BOUNDS FOR THE TRACE CLASS P-DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA JENSEN’S
TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE
FUNCTIONS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H), the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr (PlnA).

In this paper we show among others that, if P; > 0 with P; € By (H) and
tr(P;) =1forie{1,..,n},p; >0 with >1* ;p; =1, p € (—00,0) U(1,00)
and that Aj; are operators such that 0 < m < A; < M, for i € {1,...,n}, then

exp {'Yp |:Z pi tr (PZAf) — <Zpl tr (PZA1)> }

i=1 i=1
< Znizl pitr (P A;)
H [APi (Ai)]pi
i=1
n n p
< exp {Fp |:Z p;i tr (PiAf) - Zpi tr (PZ-Ai))

i=1 i=1

2

where
—p .
s P € (1,0), sip=1): P € (1,00),
’YP = ) F[) =
—p 7})
%7 pE (70070) p](\/zl,,l)’ pE (70070) .

1. INTRODUCTION

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)'/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (X)),
Sp(T)

where E (X) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := T o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).
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For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntd,uT) .
0

If T is invertible, then
Ark (T) :=exp (7 (In(|T1))),

where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A (A) :=exp(ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [10].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B(H) then

(1.2) Do lAell* =Y 1A =141

i€l jel jeI
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) Al = (erm)
iel
for {e;},c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5 . From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4°]l,-

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:
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Theorem 1. We have:
(i) (B2 (H), ||-ll5) s a Hilbert space with inner product

(14) <A, B>2 = Z<A6i,B€Z‘> = Z<B*A€Z‘,€i>
iel icl

and the definition does not depend on the choice of the orthonormal basis {e;},c;;

(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) IAT |y, I TAll, <IN Al

(iii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C B2 (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(L.7) 1A = (Al esse) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

e;;..7. We denote by by the set of trace class operators in .
ier - Wed by By (H) th f 1 in B(H
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = [[A"][, and [[All, < [ All,
forany A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C By (H);
(iti) We have
By (H) By (H) = By (H);
(iv) We have
[Ally = sup{{A,B), | BBz (H), |Bll, <1};
(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) =Y (Aej,e;),
icl
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since PY/2 € By (H), TP'? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (Pl/QTPl/Q)

forall T € B(H).

If T >0, then PY/2T P2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [3] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tA,(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [4] we obtained the following results:

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],

(1.13) Ap((1—t)A+tB) > [Ap (A)]' "' [Ap (B)].
and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(1.14) aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr(PA) —1].

In particular

tr (PA) 1
(1.15) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
(1.16) 1< Br) - <exp [tr (PA™Y) tr (PA) —1].

- e (PATH]
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The first inequalities in (1.15) and 1.16) are best possible from (1.14).

Motivated by the above results, in this paper we show among others that, if
P, >0 with P, € By (H) and tr (P;) = 1 fori € {1,...,n}, p; > 0 with Y1, p; = 1,
p € (—00,0) U (1,00) and that A; are operators such that 0 < m < A; < M, for

i€{1,...,n}, then
exp{'yp [sztr (P;AY) (sztl“ (PA;) ) }

i=1

> iy Pitr (PiAs)
[T1ak (4

<

i=1
§exp{ [sztr (PAY) — (sztr (P;Ay) ) }
=1
where
#:Z)ape(laoo)a #:z;)ype(l,oo)7
Vp = ) , Iy =
%, p € (—0,0) I(‘;{ L p € (—00,0).

2. MAIN RESULTS

The following result is of interest in itself as well:

Lemma 1. Assume that f is twice differentiable on the interior I of the interval I C
(0,00) and the second derivative " is continuous on I and forp € (—o0,0)U(1,c0)
satisfies the condition

2.1 < 27
. BT
where v < T are constants. If Q; > 0 with Q; € By (H) fori € {1,..,n} and
Z?:} tr (Q;) > 0, then for all B; with the spectra Sp (B;) C I fori € {1,...,n} and
a€l,
D i t1(QiBY) —1 <Z?_1 tr (QiBi) )]
2.2 =~ —a’ —pa’ ==~ < g
22) ! |: > im tr(Qi) b > im tr(Qi)
i tr[Qif (Bi)] s <Z;L—1 tr (QiBi) )
< ST Q) f(a) = f"(a) Sowoy °
D tr(QiBY) —1 (Z:‘L—l tr (Q;B;) )}
ol T B ed RN R S Y (P Bk el AR § I
: { i tr(Qy) “op i tr(Qi) ¢

