatorname{tr}\left(PA\right)\right)\left(\operatorname{tr}\left(PA\right)-m\right)\right] \leq \exp\left[\frac{1}{8}\left(\frac{M}{m}-1\right)^{2}\right].$$

2. Main Results

The first result is as follows:

Theorem 6. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr(P) = 1. Assume that $0 < mI \le A \le MI$, then

$$(2.1) 1 \leq \frac{\Delta_P(A)}{m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}} \leq \exp\left[\frac{1}{Mm}\operatorname{tr}\left[P\left(MI-A\right)\left(A-mI\right)\right]\right] \\ \leq \exp\left[\frac{1}{Mm}\left(M-\operatorname{tr}\left(PA\right)\right)\left(\operatorname{tr}\left(PA\right)-m\right)\right] \\ \leq \exp\left[\frac{1}{4Mm}\left(M-m\right)^2\right].$$

Proof. In [2] we obtained the following reverses of Young's inequality:

$$1 \le \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}} \le \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{a}{b}\right)-1\right)\right],$$

where $a, b > 0, \nu \in [0, 1]$.

This is equivalent, by taking the logarithm, with

$$0 \le \ln \left((1-\nu) \, a + \nu b \right) - (1-\nu) \ln a - \nu \ln b \le \nu \left(1 - \nu \right) \frac{(b-a)^2}{ba}$$

where $a, b > 0, \nu \in [0, 1]$.

S. S. DRAGOMIR

If we take $a = m, b = M, t \in [m, M]$ and $\nu = \frac{t-m}{M-m} \in [0, 1]$, then we get

$$0 \le \ln t - \frac{M - t}{M - m} \ln m - \frac{t - m}{M - m} \ln M \le \frac{(M - t)(t - m)}{(M - m)^2} \frac{(M - m)^2}{Mm}$$
$$= \frac{(M - t)(t - m)}{Mm}.$$

Using the continuous functional calculus for selfadjoint operators, we have

$$0 \le \ln A - \frac{MI - A}{M - m} \ln m - \frac{AP^{1/2} - mI}{M - m} \ln M \le \frac{(MI - A)(A - mI)}{Mm}.$$

If we multiply both sides by $P^{1/2}$ we get

$$0 \leq P^{1/2} (\ln A) P^{1/2} - \frac{MP - P^{1/2}AP^{1/2}}{M - m} \ln m - \frac{P^{1/2}AP^{1/2} - mP}{M - m} \ln M$$

$$\leq \frac{P^{1/2} (MI - A) (A - mI) P^{1/2}}{Mm}.$$

If we take the trace and use the fact that tr(P) = 1, then we obtain

$$0 \leq \operatorname{tr} (P \ln A) - \frac{M - \operatorname{tr} (PA)}{M - m} \ln m - \frac{\operatorname{tr} (PA) - m}{M - m} \ln M$$
$$\leq \frac{1}{Mm} \operatorname{tr} \left[P (MI - A) (A - mI) \right].$$

If we take the exponential, then we get

(2.2)
$$1 \leq \frac{\exp\left[\operatorname{tr}\left(P\ln A\right)\right]}{\exp\left[\frac{M-\operatorname{tr}\left(PA\right)}{M-m}\ln m + \frac{\operatorname{tr}\left(PA\right)-m}{M-m}\ln M\right]} \\ \leq \exp\left[\frac{1}{Mm}\operatorname{tr}\left[P\left(MI-A\right)\left(A-mI\right)\right]\right]$$

Observe that

$$\exp\left[\frac{M - \operatorname{tr}\left(PA\right)}{M - m}\ln m + \frac{\operatorname{tr}\left(PA\right) - m}{M - m}\ln M\right] = \exp\left[\ln\left(m\frac{M - \operatorname{tr}\left(PA\right)}{M - m}M^{\frac{\operatorname{tr}\left(PA\right) - m}{M - m}}\right)\right]$$
$$= m\frac{M - \operatorname{tr}\left(PA\right)}{M - m}M^{\frac{\operatorname{tr}\left(PA\right) - m}{M - m}}$$

and by (2.2) we obtain the first inequality in (2.1).

