RGMA

SOME BOUNDS FOR TRACE CLASS P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES VIA TOMINAGA'S RESULTS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \ge 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A).$$

In this paper we show, among others that, if A is an operator satisfying the condition $0 < mI \le A \le MI,$ then

$$0 \le \Delta_P(A) - m^{\frac{M - \operatorname{tr}(PA)}{M - m}} M^{\frac{\operatorname{tr}(PA) - mP}{M - m}} \le L(M, m) \log S\left(\frac{M}{m}\right),$$

where L is the logarithmic mean and S is the Specht's ratio.

1. Introduction

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE\left(\lambda\right),\,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (FK-determinant) is defined by

$$\Delta_{FK}\left(T\right) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, A > 0

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp \langle \ln Ax, x \rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [8].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$(1.1) \sum_{i \in I} \|Ae_i\|^2 < \infty.$$

2

It is well know that, if $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ are orthonormal bases for H and $A\in\mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}\left(H\right)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}\left(H\right)$. For $A\in\mathcal{B}_{2}\left(H\right)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i\in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_2(H), \|\cdot\|_2)$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$;

(ii) We have the inequalities

$$||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_2(H)$ and, if $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_2(H)$ with

$$(1.6) $||AT||_2, ||TA||_2 \le ||T|| ||A||_2$$$

(iii) $\mathcal{B}_2(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_{2}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{2}(H)$$
.

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}(H)$ is trace class if

(1.7)
$$||A||_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$. The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

- (i) $A \in \mathcal{B}_1(H)$;
- (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

$$||A||_1 = ||A^*||_1 \quad and \quad ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_1(H)\mathcal{B}(H)\subseteq\mathcal{B}_1(H)$$
;

(iii) We have

$$\mathcal{B}_{2}(H)\mathcal{B}_{2}(H) = \mathcal{B}_{1}(H)$$
:

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If
$$A \in \mathcal{B}_1(H)$$
 then $A^* \in \mathcal{B}_1(H)$ and

$$(1.10) tr(A^*) = \overline{tr(A)};$$

(ii) If
$$A \in \mathcal{B}_1(H)$$
 and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \ \ and \ |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

- (iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$;
- (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

S. S. DRAGOMIR

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

4

If $T \geq 0$, then $P^{1/2}TP^{1/2} \geq 0$, which implies that $\operatorname{tr}(PT) \geq 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n \to \infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

$$(1.12) \quad \Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right).$$

Assume that $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_x(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \le B$ implies $\Delta_P(A) \le \Delta_P(B)$.

In the recent paper [2] we obtained the following results:

Theorem 4. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A, B > 0 and $t \in [0, 1]$,

$$\Delta_P((1-t) A + tB) \ge \left[\Delta_P(A)\right]^{1-t} \left[\Delta_P(B)\right]^t.$$

and

Theorem 5. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A > 0 and a > 0 we have the double inequality

$$a \exp \left[1 - a \operatorname{tr}\left(PA^{-1}\right)\right] \le \Delta_P(A) \le a \exp \left[a^{-1} \operatorname{tr}\left(PA\right) - 1\right].$$

In particular

(1.13)
$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right].$$

We recall that Specht's ratio is defined by [9]

(1.14)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0,1) and increasing on $(1,\infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$(1.15) \left(a^{1-\nu}b^{\nu} \le \right) S\left(\left(\frac{a}{b}\right)^{r}\right) a^{1-\nu}b^{\nu} \le (1-\nu) a + \nu b \le S\left(\frac{a}{b}\right) a^{1-\nu}b^{\nu},$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}.$

The second inequality in (1.15) is due to Tominaga [10] while the first one is due to Furuichi [6].

In [10] Tominaga also obtained the following additive reverse inequality

(1.16)
$$0 \le (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu} \le L(a, b) \log S\left(\frac{a}{b}\right)$$

where the logarithmic mean of two positive numbers a, b is defined by

$$L(a,b) := \begin{cases} \frac{b-a}{\ln b - \ln a} & \text{if } b \neq a, \\ a & \text{if } b = a. \end{cases}$$

Motivated by the above results, in this paper we show, among others that, if A is an operator satisfying the condition $0 < mI \le A \le MI$, then

$$0 \le \Delta_P(A) - m^{\frac{M - \operatorname{tr}(PA)}{M - m}} M^{\frac{\operatorname{tr}(PA) - mP}{M - m}} \le L(M, m) \log S\left(\frac{M}{m}\right),$$

where L is the logarithmic mean and S is the Specht's ratio.