Proof. We use the Taylor’s expansion for twice differentiable functions

() <T foranytel,

1
(2.3) f(x) :f(a)Jr(w*a)f'(a)Jr(w*a)Q/O f"(sa+ (1= s)z)sds

that holds for all z, a € I.
Since

pp—D)P2< () <p(p—1)Tt* "2 for any t € I,
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hence
p(p—l)’y/o (sa+(1—s)x)p_2sds§/0 " (sa+ (1 —s)x)sds
1
§p(p—1)I‘/0 (sa+ (1 —s)z)" % sds,

which, by (2.3) gives that

1
(2.4) p(p—1)7y(z—a) / (sa+ (1 —s)z)" 2 sds
0
<f(@)=f(a)=(z—a)f (a)
1
<plp- 1)I‘(a:—a)2/ (sa+ (1—s)z)" 2 sds
0
for all z, a € I.
Using integration by parts, we get

1
/ (sa+ (1 —s)z)" % sds
0

- W/ sd [(sa+ (1= )™
1

= ) el

- =TT [_ i /o d(sat(1-s) x)p}
1 1 1 p P
- IR [ EIED )}

:p(p—l)(a—x)2 [:L‘p—ap_p(x_a)apil]

and by (2.4) we get

(2.5) v[aP —a? —p(z —a)a” "]

for all x, a € I.
Now, by using the continuous functional calculus for the selfadjoint operators ,
we get from (2.5) that

(2.6) v [Bf —a"l—pa" " (Bi = al)] < f(Bi) = f(a) I — f'(a) (Bi — al)
L' [BY —aPI —pa’~" (B; — al)]

K2

IN

for B; with the spectra Sp (B;) C I for i € {1,...,n} and a € I.
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If we multiply both sides by Q1'% we get

v|@*BrQI — Qi —par (@17 B.Q}* — aQ))]
<QPF(BIQ [ (@) Qi — () (@I BQI - ai)
<1 [Q*BIQ}* — i — par ' (Q*BiQ!* - 001 |

forie{1,..,n}and a € I.
Now, if we take the trace and use its properties, we derive

v [tr (QiBY) — a” tr (Q;) — paP~" (tr (Q:B;) — atr (Q;))]
<tr[Qif (Bi)] = f(a) tr(Qi) — f (a) (tr (QiB;) — atr (Qy))
< T [tr(QiBY) — a” tr (Q;) — pa?~ " (tr(Q; B;) — atr (Qs))]

fori e {1,..,n} and a € I.
If we sum over i € {1,...,n} and divide by Y7, tr (Q;) > 0, we get (2.2). O

Remark 1. Assume that f is twice differentiable on the interior 1 of the inter-

val I C (0,00) and the second derivative f" is continuous on I and satisfies the
condition

(2.7) o< f"(t)<® foranytel,
where ¢ < ® are constants. If Q; > 0 with Q; € By (H) fori € {1,...,n} and

Yo tr(Q;) > 0, then for all B; with the spectra Sp (B;) C I forie {1,...,n} and
a€el,

(2.8)

1 [ Yt (QiBY) (X0 tr(QiBi)’
2@l ‘( >)

Zznzl tr (Qi) E?:l tr (Q;
)

_|_

Z?:NT(QZ‘
Do tr[Qif (Bi)] —f(a) - f'(a > i tr(QiBy) —u
STyrw) @ f<)<z&wu@> )
e tr (QiB7) S tr(QiBi)\°
= (I)l Doy tr(Qi) ( D i tr(Q:) )

1

2

( letr QB ))2
1 ltr Ql)

The proof follows by Lemma 1 for p=2 and v = %gﬁ, I = %@.
If
¥ v :
(2.9) I <[ < I foranytel,
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then

(2.10) L Fi—l (@B ) | X (QiB)
>

—92q7!

Str(@Q) e, e (Q)

i tr[Qif (Bi)] o) — ' (a > tr(QiBy) .
Sy @ f(’<21mu@> )
Yisitr (@B _2zxilw<9dz>_2a_ﬂ.

IN

D I T ]

Corollary 1. With the assumptions of Lemma 1 we have

ey o[ REER <Z£:ffif?£”>’?
< ZgrlB P (e
<r[Redi - (5 fzi?@; )p] -

In particular, if f satisfies the condition (2.7), then

1
2

L |Ziitr(@iB7) (X, r(QiB)\
212 2¢[Zimu@><:zimu@>>

Doy tr[Qif (Bi)] _ D i tr(QiBy)
= doim tr(Qi) / ( D tr (@) )
Lo |2 (QiBF) (X r(QiB))
=3? Z?:l tr (Q:) ( Z?:l tr (Q:) )

2
If [ satisfies the condition (2.9), then

(2.13) 71/, [ZZ Lo Ql < i 1tr Ql i ) ]

leter ( ,1tr Qv Z)
< S -f
1

<0
=2

zﬁmsz Y <z_mqu»)*
Z?:1 tr (Ql) Z?:1 tr (Qv) '

We also have:

Lemma 2. Assume that f is twice differentiable on the interior I of the interval
I C (0,00) with the second deriwative f" is continuous on I and for p € (0,1)
satisfies the condition

2—p
(2.14) §< t

*p(l—p)f (t) <A foranytel
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for some § < A If Q; > 0 with Q; € By (H) fori € {1,...,n} and >\, tr (Q;) > 0,
then for all B; with the spectra Sp (B;) C I forie {1,..,n} anda €I,

p—1 > i tr(QiBs) —a ab — > i tr(QiBY)
(2.15) o {pa ( Z?:1 tr (Qz) > * Z?:l tr (Qz) ]
iy tr[Qif (Bi)] Q) — ' (a D tr(QiBi) u
s s OREACIC S ol
> i t1(QiBY) — P — paP? >y tr(QiBy) —a
<a [R5y e (e )]

In particular,

et U8 )
[Crvar) wvar

Proof. As above, from (2.14) we derive

v[p(z—a)a?™ +a” —a?] < f(z) ~ f(a) = (x —a) f' (a)
<Alp(z—a)a” ' +a? — aP]

for all x, a € I.
By making use of a similar argument as in the proof of Lemma 1 we derive the

desired result (2.15). O
Remark 2. If
4 r 7
(2.17) 7 < f"(t) < 7 for any t €1,
then

(2.18) 4 [(W)lm B Yo tr (QiBZ_l/Q)

Z?:l tr (Qi) Z?:l tr (Qi)

S tr(@if (Bi)] f (Z?—l tr (QiBi)>
i1 tr(Qi) D tr(Qs)

S (@i V2 S tr (QiB,»l/z)
<4F [<m> T (Q))

<

We have the following main result:

Theorem 6. If P, > 0 with P, € By (H) and tr(P;) = 1 fori € {1,..,n},
pi >0 with !  pi=1,p€ (—00,0) U (1,00) and that A; are operators such that
0<m<A; <M, forie{l,...,n}, then for all a > 0 we have the lower and upper
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bounds

(2.19) exp {fyp lsz tr (PAY) — a? — paP~! (sz tr (PA;) — a)] }

=1 i=1

_ aexp (cf1 S pitr (PA;) — 1)

[Tiar

i=1

Y tr PAp —aP — paP~1 Y itr (P A;) —a

> pitr( (sz (PA;) >H
i=1

< exp {Fp

i=1
where

-P
o= forp € (1,00),

p(";i:) forp € (—0,0)
and
o forp e (1,50).

1)(%7:?.) forp € (—0,0).
Proof. We consider the convex function f (¢) = —Int, t € [m, M] C (0,00). Then
2P 2P 1 1

= —f"(t) = — = .
9(t) p(p—l)f © pp=1t* pp-1t
For p € (1,00), we have
m—P M—P
su t)= —  and inf t)= ——
te[mPM]g( ) p(p—1) te[m,M]g( ) pp—1)
and for p € (—o0,0)
o P M-P
sup g¢(t) = sup =
te[m,M] te[m,M] P (p - 1) p (p - 1)
and
P m=P
inf t) = inf = .
tefmon) 9(t) temMp(p—1) pp-1)

From (2.2) applied for f(t) = —Int, t € [m, M] C (0,00), we get for Q; = p; P;
and B; = A; that

(2.20) Yp lsztr (PAY) — aP — pa?~! (Zp,tr (PA;) — >]

=1 =1

< —ipi tr[P;In(4;)] +1Ina+a* (ipl tr (P A;) — a)
li tr (P AY) — aP — pa? ™! (sztr (PA;) — >]

i=1

for all a > 0.
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If we take the exponential in (2.20), then we get

exp {’Yp [Zpi tr (P, AY) — aP? — paP~ ! (Zpl tr (P A;) )]

i=1 i=1

gexp[ ZpltrPln D] +Ina+a? (sztr (PA;) ]

Sexp{Fp Zpitr(PiAf)—ap—pap1< pi tr (P A;) ) },
Li=1 i=1

namely

(2.21) exp {’yp Zpi tr (PAY) — aP — pa?~!

< exp [lr;a +a ! (E:L:l pitr (PA4;) — a)]
exp (307, pitr [Piln (4;)])

< exp {I‘p Zpi tr (P AY) — a? — paP~1 (sz tr (P A;) — a)] } .

i=1 i=1
Since
exp [Ina+a~? (sz tr (PA;) — a)}
= exp (Ina) exp [ (Z p; tr (P, )]
= aexp (a‘l Zpi tr (P A;) — 1)
i=1
and

exp (Zpltr [P;In (A ) ﬁ [exp (tr [P; In (A ﬁ Ap, (

i=1 i=1 i=1
then by (2.21) we derive (2.19). O

Corollary 2. With the assumptions of Theorem 6, we have forp € (—oo,0)U(1, 00)

that

(2.22) exp {'yp lz pitr (P;AY) (Z pitr (P A;) )

i=1

< 2iza Pitr (B4

LAk (A

i=1

< exp {Fp [sz tr (P AY) — (sz tr (PiAi)>
i—1

i=1
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Remark 3. For p = 2 we obtain

(2.23) exp { 2]\142 [sz tr (PA7) — (Zpi tr (PZ-Ai)) ] }

S pitr (PA;)

[Tap (4™

i=1

n 2
1
< exp { 572 |:Z p; tr P A2 <Z p; tr (PiAi)>
i=1

<

I

while for p = —1,

(2.24) exp {7;

n n -1
Zpi tr (PiAi_l) _ (Zpl tr (P1A1)> ] }
S pitr (PA;)

[Tar (A

i=1

{M
<e -
- 2

We also have:

<

sztr PA <§n:pitr(PiAi)>_ ] } .
i=1

Theorem 7. If P, > 0 with P, € By (H) and tr (P;) =1 forie {1,..,n},p; >0
with Y1 p; =1, p € (0,1) and that A; are operators such that 0 < m < A; < M,
forie{l,...,n}, then for all a > 0 we have the lower and upper bounds

}

1
(2.25) exp {p(l—p)]\ﬂ’

X lpap_l (Zpl tr (P A;) — a) + aP — Zpi tr (P, AY)

i=1 i=1

< a exp (a‘l Z?:l pitr (PiAi) - 1)

. T 1An (4]

i

=1
< { 1
<expy—F—

p(1—p)mp

X [pap_l (Zpl tr (P A;) — a) +aP — Zpi tr (P, AY)

=1 i=1

} |
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In particular,

n p n
1
2.26 ex — e~ itI‘ RAz - ; tr PZA];
om  onl s | (Sneea) - S neeay
< 21;1 Ditr (PiAi)

[Tar (A

i=1

1 n p n
< exp {p(lp)mp [(;pz tr (PiAi)> - ;pi tr (PAY)

Proof. If we take f (t) = —Int, then

}

} |

1 1 1
= & s
p(1—=p)t? ~ |p(1—p)MP p(1—p)mp

From (2.15) applied for f (t) = —Int, ¢ € [m, M] C (0,00), we get for Q; = p; P;
and B; = A; the desired result (2.25). O

Remark 4. If we take p =1/2 in (2.26) then we get

n 1/2 n
4 1/2
(2.27) exp{ —— <Zpitr(PiAi)> —Zpitr PA;
7 |\ s ()
< 2ima Pitr(Bi4))

— n

[Tar (4

=1

< exp

B

n 1/2 n
(Zpl tr (P1A1)> — sz tr (P@AZI/Q)
1=1

i=1

3. RELATED RESULTS

We also have some simpler upper bounds as follows:

Proposition 2. If P, > 0 with P; € By (H) and tr(P;) = 1 for i € {1,...,n},
p; > 0 with 3" | p; = 1 and that A; are operators such that 0 < m < A; < M, for
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i€{l,....,n}, then
Di pitr (PAy)

n

[Tar (4™

i=1

n n 2
< exp ﬁ Zpi tr (P A7) — (Zpi tr (R‘&))
=1 =1

< exp [2;2 (M — Zpi tr (PiAi)) (sz tr (P A;) — m)]

(3.1)

i=1

<an L (3-1) .

Proof. We observe that

(3.2) Zpi tr (PA7) — (Zpi tr(P¢A¢)>
= (M — Zpi tr (PiAi)> (sz tr (P A;) — m)
i=1

i=1
_ Zpitr [Py (MI — A;) (A; — mI))].

Since (M —t)(m —t) > 0 for all t € [m, M], then by the continuous functional
calculus for selfadjoint operators we get that

(MI—A;)(A4;—mI)>0,i€{l,..,n}.
If we multiply this inequality both sides by Pil/ > >0 we get
PY2(MI — A) (A —mI)PY? >0, i€ {1,...,n},
and by taking the trace, we derive
tr [Py (MI — A;) (A —mI)] >0, i€ {1,..,n},
which implies that

ipitr [P (MI — A;) (A; —mI)] >0

and by (3.2) we obtain

n n 2
Zpi tr (PiAf) — (Z p; tr (PiAi>>
i=1 i=1

i=1 1=1
< i (M —m)2.

By utilizing (2.23) we derive the desired result (3.1). O
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We also have:
Proposition 3. If P, > 0 with P, € By (H) and tr(P;) = 1 for i € {1,...,n},

pi > 0 with >, p; = 1 and that A; are operators such that 0 < m < A; < M for
i€ {1,...,n}, then

S pitr (PA;)

(3.3)
[ 125 (4"
<exp{q — Zpl tr (PZAL 1) — (Zpl tr (PZA1)>
i=1 =1

Proof. If ¢t € [m,M] C (0,00), then (M —t) (m™ —¢71) > 0. Since 0 < mI <
A; < MI,i€{l,...,n} hence by using the functional calculus for selfadjoint oper-
ators we get

(MI—A;)(m™'I—A7") >0
for all i € {1,...,n}, which is equivalent to
(3.4) (M +m)I>MmA; ' + A

for alli € {1,...,n}.
If we multiply (3.4) both sides by Pil/2 we get

(M +m) P, > MmP}? A7 P!? + P24, P2

for all i € {1,...,n}.
If we take the trace and use its properties, we get

M +m > Mmtr (PiAfl) + tr (P 4;)
forallt € {1,...,n}.
If we multiply by p; > 0 and summing over ¢ from 1 to n, we get
(3.5) M+m>Mm pitr (PATY) + pitr (PA;).
i=1 i=1

From (3.5) we get
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which implies that

n n -1
Zpi tr (PZA;]') — Zpl tr (PzAz)
i=1 i=1
L1 -
< 4
- m M mMsztr (PiAi) Zpltr (Pidi)
(- )2
vm M
1 1/2 n —1/2\ 2
itI‘ PiAi - itI‘ PLAL
( v A O] B DD
(G v
vm o M)
By making use of (2.24) we derive (3.3). O

Remark 5. If 0 <ml < A< MI and P > 0 with P € By (H) and tr (P) = 1,
then we have the one operator inequalities

(3.6) tr(PA) < exp {2;2 {tr (PA?) — [tr (PA)]2]}

Ap (A)

< exp [ oy (O = [ (PA)) (1 (PA)] = )|

and
tr (PA) M —1
3.7 VA cexpl 2 [tr PA™Y) —[tr (PA ]
(3.7) A4 <P g [r (PAT) ~ [ox (PA)
2
1 M
<exp |= — -1

2 m

REFERENCES
[1] S.S. Dragomir, Jensen’s type trace inequalities for convex functions of selfadjoint operators in

(6]

Hilbert spaces, Facta Univ. Ser. Math. Inform., 31 (2016), no. 5, 981-998. Preprint RGMIA
Res. Rep. Coll., 17 (2014), Art. 116. [https://rgmia.org/papers/v17/v17al16.pdf].

S. S. Dragomir, Some Slater’s type trace inequalities for convex functions of selfadjoint op-
erators in Hilbert spaces, Toyama Math. J., 38 (2016), 75-99. Preprint RGMIA Res. Rep.
Coll., 17 (2014), Art. 117. [https://rgmia.org/papers/vi7/v17al17.pdf]

S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent
results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online
https://ajmaa.org/searchroot/files/pdf/vi9n1/v19ilpl.pdf].

S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert
spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.

B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55
(1952), 520-530.

J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.



BOUNDS FOR THE TRACE CLASS P-DETERMINANT 17

[7] J. L. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht’s Theorem,
Sci. Math., 1 (1998), 307-310.

[8] S. Furuichi, Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012),
46-49.

[9] T. Furuta, J. Mici¢-Hot, J. Pecari¢ and Y. Seo, Mond-Pecari¢ Method in Operator Inequali-
ties, Element, Croatia.

[10] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim’s inequality, J.
Math. Inequal., Volume 15 (2021), Number 4, 1637-1645.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTYy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