The function g(t) = (M - t)(t - m) is concave on [m, M] and by Jensen's inequality for trace

$$\operatorname{tr}\left(Pg\left(A\right)\right) \leq g\left(\operatorname{tr}\left(PA\right)\right),$$

for $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we have

$$\operatorname{tr}\left[\left(MI - A\right)\left(A - mI\right)\right] \le \left(\left(M - \operatorname{tr}\left(PA\right)\right)\left(\operatorname{tr}\left(PA\right) - m\right)\right)$$

which proves the third inequality in (2.1).

Corollary 1. With the assumptions of Theorem 6,

(2.3)
$$1 \leq \frac{M^{\frac{m^{-1} - \operatorname{tr}\left(PA^{-1}\right)}{m^{-1} - M^{-1}}}{\Delta_P(A)}}{\leq \exp\left[mM\operatorname{tr}\left[P\left(m^{-1}I - A^{-1}\right)\left(A^{-1} - M^{-1}I\right)\right]\right]}{\leq \exp\left[mM\left(m^{-1} - \operatorname{tr}\left(PA^{-1}\right)\right)\left(\operatorname{tr}\left(PA^{-1}\right) - M^{-1}\right)\right]}{\leq \exp\left[\frac{1}{4}mM\left(M - m\right)^2\right]}.$$

Proof. Observe that $0 < mI \le A \le MI$ implies that $0 < M^{-1}I \le A^{-1} \le m^{-1}I$. If we write the inequality (2.1) for A^{-1} , then we get

$$1 \leq \frac{\Delta_P(A^{-1})}{M^{-\frac{m^{-1}-\operatorname{tr}(PA^{-1})}{m^{-1}-M^{-1}}}} \\ \leq \exp\left[\frac{1}{m^{-1}M^{-1}}\operatorname{tr}\left[P\left(m^{-1}I - A^{-1}\right)\left(A^{-1} - M^{-1}I\right)\right]\right] \\ \leq \exp\left[\frac{1}{m^{-1}M^{-1}}\left(m^{-1} - \operatorname{tr}\left(PA^{-1}\right)\right)\left(\operatorname{tr}\left(PA^{-1}\right) - M^{-1}\right)\right] \\ \leq \exp\left[\frac{1}{4m^{-1}M^{-1}}\left(m^{-1} - M^{-1}\right)^2\right],$$

which is equivalent to (2.3).

In [3] we obtained the following refinement and reverse of Young's inequality:

(2.4)
$$\exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{\min\left\{a,b\right\}}{\max\left\{a,b\right\}}\right)^{2}\right]$$
$$\leq \frac{\left(1-\nu\right)a+\nu b}{a^{1-\nu}b^{\nu}}$$
$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\max\left\{a,b\right\}}{\min\left\{a,b\right\}}-1\right)^{2}\right],$$

for any a, b > 0 and $\nu \in [0, 1]$.

Theorem 7. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr(P) = 1. Assume that $0 < mI \le A \le MI$, then

$$(2.5) 1 \leq \exp\left[\frac{1}{2M^2}\operatorname{tr}\left[P\left(MI - A\right)\left(A - mI\right)\right]\right] \\ \leq \frac{\Delta_P(A)}{m^{\frac{M - \operatorname{tr}(PA)}{M - m}}M^{\frac{\operatorname{tr}(PA) - m}{M - m}}} \\ \leq \exp\left[\frac{1}{2m^2}\operatorname{tr}\left[P\left(MI - A\right)\left(A - mI\right)\right]\right] \\ \leq \exp\left[\frac{1}{2m^2}\left(M - \operatorname{tr}\left(PA\right)\right)\left(\operatorname{tr}\left(PA\right) - m\right)\right] \\ \leq \exp\left[\frac{1}{8}\left(\frac{M}{m} - 1\right)^2\right].$$

Proof. From (2.4) we have

$$\exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{m}{M}\right)^{2}\right]$$

$$\leq \frac{\left(1-\nu\right)m+\nu M}{m^{1-\nu}M^{\nu}} \leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M}{m}-1\right)^{2}\right],$$

for $\nu \in [0,1]$.