2. Main Results

Our first main result is as follows:

Theorem 6. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If $0 < mI \le A \le MI$ for positive numbers m, M, then

(2.1)
$$1 \leq \exp\left[\operatorname{tr}\left(P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{M-m}\left|A - \frac{1}{2}(m+M)I\right|}\right)\right)\right] \\ \leq \frac{\Delta_P(A)}{m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA) - m}{M-m}}} \leq S\left(\frac{M}{m}\right).$$

Proof. Assume that $t \in [m, M]$ and consider $\nu = \frac{t-m}{M-m} \in [0, 1]$. Then

$$\min \{1 - \nu, \nu\} = \frac{1}{2} - \left| \nu - \frac{1}{2} \right| = \frac{1}{2} - \left| \frac{t - m}{M - m} - \frac{1}{2} \right|$$
$$= \frac{1}{2} - \frac{1}{M - m} \left| t - \frac{1}{2} \left(m + M \right) \right|,$$

$$(1 - \nu) m + \nu M = \frac{M - t}{M - m} m + \frac{t - m}{M - m} M = t$$

and

$$m^{1-\nu}M^{\nu} = m^{\frac{M-t}{M-m}}M^{\frac{t-m}{M-m}}$$

S. S. DRAGOMIR

By using the inequality (1.15) we deduce

$$(2.2) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} \le S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{M-m} \left|t - \frac{1}{2}(m+M)\right|}\right) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}}$$

$$\le t \le S\left(\frac{M}{m}\right) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}}$$

for $t \in [m, M]$.

6

By taking the log in (2.2) we get

$$(2.3) \qquad \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}-\frac{1}{M-m}\left|t-\frac{1}{2}(m+M)\right|}\right) + \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \ln t \leq \ln S\left(\frac{M}{m}\right) + \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M,$$

for $t \in [m, M]$.

If $0 < mI \le A \le MI$, then by using the continuous functional calculus for selfadjoint operators we get from (2.3) that

$$\begin{split} & \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m} \\ & \leq \ln S \left(\left(\frac{M}{m} \right)^{\frac{1}{2}I - \frac{1}{M - m} \left| A - \frac{1}{2}(m + M)I \right|} \right) + \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m} \\ & \leq \ln A \leq \ln S \left(\frac{M}{m} \right) I + \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}. \end{split}$$

Now, if multiply this inequality both sides by $P^{1/2}$ we get

$$\begin{split} & \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m} \\ & \leq P^{1/2} \ln S \left(\left(\frac{M}{m} \right)^{\frac{1}{2}I - \frac{1}{M - m} \left| A - \frac{1}{2}(m + M)I \right|} \right) P^{1/2} \\ & + \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m} \\ & \leq P^{1/2} \left(\ln A \right) P^{1/2} \\ & \leq \ln S \left(\frac{M}{m} \right) P + \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mIP}{M - m}. \end{split}$$

If we take the trace and use the fact that tr(P) = 1, then we obtain

$$\ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - m}{M - m}$$

$$\leq \operatorname{tr}\left[P \ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{M - m}|A - \frac{1}{2}(m + M)I|}\right)\right]$$

$$+ \ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - m}{M - m}$$

$$\leq \operatorname{tr}\left[P(\ln A)\right] \leq \ln S\left(\frac{M}{m}\right) + \ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \frac{\operatorname{tr}(PA) - m}{M - m} \ln M.$$

This inequality can also be written as

$$(2.4) \qquad \ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right)$$

$$\leq \ln\exp\left(\operatorname{tr}\left[P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I-\frac{1}{M-m}\left|A-\frac{1}{2}(m+M)I\right|}\right)\right]\right)$$

$$+\ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right)$$

$$\leq \operatorname{tr}\left[P\left(\ln A\right)\right] \leq \ln S\left(\frac{M}{m}\right) + \ln\left(m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-m}{M-m}}\right).$$

If we take the exponential in (2.4), then we get

$$\begin{split} & m^{\frac{M-\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA)-m}{M-m}} \\ & \leq \left(\exp\left(\operatorname{tr}\left[P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I-\frac{1}{M-m}\left|A-\frac{1}{2}(m+M)I\right|}\right)\right]\right)\right) m^{\frac{M-\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA)-m}{M-m}} \\ & \leq \leq \operatorname{tr}\left[P\left(\ln A\right)\right] \leq S\left(\frac{M}{m}\right) m^{\frac{M-\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA)-m}{M-m}} \end{split}$$

and the inequality (2.1) is proved.

Corollary 1. With the assumption of Theorem 6, we get

$$(2.5) 1 \leq \exp\left[\operatorname{tr}\left(P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m-1-M-1}\left|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I\right|}\right)\right)\right] \\ \leq \frac{M^{\frac{m-1-\operatorname{tr}\left(PA^{-1}\right)}{m-1-M-1}} \frac{\operatorname{tr}\left(PA^{-1}\right) - M^{-1}}{m^{-1}-M-1}}{\Delta_P(A)} \leq S\left(\frac{M}{m}\right).$$

Proof. If we write the inequality for A^{-1} that satisfies the condition $0 < M^{-1}I \le A^{-1} \le m^{-1}I$, then

$$1 \le \exp\left[\operatorname{tr}\left(P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m^{-1}-M^{-1}}\left|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I\right|}\right)\right)\right]$$

$$\le \frac{\Delta_P(A^{-1})}{M^{-\frac{m^{-1}-\operatorname{tr}(PA^{-1})}{m^{-1}-M^{-1}}}m^{-\frac{\operatorname{tr}(PA^{-1})-M^{-1}}{m^{-1}-M^{-1}}} \le S\left(\frac{m^{-1}}{M^{-1}}\right),$$

namely

$$1 \le \exp\left[\operatorname{tr}\left(P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m-1-M-1}\left|A^{-1} - \frac{1}{2}(M^{-1} + m^{-1})I\right|}\right)\right)\right]$$
$$\le \frac{\Delta_P(A^{-1})}{M^{-\frac{m^{-1} - \operatorname{tr}(PA^{-1})}{m^{-1} - M^{-1}}} m^{-\frac{\operatorname{tr}(PA^{-1}) - M^{-1}}{m^{-1} - M^{-1}}} \le S\left(\frac{M}{m}\right),$$

or

$$1 \leq \exp\left[\operatorname{tr}\left(P\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m-1-M-1}\left|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I\right|}\right)\right)\right]$$

$$\leq \frac{\left[\Delta_P(A)\right]^{-1}}{\left(M^{\frac{m-1-\operatorname{tr}\left(PA^{-1}\right)}{m-1-M-1}}m^{\frac{\operatorname{tr}\left(PA^{-1}\right)-M^{-1}}{m-1-M-1}}\right)^{-1}} \leq S\left(\frac{M}{m}\right),$$

which is equivalent to the desired result (2.5).

Corollary 2. If $0 < mI \le A$, $B \le MI$ for positive numbers m, M, then

(2.6)
$$\Theta\left(A,B,m,M,P\right) \\ \leq \frac{\int_{0}^{1} \Delta_{P}((1-t)A+tB)dt}{\frac{m^{M-1}}{M-m}M^{\frac{1-m}{M-m}}} \\ \leq S\left(\frac{M}{m}\right)\Theta\left(A,B,m,M,P\right),$$

where

$$\Theta(A, B, m, M, P) := \begin{cases} \frac{\left(\frac{M}{m}\right)^{\frac{\text{tr}[P(B-A)]}{M-m}} - 1}{\frac{\text{tr}[P(B-A)]}{M-m}} & \text{if } \text{tr}[P(B-A)] \neq 0, \\ 1 & \text{if } \text{tr}[P(B-A)] = 0. \end{cases}$$

Proof. From (2.4) we get

$$\begin{split} & m^{\frac{M - \text{tr}(P[(1-t)A + tB])}{M - m}} M^{\frac{\text{tr}(P[(1-t)A + tB]) - m}{M - m}} \\ & \leq \Delta_P((1-t)A + tB) \\ & \leq S\left(\frac{M}{m}\right) m^{\frac{M - \text{tr}(P[(1-t)A + tB])}{M - m}} M^{\frac{\text{tr}(P[(1-t)A + tB]) - m}{M - m}} \end{split}$$

for $t \in [0, 1]$.

If we take the integral over $t \in [0, 1]$, then we get

(2.7)
$$\int_{0}^{1} m^{\frac{M-\operatorname{tr}(P[(1-t)A+tB])}{M-m}} M^{\frac{\operatorname{tr}(P[(1-t)A+tB])-m}{M-m}} dt$$

$$\leq \int_{0}^{1} \Delta_{P}((1-t)A+tB)dt$$

$$\leq S\left(\frac{M}{m}\right) \int_{0}^{1} m^{\frac{M-\operatorname{tr}(P[(1-t)A+tB])}{M-m}} M^{\frac{\operatorname{tr}(P[(1-t)A+tB])-m}{M-m}} dt.$$

Observe that

$$\begin{split} & \int_{0}^{1} m^{\frac{M - \text{tr}(P[(1-t)A + tB])}{M - m}} M^{\frac{\text{tr}(P[(1-t)A + tB]) - m}{M - m}} dt \\ &= m^{\frac{M}{M - m}} M^{\frac{-m}{M - m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{\frac{\text{tr}(P[(1-t)A + tB]) - m}{M - m}} dt \\ &= m^{\frac{M}{M - m}} M^{\frac{-m}{M - m}} \left(\frac{M}{m}\right)^{\frac{1}{M - m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{t^{\frac{\text{tr}[P(B - A)]}{M - m}}} dt \\ &= m^{\frac{M - 1}{M - m}} M^{\frac{1 - m}{M - m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{t^{\frac{\text{tr}[P(B - A)]}{M - m}}} dt. \end{split}$$

Since for a > 0, $a \neq 1$ and $b \in \mathbb{R}$ we have

$$\int_0^1 a^{bx} dx = \frac{a^b - 1}{b \ln a},$$

then for $\operatorname{tr}\left[P\left(B-A\right)\right]\neq0$

$$\int_0^1 \left(\frac{M}{m}\right)^{t \frac{\operatorname{tr}[P(B-A)]}{M-m}} dt = \frac{\left(\frac{M}{m}\right)^{\frac{\operatorname{tr}[P(B-A)]}{M-m}} - 1}{\frac{\operatorname{tr}[P(B-A)]}{M-m} \ln\left(\frac{M}{m}\right)}$$

and by (2.7) we derive (2.6).

We also have

Theorem 7. With the assumption of Theorem 6,

$$(2.8) \quad m^{\frac{M-\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA)-mP}{M-m}} \leq \Delta_{P}(A)$$

$$\leq \operatorname{tr}\left(Pm^{\frac{MI-A}{M-m}} M^{\frac{A-mI}{M-m}}\right) + L\left(M,m\right) \log S\left(\frac{M}{m}\right)$$

$$\leq m^{\frac{M-\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA)-mP}{M-m}} + L\left(M,m\right) \log S\left(\frac{M}{m}\right).$$

We also have the simpler inequality

$$0 \le \Delta_P(A) - m^{\frac{M - \operatorname{tr}(PA)}{M - m}} M^{\frac{\operatorname{tr}(PA) - mP}{M - m}} \le L(M, m) \log S\left(\frac{M}{m}\right).$$

Proof. From (1.16) we get

$$0 \le t - m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} \le L(M, m) \log S\left(\frac{M}{m}\right)$$

for all $t \in [m, M]$, namely

$$m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} \le t \le m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} + L\left(M,m\right) \log S\left(\frac{M}{m}\right)$$

for all $t \in [m, M]$.

By taking the logarithm, we derive

$$\frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M \le \ln t$$

$$\le \ln \left(m^{\frac{M-t}{M-m}}M^{\frac{t-m}{M-m}} + L\left(M,m\right)\log S\left(\frac{M}{m}\right)\right)$$

for all $t \in [m, M]$, which implies the operator inequalities

$$\begin{split} \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m} &\leq \ln A \\ &\leq \ln \left(m^{\frac{MI - A}{M - m}} M^{\frac{A - mI}{M - m}} + L\left(M, m\right) \log S\left(\frac{M}{m}\right) I \right). \end{split}$$

Now if we multiply both sides by $P^{1/2}$, then we get

$$\begin{split} & \ln m \frac{MP - P^{1/2}AP^{1/2}}{M - m} + \ln M \frac{P^{1/2}AP^{1/2} - mP}{M - m} \\ & \leq P^{1/2} \left(\ln A \right) P^{1/2} \\ & \leq P^{1/2} \ln \left(m^{\frac{MI - A}{M - m}} M^{\frac{A - mI}{M - m}} + L\left(M, m \right) \log S\left(\frac{M}{m} \right) I \right) P^{1/2}. \end{split}$$

If we take the trace and use the fact that tr(P) = 1,

(2.9)
$$\ln m \frac{M - \operatorname{tr}(PA)}{M - m} + \ln M \frac{\operatorname{tr}(PA) - mP}{M - m} \\ \leq \operatorname{tr}[P(\ln A)] \\ \leq \operatorname{tr}\left[P\ln\left(m^{\frac{MI - A}{M - m}}M^{\frac{A - mI}{M - m}} + L(M, m)\log S\left(\frac{M}{m}\right)I\right)\right].$$

By the Jensen's trace inequality for concave function ln, we derive

$$(2.10) \operatorname{tr}\left[P\ln\left(m^{\frac{MI-A}{M-m}}M^{\frac{A-mI}{M-m}}+L\left(M,m\right)\log S\left(\frac{M}{m}\right)I\right)\right]$$

$$\leq \ln\left(\operatorname{tr}\left[P\left(m^{\frac{MI-A}{M-m}}M^{\frac{A-mI}{M-m}}+L\left(M,m\right)\log S\left(\frac{M}{m}\right)I\right)\right]\right)$$

$$= \ln\left(\operatorname{tr}\left(Pm^{\frac{MI-A}{M-m}}M^{\frac{A-mI}{M-m}}\right)+L\left(M,m\right)\log S\left(\frac{M}{m}\right)\right).$$

By (2.9) and (2.10) we derive

$$\begin{split} & \ln \left({m^{\frac{{M - {\rm{tr}}\left({PA} \right)}}{{M - m}}}{M^{\frac{{{\rm{tr}}\left({PA} \right) - mP}}{{M - m}}}}} \right) \\ & \le {\rm{tr}}\left[{P\left({\ln A} \right)} \right] \\ & \le \ln \left({{\rm{tr}}\left({Pm^{\frac{{MI - A}}{{M - m}}}{M^{\frac{{A - mI}}{{M - m}}}}} \right) + L\left({M,m} \right)\log S\left({\frac{M}{m}} \right)} \right) \end{split}$$

and by taking the exponential, we derive the first two inequalities in (2.8). Observe that

$$g\left(t\right):=m^{\frac{M-t}{M-m}}M^{\frac{t-m}{M-m}}=m^{\frac{M}{M-m}}M^{-\frac{m}{M-m}}\left(\frac{M}{m}\right)^{\frac{t}{M-m}},$$

which shows that g is convex on [m, M].

By using the Jensen's trace inequality for convex function g, we also have

$$\operatorname{tr}\left(Pm^{\frac{MI-A}{M-m}}M^{\frac{A-mI}{M-m}}\right) \leq m^{\frac{M-\operatorname{tr}(PA)}{M-m}}M^{\frac{\operatorname{tr}(PA)-mP}{M-m}}$$

and the last part of (2.8) is also proved.

3. Related Results

We also have:

Theorem 8. With the assumption of Theorem 6, we have that

$$(3.1) 1 \leq S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m}\left|\operatorname{tr}(P \ln A) - \frac{\ln M + \ln m}{2}\right|}\right)$$

$$\leq \frac{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m}m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m}M}{\Delta_P(A)} \leq S\left(\frac{M}{m}\right).$$

Proof. Assume that $m^{1-\nu}M^{\nu}=\exp s$, then $s=(1-\nu)\ln m+\nu\ln M\in[\ln m,\ln M]$, which gives that

$$\nu = \frac{s - \ln m}{\ln M - \ln m}.$$

Also

$$\min \{1 - \nu, \nu\} = \frac{1}{2} - \left| \frac{s - \ln m}{\ln M - \ln m} - \frac{1}{2} \right|$$
$$= \frac{1}{2} - \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|.$$

From (2.1) we get

$$\exp s \le S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m}\left|s - \frac{\ln M + \ln m}{2}\right|}\right) \exp s$$

$$\le \frac{\ln M - s}{\ln M - \ln m} m + \frac{s - \ln m}{\ln M - \ln m} M$$

$$\le S\left(\frac{M}{m}\right) \exp s,$$

namely

$$\begin{split} 1 &\leq S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m}\left|s - \frac{\ln M + \ln m}{2}\right|}\right) \\ &\leq \frac{\frac{\ln M - s}{\ln M - \ln m}m + \frac{s - \ln m}{\ln M - \ln m}M}{\exp s} \leq S\left(\frac{M}{m}\right) \end{split}$$

for $s \in [\ln m, \ln M]$.

If $0 < m \le A \le M$, then $\ln m \le \operatorname{tr}(P \ln A) \le \ln M$ and for $s = \operatorname{tr}(P \ln A)$ we deduce

$$1 \leq S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln M + \ln m}{2} \right|}\right)$$

$$\leq \frac{\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M}{\exp \operatorname{tr}(P \ln A)} \leq S\left(\frac{M}{m}\right),$$

which is equivalent to (3.1).

S. S. DRAGOMIR

Corollary 3. With the assumption of Theorem 6, we get

$$(3.2) 1 \leq S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln m + \ln M}{2} \right|}\right)$$

$$\leq \frac{\Delta_P(A)}{\left(\frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M^{-1} + \frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m^{-1}\right)^{-1}} \leq S\left(\frac{M}{m}\right).$$

Proof. If we write the inequality (3.1) for A^{-1} that satisfies the condition $0 < M^{-1}I \le A^{-1} \le m^{-1}I$, then we obtain

$$1 \leq S \left(\left(\frac{m^{-1}}{M^{-1}} \right)^{\frac{1}{2} - \frac{1}{\ln m^{-1} - \ln M^{-1}} \left| \operatorname{tr}(P \ln A^{-1}) - \frac{\ln m^{-1} + \ln M^{-1}}{2} \right| \right)$$

$$\leq \frac{\ln m^{-1} - \operatorname{tr}(P \ln A^{-1})}{\ln m^{-1} - \ln M^{-1}} M^{-1} + \frac{\operatorname{tr}(P \ln A^{-1}) - \ln M^{-1}}{\ln m^{-1} - \ln M^{-1}} m^{-1} \leq S \left(\frac{m^{-1}}{M^{-1}} \right),$$

namely

12

$$1 \leq S\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \operatorname{tr}(P \ln A) - \frac{\ln m + \ln M}{2} \right|}\right)$$

$$\leq \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M^{-1} + \frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m^{-1}$$

$$\leq S\left(\frac{M}{m}\right).$$

This proves (3.2).

Finally, we also have:

Theorem 9. With the assumption of Theorem 6, we get

$$(3.3) \qquad 1 \leq \frac{\exp\left(\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M\right)}{\Delta_P(A)} \leq \left[S\left(\frac{M}{m}\right)\right]^{L(M,m)}.$$

Proof. Assume that $m^{1-\nu}M^{\nu}=\exp s$, then $s=(1-\nu)\ln m+\nu\ln M\in[\ln m,\ln M]$, which gives that

$$\nu = \frac{s - \ln m}{\ln M - \ln m}.$$

By the additive Tominaga's inequality

$$0 \leq \frac{\ln M - s}{\ln M - \ln m} m + \frac{s - \ln m}{\ln M - \ln m} M - s \leq L\left(M, m\right) \log S\left(\frac{M}{m}\right)$$

for $s \in [\ln m, \ln M]$.

If $0 < m \le A \le M$, then $\ln m \le \operatorname{tr}(P \ln A) \le \ln M$ and for $s = \operatorname{tr}(P \ln A)$ we deduce

$$0 \le \frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M - \operatorname{tr}(P \ln A)$$
$$\le L(M, m) \log S\left(\frac{M}{m}\right).$$

If we take the exponential in this inequality, then we get

$$\begin{split} 1 &\leq \frac{\exp\left(\frac{\ln M - \operatorname{tr}(P \ln A)}{\ln M - \ln m} m + \frac{\operatorname{tr}(P \ln A) - \ln m}{\ln M - \ln m} M\right)}{\exp\left[\operatorname{tr}\left(P \ln A\right)\right]} \\ &\leq \exp\left[L\left(M, m\right) \log S\left(\frac{M}{m}\right)\right] = \left[S\left(\frac{M}{m}\right)\right]^{L(M, m)} \end{split}$$

and the inequality (3.3) is thus proved.

References

- S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [2] S. S. Dragomir, Some properties of trace class *P*-determinant of positive operators in Hilbert spaces, Preprint *RGMIA Res. Rep. Coll.* **25** (2022), Art.
- [3] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530.
- J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [5] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [6] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
- [7] T. Furuta, J. Mičić-Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Croatia.
- [8] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645.
- [9] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
- [10] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA