INEQUALITIES FOR TRACE CLASS P-DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA OSTROWSKI
TYPE RESULTS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr(PlnA).

In this paper we show among others that, if A is an operator satisfying the
condition 0 < mI < A < MI, then

g ([t (gl

M — \M
Ap(4)
B Id (m7M)
< (M) {%+ﬁtr(P|A—m;MID] - %7
m m

where I is the identric mean.

1. INTRODUCTION

In 1952, in the paper [6], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (X)),
Sp(T)

where E (X) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp </ lntd,uT> .
0

If T is invertible, then
Apg (T) = exp (r (In (|17))) ,
where In (|T']) is defined by the use of functional calculus.
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Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [9].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 * 2
(1.2) Do ledll® = NAL1 =147
i€l jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(13) JAll, = <2Aei|2>
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in 2 (1), one checks that By (H) is a vector space
and that ||-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)'/?

Because |||A| z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l,. From (1.2) we have that if A € By (H), then A* €
By (H) and [|All, = | A%],

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||ly) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y (B*Aei,e;)
i€l i€l
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

(1.5) [l < [| Al

iel’
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for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, [T Ally < 1T 1Al

(#ii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) 1Al =) (|Al iy i) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei},cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[A]l,
for any A€ By (H);

(i1) By (H) is an operator ideal in B (H), i.e.

B(H)Bi (H)B(H) < Bi (H);
(iti) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup {(A, B), | BBy (H), |Bl,<1};

(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Ae;,e;),

i€l

where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A") = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr (Pl/QTPl/Q)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 5 T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) Pl/z) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:

(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tA,(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [3] we obtained the following results:
Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],
Ap((1—1) A+tB) > [Ap (A~ [Ap (B)].

and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality
aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr(PA) —1].
In particular
1< tr (PA)
Ap(A)

< exp [tr (PA)tr (PA_I) — 1]

and
Ap (4)
(AT
Motivated by the above results, in this paper we show among others that, if A
is an operator satisfying the condition 0 < mI < A < M1, then

<exp [tr (PA™) tr (PA) —1].

Mo

M
Ap(A)
- Iy (m, M)

A\ Bt r(Pla— 25 1))
<(%)

R

M
< —
m

)

m
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where I; is the identric mean.

2. MAIN RESULTS

Recall the identric mean

1
b\ bv—a
1<ba> if b#a
I (a,b) := € \a ;a,b>0.

if b=a

Q

It is easy to observe the connection between the integral mean of the logarithmic

function and the logarithm of the identric mean,

1 b
m/@ lntdt:].n]d (a7b)

for a # b positive numbers.

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1. Assume that the operator
A satisfies the condition 0 < mI < A < MI, where m, M are positive numbers,

then

21)  exp {_

o (2 0) [ e () ))
(a5

oo e L(2 )]
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1
— —t
g (-1 M-1)2

HER)!

Proof. We use Ostrowski’s inequality [10]:
Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) such that
f":(a,b) — R is bounded on (a,b), ie., || f'||,, := sup |f'(s)| < oo, then

s€(a,b)

2
1 t — atb
< 4+< — ) 17 (= a)

)

a

b
(23) ‘f(t)—bfa/ 7 (s) ds

for all ¢ € [a,b] and the constant 1 is the best possible.
If we take f (t) =1Int, t € [a,b] C (0,00) in (2.3) and observe that

_ 1
[ le = sup t71=~,
t€[a,b] a

2
1 t a+b b
Int —1Inl1, b < =+ 2 -—1
[ nla(a,b)] < 4 (b—a) <a )’

for all ¢ € [a,b].
This inequality is equivalent to

_atb 2
(2.4) — i+<tb_z> (

<Int—-1Inl;(a,b) <

then we get

ISERS

_1>
2
t—afb b
1
+<b—a> (a )’
for all ¢t € [a,b].

By utilizing the continuous functional calculus for selfadjoint operators, we get

from (2.4) that
2
Ly Fa— Q(A—erMI)
4 (M —m) 2

(-

<lnA—-Inly(m,M)I

< (Zl) i[+ (Mlm)2 <Am;MI>T.

> =
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If we multiply both sides with P/2, then we get
M 1 1 M \?
S .

< PY2(InA)PY2 —Inl, (m, M) P
M 1 1 M \?

< ( - 1) P+ —— P2 (A - m+1> P2
m 2

4 (M-m)
Now, if we take the trace and use the fact that tr P = 1, then we obtain
1
S tr

(2.5) —(%—1) Tt G P(A—m—;MI>2H

< tr [P1/2 (In A) Pl/ﬂ ~In Iy (m, M)

() ot 23]

By taking the exponential in (2.5) we derive
M M\’
exp _<_1> U S P(A—m+ I)
tr [P1/2 (In A) P1/2]
o Id (m7 M)

1

1Jr 1 ¢
-+ —tr
4 (M —m)?

1 1

2
§exp<M1> CR - P<Am+MI> .
Since
2
tr P(A—m+MI) 1 <Xor—mye,
2 4
hence
2
CH— 2trP<A—m+MI> <1
47 (M —m) 2 2
and

1 < 1 n 1 ¢
——<—|-+——=tr

27 \4 (M-m)

These prove the desired result (2.1).

If0<mlI <A< MI,then 0 < M~'I < A=' < m~'T and if we write the
inequality (2.1) for A=, we derive (2.2). |
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Theorem 7. With the assumptions of Theorem 6, we have the inequalities

T
Ar(a).
— Iy(m, M)

M [%‘*‘Mimtr(P|A_%MI|)] M
(o) "

IN

<
m

< ( )[é+7n—1iM—1tr(P|A_M_1;rm_1]D]
[I4 (m*l,Mﬂ)]fl
Ap(A)
<M) [ ey (P A=t )]
< (2

m

SE
SE

<

RIS

Proof. In 1997, Dragomir and Wang proved the following Ostrowski type inequality
[4]:
Let f : [a,b] — R be an absolutely continuous function on [a, b], then

1 |t_ aTer ’
T T e 1 N a,e,1 5

b
(28) Oy L

<

for all ¢ € [a,b], where [|-||; is the Lebesgue norm on L [a,b], i.e., we recall it

b
ol = [ lo(o)lae.

The constant % is best possible.
If we take f (¢t) =1Int, t € [a,b] C (0,00) in (2.8) and observe that

||f’H[a7b]71 =Inb—Ina,

then by (2.8) we get

1 1 a+b
_ < |= _ _
lnt —1InI;(a,b)| < {2 + 4 t H (Inb—1na),
for all ¢t € [a,b].
This inequality is equivalent to
1 1 a+b
(2.9) - {2—1-1)_& t— 5 H (Inb—1na)
<Int—1Inl;(a,d)
1 1 a+b
< |= — _
[2+b—at 5 H(lnb Ina),

for all ¢t € [a,b].
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By utilizing the continuous functional calculus for selfadjoint operators, we get
from (2.4) that

1 1 m+ M
—(lnM—lnm)[QI—i—Mm‘A— 5 IH
<lnA—-Inly(m,M)I

1 1 m+ M
<(InM -1 - -
<(InM nm){Ql—l—Mm’A 5 IH,

which, as above, implies the trace inequalities

1 1 m+ M
—(InM —1 — P|A— 1
(In nm)L—l—M_mtr( ‘ 5 D}
<tr(PlnA) —Inl;(m, M)

< (In M — lnm) [;+M1—mtr<P'A_m;MID]'

By taking the exponential, we derive

exp <_ (In M — Inm) [;Jr Ml_mtf (P‘A_ m;MIDD

o SXptr (PlnA)
Iq (ma M)

<exp<(lnM—lnm) E+M1 tr(P‘A—m;MIDD.

-m
Also, we notice that

tr<P‘A—m+2MJD S%(M—m)

for P> 0 with P € By (H) and tr (P) = 1. These prove the desired result (2.6).
The inequality (2.7) follows by (2.6) applied for A~1. O

Theorem 8. With the assumptions of Theorem 6, we have the inequalities

Va (ppp=1 _ pp—1 1/p
(2.10) exp (—(M —m) (M ) )

(g+ 1) (p—1)"" mV/ari/a
(M —m)Y (Mp=1 — mp=1)"/P
<exp| —
(g+ 1) (p = 1)YPmi/arrt/a

Noep [(AmmI\™ M1 a\ T Vi
. MI=4
M—m M—-m
_ eV
“ exp (M =)t (et — e )Y
N (@+ )Y (p— )P mi/ant/a

A—mIN ar - Aot
() + (=)

xtr| P
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Ap(A)
- Iy (m, M)

(M —m)Y/e (Mp=1 — mp=1)"/7
T @) - mt s

A—mI\"™ /Mmr— A\

SEIR =
(M —m)Y/4 (Mp=1t — mp=1)"/7

= exp 1/q 1/p, 1 1
(q+ 1) (p—1)"Pml/apt/a

A—mIN - A
P -
() + (=)

< exp (M —m)"/* (M=t —p1)/7
T @) - mians

1/q
xtr| P

wherep>1,1%+%:1.

Proof. In 1998, Dragomir and Wang proved the following Ostrowski type inequality
[5]:
Let f : [a,b] — R be an absolutely continuous function on [a, b]. If f" € L, [a,b],
then we have the inequality

b
(211) ‘f(t)—bia/ F ()i

1/q

1 t—a\t b—t\1 L

< h— /a ) ¢
DK Kb—a) (=) | om0 s

for all ¢t € [a,b], where p > 1,% + % = 1and [|||(5 4, is the p-Lebesgue norm on

L, [a,b], i.e., we recall it
b 1/p
190 (a0, = (/ lg () dt) :
a

If we take f (t) =1Int, t € [a,b] C (0,00) in (2.11) and observe that

1/p

b _ _ 1/p
p—ptl _ g—p+l
4 — —p = _
1 oy (/ t dt) ( — )

_ b%l—ap% 1/p_ S
U ) e pe

(bp*l _ apfl)l/l’ (bpfl _ apfl)l/p

(p— 1)1/1’ al—1/ppl-1/p (p— 1)1/p al/tzbl/q7
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then we get

(2.12) lnt —Inly(a,b)

1 Foa\ Tt oy ett]
<
T g+ D) (p—1)t/P (b—a> +<b—a)

(b- a)l/q (bp’1 - apfl)l/p

% al/le/q
§ 1 (b— a)l/q (bp—l _ ap—l)l/P
- (q+ 1)1/<1 (p— 1)1/1) al/apl/a

for t € [a,b], since

t—a qg+1 b_t q+1
<1
<b—a) *(b—a) =

for t € [a,b].
This implies as above

1 A—mI\™ a1 - 4y
(q+ 1) (-7 (M—m> +(M—m>
(M —m)V/ (Mr=1 — mp=1)1/P

mi/apl/a
<lnA-Inl;(a,b)I

X

1 1/q

_ A—mI q“+ MI— A\
IR R R ANl M=m
(M —m)"? (Mp=t — pp=1)*/?

mi/aM1/a ’

X

Following a similar argument as above, we get the trace inequalities
(M —m)Y® (Mp=1t — 1)/
(g+ )Y (p = 1)"P mV/ari/a

A—mI\™ ar - ay
() () ]
<tr(PlnA)—Inly(a,b)

o =) ()
T g+ DY p -1 mban e

A—mI\ MI— A7
() (i)

x tr | P

1/q
x tr | P
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By Jensen’s trace inequality for concave functions, we also have that
A—mI\™ - ayeH]
tr | P + | —
M—m M—-—m

(er(G =)

The last part follows by the fact that

A—m\" nr— A\
_— <1
tr | P (Mm) +(Mm> <
for P> 0 with P € By (H) and tr (P) = 1.

Now, by taking the exponential and making use of a similar argument as above,
we derive the desired result (2.10). O

Corollary 1. With the assumption of Theorem 6 we have

(2.13)  exp (—Mg;ﬂ)

1/2
. M—mtrPA—mIB MI— A\?® /
«p | —
=P 3mM M—m M—-—m
3 1/2
< Mfmt p A—mlI n MI—-A
xp | — r
= &P 3mM M—-—m M—-—m
_Ap(4)
_Ide)
1/2
e M-—m (A-mI 3+ i — A\
X r _— _—
P 3mM M —m M—-—m
1/2
o M—m | (| (A=mI 3+ MI— A\? /
X r
P 3mM M—-—m M—-—m
M m)
<exp .
3mM

Remark 1. If we apply the inequality (2.10) for A=1, then we get
(m—l _ M—l)l/q (ml—p _ Ml—p) 1/p
(a+1)"" (p = D M=Vam=/a

(2.14) exp (

(m—l _ M—l)l/q (ml—p _ Ml—p)l/p
<ex —
(¢+ )" (p—1)!/7 M-V/am~1/a

A-1 i\ et m—17 — A—1\ 1! 1/q
o Geie) G

X
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o [ A i gy
<exp | — ,
(g+ )" (p— 1)"/" M~1/am~1/a

AU MY iy - am o]
(i) + (=)

[La (m=" )]

xtr| P

<

- Ap(A)

< exp (m™" - )Uq (m!” lep)l/p
- <q+1>”" (p—1)"/" M~V/im=1/a

xtr | P

A M\ i — A
i)+ ()
(m* )1/4 (m lep) 1/p
+11/Q< )
(

(g p—1 1/p]\4 /am—1/q
(

oy ()]
<m >

R Ml"’)w>
)
The following results of Ostrowski type holds, see [2]:

< exp
X | tr
< exp

g+ )Y (p— )P M—Vam-1/a

3. RELATED RESULTS

Lemma 1. Let f : [a,b] C R — R be a convezx function on [a,b]. Then for any
t € [a,b] one has the inequality

(3.1) S0 -0 ) - - )
b
<[ feds-0-a10

N =

<o - -0 f )]

The constant % is sharp in both inequalities. The second inequality also holds for
t=a ort=>0.

If the function is differentiable in ¢ € (a,b) then the first inequality in (3.1)
becomes

(3.2) (ajb—t)f’u)sbfa/abﬂs)ds—f(t).

We also have:
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Theorem 9. Assume that the operator A satisfies the condition 0 < mI < A <
MI, where m, M are positive numbers, then

(3.3) exp (1 - M (PA1)>

Ap(A)
- Iy (m, M)

< exp (;tr (P (A - mI)Q) - %tr (P (MT — A)Q))

and
(3.4) exp (1 — % tr (PA))
Iy (m=t, M—1)]7"
[ty
< exp (Mtr P 1[)2} — mtr {P (m*IIfA*I)QD.

Proof. Writing (3.1) and (3.2) for the convex function f (¢) = —Int, then we get

(t—a)® (b—1t)°
a b

b
1—‘1; 1 <Int —1Inly(a,b) <

for all t € [a,b] C (0,00).
If we use the functional calculus, we derive the operator inequality
(A—mI)®  (MI- A

1—
m M ’

m;MA*I <A —1Inly(m, M) <

which gives

1- tr (PA™)
<tr(PlnA)—Inly(m, M)

m+ M
2

<Ly (P(A—mI)Q) - %tr (P(MI— A)Q) .

m

If we take the exponential, then we get

exp <1 _m —; M tr (PA_1)>

exptr (PlnA)
Id (m, M)
1 N1 ,
< — _ _ _
< exp (mtr (PA=mD?) = — b (P(MI - 4) ))
The inequality (3.4) follows by (3.1) applied for A~1. O
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