By taking the logarithm, we obtain

(2.6)
$$\frac{1}{2}\nu(1-\nu)\left(1-\frac{m}{M}\right)^{2} \leq \ln\left((1-\nu)m+\nu M\right) - (1-\nu)\ln m - \nu\ln M \\ \leq \frac{1}{2}\nu(1-\nu)\left(\frac{M}{m}-1\right)^{2},$$

for $\nu\in[0,1]$. If we take $a=m,\,b=M,\,t\in[m,M]$ and $\nu=\frac{t-m}{M-m}\in[0,1]\,,$ then we get

$$\frac{(M-t)(t-m)}{2M^2} \le \ln t - \frac{M-t}{M-m} \ln m - \frac{t-m}{M-m} \ln M$$
$$\le \frac{(M-t)(t-m)}{2m^2}$$

for $t \in [m, M]$.

As above, we get the trace inequality

$$\frac{1}{2M^2} \operatorname{tr} \left[P\left(MI - A\right) \left(A - mI\right) \right]$$

$$\leq \operatorname{tr} \left(P \ln A\right) - \frac{M - \operatorname{tr} \left(PA\right)}{M - m} \ln m - \frac{\operatorname{tr} \left(PA\right) - m}{M - m} \ln M$$

$$\leq \frac{1}{2m^2} \operatorname{tr} \left[P\left(MI - A\right) \left(A - mI\right) \right].$$

If we take the exponential, then we derive

$$\begin{split} & \exp\left[\frac{1}{2M^2}\operatorname{tr}\left[P\left(MI-A\right)\left(A-mI\right)\right]\right] \\ & \leq \frac{\exp\left[\operatorname{tr}\left(P\ln A\right)\right]}{\exp\left[\frac{M-\operatorname{tr}(PA)}{M-m}\ln m+\frac{\operatorname{tr}(PA)-m}{M-m}\ln M\right]} \\ & \leq \exp\left[\frac{1}{2m^2}\operatorname{tr}\left[P\left(MI-A\right)\left(A-mI\right)\right]\right], \end{split}$$

which proves the first part of (2.5).

The second part is obvious.

Corollary 2. With the assumptions of Theorem 6,

$$(2.7) 1 \leq \exp\left[\frac{1}{2}m^{2}\operatorname{tr}\left[P\left(m^{-1}I - A^{-1}\right)\left(A^{-1} - M^{-1}I\right)\right]\right] \\ \leq \frac{M^{\frac{m^{-1} - \operatorname{tr}\left(PA^{-1}\right)}{m^{-1} - M^{-1}}m^{\frac{\operatorname{tr}\left(PA^{-1}\right) - M^{-1}}{m^{-1} - M^{-1}}}}{\Delta_{P}(A)} \\ \leq \exp\left[\frac{1}{2}M^{2}\operatorname{tr}\left[P\left(m^{-1}I - A^{-1}\right)\left(A^{-1} - M^{-1}I\right)\right]\right] \\ \leq \exp\left[\frac{1}{2}M^{2}\left(m^{-1} - \operatorname{tr}\left(PA^{-1}\right)\right)\left(\operatorname{tr}\left(PA^{-1}\right) - M^{-1}\right)\right] \\ \leq \exp\left[\frac{1}{8}\left(\frac{M}{m} - 1\right)^{2}\right].$$

3. Related Results

We also have:

Theorem 8. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Assume that $I < mI \le A \le MI$, then

(3.1)
$$0 \leq \ln \Delta_P(A) - (\ln m)^{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m}} (\ln M)^{\frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m}}$$
$$\leq \frac{(\ln M - \operatorname{tr}(P \ln A)) (\operatorname{tr}(P \ln A) - \ln m)}{\ln M - \ln m} \ln \left(\frac{\ln M}{\ln m}\right)$$
$$\leq \frac{1}{4} (\ln M - \ln m) \ln \left(\frac{\ln M}{\ln m}\right).$$

Proof. In the recent paper [2] we obtained the following reverses of Young's inequality as well:

(3.2)
$$0 \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \le \nu (1-\nu)(a-b)(\ln a - \ln b)$$

where $a, b > 0, \nu \in [0, 1]$.

If we take the exponential in (3.2), then we get

(3.3)
$$1 \leq \frac{\exp\left[(1-\nu)a+\nu b\right]}{\exp\left(a^{1-\nu}b^{\nu}\right)} \leq \exp\left[\nu\left(1-\nu\right)(a-b)\left(\ln a-\ln b\right)\right] \\ = \exp\left[\ln\left(\frac{b}{a}\right)^{\nu(1-\nu)(b-a)}\right] = \left(\frac{b}{a}\right)^{\nu(1-\nu)(b-a)}.$$

If we put $(1 - \nu) a + \nu b = s > 0$, then $\nu = \frac{s-a}{b-a}$, $1 - \nu = \frac{b-s}{b-a}$ and by (3.3) we obtain

(3.4)
$$1 \le \frac{\exp s}{\exp\left(a^{\frac{b-s}{b-a}}b^{\frac{s-a}{b-a}}\right)} \le \left(\frac{b}{a}\right)^{\frac{(s-a)(b-s)}{b-a}} \le \left(\frac{b}{a}\right)^{\frac{1}{4}(b-a)}.$$

Now, we take $a = \ln m$, $s = \operatorname{tr}(P \ln A)$ and $b = \ln M$, in (3.4) to get

$$1 \leq \frac{\exp \operatorname{tr} (P \ln A)}{\exp \left(\left(\ln m \right)^{\frac{\ln M - \operatorname{tr} (P \ln A)}{\ln M - \ln m}} \left(\ln M \right)^{\frac{\operatorname{tr} (P \ln A) - \ln m}{\ln M - \ln m}} \right)}{\leq \left(\frac{\ln M}{\ln m} \right)^{\frac{(\ln M - \operatorname{tr} (P \ln A))(\operatorname{tr} (P \ln A) - \ln m)}{\ln M - \ln m}} \leq \left(\frac{\ln M}{\ln m} \right)^{\frac{1}{4} (\ln M - \ln m)}$$

By taking the logarithm we then obtain (3.1).

We also have:

Theorem 9. With the assumption of Theorem 8, then

$$(3.5) \qquad 0 \leq \left(\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr} \left(P \ln A\right) - \frac{\ln m + \ln M}{2} \right| \right) \\ \times \left(\sqrt{\ln M} - \sqrt{\ln m}\right)^2 \\ \leq \ln \Delta_P(A) - (\ln m)^{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m}} (\ln M)^{\frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m}} \\ \leq \left(\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| \operatorname{tr} \left(P \ln A\right) - \frac{\ln m + \ln M}{2} \right| \right) \\ \times \left(\sqrt{\ln M} - \sqrt{\ln m}\right)^2 \\ \leq \left(\sqrt{\ln M} - \sqrt{\ln m}\right)^2.$$

Proof. If we take the exponential in (1.13) we get

(3.6)
$$1 \leq \exp\left[\min\left\{1-\nu,\nu\right\}\left(\sqrt{a}-\sqrt{b}\right)^{2}\right]$$
$$\leq \frac{\exp\left[\left(1-\nu\right)a+\nu b\right]}{\exp\left(a^{1-\nu}b^{\nu}\right)}$$
$$\leq \exp\left[\max\left\{1-\nu,\nu\right\}\left(\sqrt{a}-\sqrt{b}\right)^{2}\right]$$

for $a, b > 0, \nu \in [0, 1]$. If we put $(1 - \nu) a + \nu b = s > 0$, then $\nu = \frac{s-a}{b-a}$,

$$\min\{1-\nu,\nu\} = \frac{1}{2} - \frac{1}{b-a} \left| s - \frac{a+b}{2} \right|,$$
$$\max\{1-\nu,\nu\} = \frac{1}{2} + \frac{1}{b-a} \left| s - \frac{a+b}{2} \right|,$$

and by (3.6) we get

$$(3.7) 1 \le \exp\left[\left(\frac{1}{2} - \frac{1}{b-a}\left|s - \frac{a+b}{2}\right|\right)\left(\sqrt{a} - \sqrt{b}\right)^2\right] \\ \le \frac{\exp s}{\exp\left(a^{\frac{b-s}{b-a}}b^{\frac{s-a}{b-a}}\right)} \\ \le \exp\left[\left(\frac{1}{2} + \frac{1}{b-a}\left|s - \frac{a+b}{2}\right|\right)\left(\sqrt{a} - \sqrt{b}\right)^2\right] \end{aligned}$$

10

for $s \in [a, b]$.

Now, we take $a = \ln m$, $s = \operatorname{tr}(P \ln A)$ and $b = \ln M$ in (3.7) to get

$$1 \leq \exp\left[\left(\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}\left(P \ln A\right) - \frac{\ln m + \ln M}{2} \right|\right) \left(\sqrt{\ln m} - \sqrt{\ln M}\right)^2\right]$$

$$\leq \frac{\exp \operatorname{tr}\left(P \ln A\right)}{\exp\left(\left(\ln m\right)^{\frac{\ln M - \operatorname{tr}\left(P \ln A\right)}{\ln M - \ln m}} \left(\ln M\right)^{\frac{\operatorname{tr}\left(P \ln A\right) - \ln m}{\ln M - \ln m}}\right)}$$

$$\leq \exp\left[\left(\frac{1}{2} + \frac{1}{\ln M - \ln m} \left|\operatorname{tr}\left(P \ln A\right) - \frac{\ln m + \ln M}{2}\right|\right) \left(\sqrt{\ln m} - \sqrt{\ln M}\right)^2\right].$$

Taking the logarithm, we obtain

$$0 \leq \left(\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr} \left(P \ln A\right) - \frac{\ln m + \ln M}{2} \right| \right) \left(\sqrt{\ln M} - \sqrt{\ln m}\right)^2$$

$$\leq \ln \Delta_P(A) - (\ln m)^{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m}} (\ln M)^{\frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m}}$$

$$\leq \left(\frac{1}{2} + \frac{1}{\ln M - \ln m} \left| \operatorname{tr} \left(P \ln A\right) - \frac{\ln m + \ln M}{2} \right| \right) \left(\sqrt{\ln M} - \sqrt{\ln m}\right)^2$$

$$\leq \left(\sqrt{\ln M} - \sqrt{\ln m}\right)^2,$$

which proves the desired result.

We also have:

Theorem 10. With the assumptions of Theorem 9,

(3.8)
$$0 \leq \frac{1}{2} \frac{(\operatorname{tr}(P \ln A) - \ln m) (\ln M - \operatorname{tr}(P \ln A))}{\ln M} \\ \leq \ln \Delta_P(A) - (\ln m)^{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m}} (\ln M)^{\frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m}} \\ \leq \frac{1}{2} \frac{(\operatorname{tr}(P \ln A) - \ln m) (\ln M - \operatorname{tr}(P \ln A))}{\ln m} \\ \leq \frac{1}{8 \ln m} (\ln M - \ln m)^2.$$

Proof. If we take the exponential in (1.14), then we get

$$(3.9) 1 \le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\frac{\left(b-a\right)^2}{\max\left\{a,b\right\}}\right]$$
$$\le \frac{\exp\left[\left(1-\nu\right)a+\nu b\right]}{\exp\left(a^{1-\nu}b^{\nu}\right)}$$
$$\le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\frac{\left(b-a\right)^2}{\min\left\{a,b\right\}}\right]$$

for $a, b > 0, \nu \in [0, 1]$.

If we put $(1 - \nu)a + \nu b = s > 0$, then $\nu = \frac{s-a}{b-a}$, $1 - \nu = \frac{b-s}{b-a}$ and by (3.9) we derive

(3.10)
$$\exp\left[\frac{1}{2}\frac{(s-a)(b-s)}{\max\{a,b\}}\right]$$
$$\leq \frac{\exp s}{\exp\left(a^{\frac{b-s}{b-a}}b^{\frac{s-a}{b-a}}\right)} \leq \exp\left[\frac{1}{2}\frac{(s-a)(b-s)}{\min\{a,b\}}\right]$$

Now, we put $a = \ln m$, $s = \operatorname{tr}(P \ln A)$ and $b = \ln M$ in (3.10) to get

$$1 \leq \exp\left[\frac{1}{2} \frac{\left(\operatorname{tr}\left(P\ln A\right) - \ln m\right)\left(\ln M - \operatorname{tr}\left(P\ln A\right)\right)}{\ln M}\right]$$
$$\leq \frac{\operatorname{exp}\operatorname{tr}\left(P\ln A\right)}{\exp\left(\left(\ln m\right)^{\frac{\ln M - \operatorname{tr}\left(P\ln A\right)}{\ln M - \ln m}}\left(\ln M\right)^{\frac{\operatorname{tr}\left(P\ln A\right) - \ln m}{\ln M - \ln m}}\right)}{\leq \exp\left[\frac{1}{2} \frac{\left(\operatorname{tr}\left(P\ln A\right) - \ln m\right)\left(\ln M - \operatorname{tr}\left(P\ln A\right)\right)}{\ln m}\right]}$$

and by taking the logarithm we obtain the first part of (3.8). The second part is obvious.

In [3] we also obtained the following result

(3.11)
$$\frac{1}{2}\nu(1-\nu)(\ln a - \ln b)^{2}\min\{a,b\} \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \le \frac{1}{2}\nu(1-\nu)(\ln a - \ln b)^{2}\max\{a,b\}$$

for any a, b > 0 and $\nu \in [0, 1]$.

Theorem 11. With the assumptions of Theorem 9,

$$(3.12) \qquad 0 \leq \frac{1}{2} \left(\operatorname{tr} \left(P \ln A \right) - \ln m \right) \left(\ln M - \operatorname{tr} \left(P \ln A \right) \right) \\ \times \left[\frac{\ln \left(\ln M \right) - \ln \left(\ln m \right)}{\ln M - \ln m} \right]^2 \ln \left(\ln m \right) \\ \leq \ln \Delta_P(A) - \left(\ln m \right)^{\frac{\ln M - \operatorname{tr} \left(P \ln A \right)}{\ln M - \ln m}} \left(\ln M \right)^{\frac{\operatorname{tr} \left(P \ln A \right) - \ln m}{\ln M - \ln m}} \\ \leq \frac{1}{2} \left(\operatorname{tr} \left(P \ln A \right) - \ln m \right) \left(\ln M - \operatorname{tr} \left(P \ln A \right) \right) \\ \times \left[\frac{\ln \left(\ln M \right) - \ln \left(\ln m \right)}{\ln M - \ln m} \right]^2 \ln \left(\ln M \right) \\ \leq \frac{1}{8} \left[\ln \left(\ln M \right) - \ln \left(\ln m \right) \right]^2 \ln \left(\ln M \right).$$

Proof. If we take the exponential in (3.11), then we get

$$1 \le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\ln a - \ln b\right)^{2}\min\left\{a,b\right\}\right]$$
$$\le \frac{\exp\left[\left(1-\nu\right)a + \nu b\right]}{\exp\left(a^{1-\nu}b^{\nu}\right)}$$
$$\le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\ln a - \ln b\right)^{2}\max\left\{a,b\right\}\right]$$

for any a, b > 0 and $\nu \in [0, 1]$.

By utilizing a similar argument to the one from Theorem 10 we deduce the desired result (3.12).

The details are omitted.

13

References

- D. I. Cartwright, M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
- [2] S. S. Dragomir, A Note on Young's Inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas volume 111 (2017), pages 349-354. Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [3] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, *Transylvanian J. Math. Mech.* 8 (2016), No. 1, 45-49. Preprint *RGMIA Res. Rep. Coll.* 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
- [4] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [5] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.
- [6] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530.
- [7] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [8] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645
- [10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [11] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, **59** (2011), 1031-1037.
- [12] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [13] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA