SOME FUNCTIONAL PROPERTIES FOR THE NORMALIZED
DETERMINANT OF SEQUENCES OF POSITIVE OPERATORS
IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). We consider the functional

[As(k S5 man)] "

[T 1Az (4

i=1

Dn (p; Asz) :=

)

where A = (Aq, ..., Ap) is an n-tuple of selfadjoint positive operators, p ep;t

the set of nonnegative n-tuples and =z € H, ||z| = 1.
In this paper we show among other that, for any p,q €P; and = € H,
||lz|| =1 we have

Dy (p+a;Ax) > Dn (p; Ax) Dn (q; Ayz) > 1.
Moreover, if p,q €P;l with p > q, then also
Dy (p; Az) > Dn (q; Ayz) > 1

forallz € H, ||z|| = 1. Some upper bounds for Dy, (p; A,x) under boundedness
assumptions for A are also provided.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (ln Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[7].
For each unit vector x € H, see also [9], we have:

(i) continuity: the map A — A, (A) is norm continuous;

(ii) bounds: <A‘1x,x>_1 < AL(A) < (Az, z);
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(iii) continuous mean: (Apx,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T AL (A)
for p T 0;

(iv) power equality: A, (A*) = A(A)" for all ¢ > 0;

A~

)
v) homogeneity: Ayz(tA) =tAL(A) and Ay (tI) =t for all t > 0;

(vi) monotonicity: 0 < A < B implies A, (A) < A, (B);

(vii) maultiplicativity: A,(AB) = Ay(A)A,(B) for commuting A and B;

(viii) Ky Fan type inequality: A,((1 —a) A+ aB) > Ay (A)}~*A,(B)* for 0 <

a <1

We define the logarithmic mean of two positive numbers a, b by

In ll::ilna if b 7& a,
(1.1) L(a,b) :=

aif b=a.

In [7] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

MInm—mlnM _

1
M—m

(1.2) 0<(Az,z) — Ay(A) < L(m,M) {lnL(m,M) +

for all z € H, ||z| = 1.
We recall that Specht’s ratio is defined by [13]

1

hhl>ifh€(0,1)u(1,oo),

(1.3) S (h) = etn (7
lifh=1.

It is well known that lim,—1 S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [8], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1< ﬁi’j; <S (%)

for0<mlI <A< MIandzx€H, |z| =1.

In this paper we obtain several refinements and reverses for the normalized de-
terminant of a sequence of operators that have the spectra in a positive interval
[m, M]. For this purpose we used some Jensen’s type inequalities for twice differ-
entiable functions obtained by the author in [3].

We consider the functional

P7l

[Ax(PLn Z?:l pjA;)

D, (p; A,x) = -
[T1a. 4™
i=1

where A =(Aj,...,A,,) is an n-tuple of selfadjoint positive operators, p €P," the
set of nonnegative n-tuples and = € H, ||z| = 1.

In this paper we show among other that, for any p,q €P;} and z € H, ||z| =1
we have

D, (p +q; A;:L') > D, (p; Aax) D, (Q; A,(L’) > 1
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Moreover, if p,q €P;" with p > q, then also
Dy (p;Asz) > Dy (q; Ayz) > 1

for all z € H, ||z| = 1.
Some upper bounds for D,, (p; A,z) under boundedness assumptions for A are
also provided.

2. MAIN RESULTS

We consider the functional

(21) T A ) = S0 () = Pu | 5 i,
i=1 "i=1

where p = (p1,...,pn), p; > 0with j € {1,...,n} and P, > 0, A =(Ay,...,Ay,) is an
n-tuple of selfadjoint operators with Sp(A,) C I for j € {1,..,n} and f: I — R is
a operator convex function defined on the interval I.

We denote by P, the set of all n-tuples p = (p1, ..., pn) , p; > 0 with j € {1,...,n}
and P, > 0. For p,q €P; we denote p > q if p; > ¢, for any j € {1,...,n}.

In [4] we obtained the following result:

Lemma 1. Assume that f : I — R is an operator convez function and A = (Aq, ..., Ay)
an n-tuple of selfadjoint operators with Sp (A;) C I, then for any p,q €P,; we have

(2.2) Jn(P+a A, f, 1) = Jn (P A, f, 1) + Jn (@ A, f, 1) 20,
i.e., Jo (A, f,I) is a super-additive functional in the operator order.
Theorem 1. Moreover, if p,q €P,” with p > q, then also

(2.3) In (P AL f, 1) = Jn (@ A f, 1) 20,

i.e., Jn (s A, f,I) is a monotonic functional in the operator order.

Corollary 1. Assume that the function f : I — R is operator conver and the
n-tuple of selfadjoint operators (A, ..., Ay) satisfies the condition Sp (A;) C I for
any j € {1,....,n}. If p,q €EP;T and there exists the positive constants m, M such
that

(2.4) mq<p<Mq
then
(2.5) mdn (G A, f, 1) < Jp (P A f, 1) S MJy (q A, f, 1)

in the operator order.

Remark 1. We observe that if all ¢; > 0 then we have the inequality

(2.6) min {pf} T (@A, £, 1) < T (D3 AL £ D)

je{l,..n} | gj
2 } .
S max - Jn q; Aa fa I
je{1,mmm} { 4 ( )
in the operator order.
In particular, if q is the uniform distribution, i.e., g; = %,j € {1,...,n}, then
we have the inequalities
(27) n . min {p]}']’ﬂ (Aafvl) S Jn (paAafaI) S 7 1max }{p]}Jn (Aafvl)a
Je{1,. je

e{1,....n} 1,...,n
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where

(2.8) W (AL fT) %Z %Z

For n =2 and by choosing p1 = a,ps = 1 — a with o € [0,1], we get from (2.7)
the inequality

(2.9) 2min {a,1 - a} [f(AHf( ) f<A+B)]

2
<(l-a)f(A)+af(B)-f((1-a)A+aB)
f(A)+[(B) _f(A+B>}7

<2 1-
< 2max {a, a}[ 5 5

in the operator order, where f : I — R is an operator convex function and A
and B are two bounded selfadjoint operators on the complex Hilbert space H with
Sp(A4),Sp(B) C I.

We define the functional

n

|:Aw( B i1 PiA))

[Tia. ()

(2.10) Dy, (p; Az) :=

where A =(Aj,...,A,) is an n-tuple of selfadjoint positive operators p €P,” and
x € H, |z|| =1.
Our first main results is as follows:

Theorem 2. Assume that A = (A, ..., A,) ann-tuple of selfadjoint positive operators,
then for any p,q €P,;F and x € H, |z| =1 we have

(2.11) D, (p+q;A,x) > D, (p;Ax) Dy (q; Ax) > 1

i.e., Dy, (3 Ax) is a super-multiplicative functional.
Moreover, if p,q €P," with p > q, then also

(2.12) D, (p;Azx) > D, (q;Az) >1
forallz € H, ||z|| =1, i.e., Dy (-; A,x) is a monotonic non-decreasing functional.
Proof. For the operator convex function f (t) = —Int, ¢t > 0, we have have
Jn (P A, —1In) := Jp (p; A, —1In, (0, 00))
=Paln | 5> pid; | =D _piln(4))
b =1 j=1
For x € H, ||z|| = 1 we have

(Jn (p; A, —In)z,2) = P, <ln Pin ijAj :L‘,l‘> — ij (In(A))z,z).
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If we take the exponential, then we get

(2.13) exp [(Jn (p; A, —In) z, 7))

1 n n
=exp | P, <ln B ijAj x, x> — ij (In(Aj)z,x)
=1 j=1

exp{ <ln(P Z 1p]A) x,x>]
exp [ZJ 1 p; (In(4;)z, x)}

(oo (A 5ma) )" [ Tty

n

Py

[T lexp (In (4;) z, )] [T
=1 =1
- Dn (p7 A,{L‘) .

For p,q €P, we have by (2.13) and Lemma 1

D, (p +q; A,m) = exp [< n (p +qA, - ln) 4 $>]
>exp [(Jn (p; A, —In) z,x) + (J, (q; A, —In) z, x)]
= exp (J» (p; ln) x,x) exp (Jy, ( —In)z,x)
= D, (p; A,w) n(q; Az),

for all z € H, ||z| = 1, which proves (2.11).
The property (2.12) follows in a similar way by (2.3). d

Corollary 2. With the assumptions of Theorem 2, if p,q €P," and there exists
the positive constants m, M such that mq < p < Mq, then

(2.14) 1< [Dn (q; A2)]™ < Dy, (p; Ayz) < [Dy, (q; Az)]
forallx € H, ||z|| = 1.

Remark 2. We observe that if all ¢; > 0 then we have the inequality

(215) 1 S [Dn (q;A, )]mln,e{l ,,,,, n}{q] }

forallx € H, ||z =1
In particular, if q is the uniform distribution, i.e., g; = %,j € {1,...,n}, then
we have the inequalities

(2.16) 1< (D, (Avx)]nminje{l,...,n}{pj}
< D, (p; Az) < [Dy, (A" ™@set i)

for all x € H, ||z|| = 1, where

A, (l > A,)
ﬁ i

i=1

D, (Ax) =
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Forn =2 and by choosing p1 = a,py = 1 — a with o € [0, 1], we get from (2.16)
the inequality for two positive operators A, B

2min{a,1—a}
A (ALB
(2.17) 1< = (%57

T AL ()] AL(

Ay(1—a)A+aB) A, (MTB) >2max{a,1—a}
: e @ = 1/2 172 :

This provides a refinement and a reverse of Ky Fan’s inequality (viii) from Intro-
duction.

Let Py (N) be the family of finite parts of the set of natural numbers N, A(H)
the linear space of all sequences of selfadjoint operators defined on the complex
Hilbert space, i.e.,

A(H) = {A =(Ak) ey | Ar are selfadjoint operators on H for all k € N}

and S (R) the family of nonnegative real sequences.
We consider the functional

(218)  J(KpsA S 1) =Y pef (Ay) - Picf i 3 pkAk>

keK keEK

where K € Py (N),p €51 (R),A €A(H) with P :=), cppx >0and f: I — R
is a operator convex function on the interval I.

Lemma 2. Let f : I — R be an operator convex function on the interval I and
p €Sy (R),A €A(H). Assume that Sp (Ax) C I for any k € N.

If K,L € Py (N)NA{0} with KNL = 0 and Pg,Pr, > 0, then we have the
inequality

(2.19) J(KUL,p;A, f, 1) = J (K, p; A, f,I) + J (L, p; A, f, 1) = 0,

ie., J (-, p; A, f,I) is super-additive as an index set functional in the operator order.

If 0 # K C L then we have

(2.20) J(Lpi AL f,1) > J (K, p: A, f,1) >0,

i.e., J(-,p; A, f,I) is monotonic as an index set functional in the operator order.
In particular, we have:

Corollary 3. Let f: I — R be an operator convex function on the interval I and
pP={P1,-Pn), A =(A1,..,Ay) with pr > 0, Ay selfadjoint operators and such
that Sp (Ax) C I for any k € {1,...,n},n > 2. Then we have the inequality

(2.21) Ik (AL 1) > Jioy (05 AL f,1) >0
for any k € {1,....,n} withn >k > 2.
We also have that

(2:22)  Ju (D3 A, £, 1) 2 pif (A)) +pif (Ar) = (0 + i) f (pJAﬁpkAk) ="
pj + Pk

for any k,j € {1,...,n} in the operator order.
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We define the functional
Pk

[Aac(i ZkeK pkAk)
I 2. (Ao
keK

where A € A(H) is a sequence of selfadjoint positive operators, K € Py (N), p €S+ (R)
and z € H, ||z| = 1.

(2.23) Dk (p; Ax) =

3

Theorem 3. Assume that A € A(H) is a sequence of selfadjoint positive operators,
p €S+ (R) and z € H with ||z|| = 1. If K, L € Py (N)\ {0} with KL =0 and
Py, Pr, > 0, then we have the inequality
(2.24) Drur (p;Ax) > Dk (p;Asz) Dr (p; Ayx) > 1,
i.e., D.(p; A,x) is super-multiplicative as an index set functional.

If 0 # K C L, then we have
i.e., D. (p; A,x) is monotonic as an index set functional.

The proof is similar to the one in Theorem 2 by employing the inequalities in
Lemma 2.

Corollary 4. Assume that A =(A1,...,A,) is an n-tuple of selfadjoint positive
operators, p €P;F and x € H with ||z|| = 1. Then we have the inequality

for any k € {1,...,n} withn >k > 2.
Also, we have

Ap+p;A;
A (Pt

2.27 D, (p;A,x) > max - > 1.
(2.27) (p; A7) kgellin} [Bg (AR [Ba (A)]7

]Pj +Dpk

3. RELATED RESULTS
In [4] we also obtained the following result:

Lemma 3. If the function f : [m, M] — R is operator convex and if the n-tuple
of selfadjoint operators (A1, ..., A,) has the property that Sp (A;) C [m, M| for any
j € {1,...n}, then for any p; > 0 with j € {1,...,n} and P, := 3 i_ p; > 0 we
have

1 & 1 <
(3.1) 0< 5D pif (4) = f | 5 D _pid
noj=1 " =1

< 2 {f(m);f(M) f(m;Mﬂ

m+ M
2

X

1 1 <
5 (M —m)1y+ P—ijAj— 1y

< [fmesan (i),

in the operator order.
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We also have:

Theorem 4. Assume that A = (A4, ..., A,) an n-tuple of selfadjoint operators with
spectra in [m, M| C (0,00), then for any p €P;} and x € H, ||z|| = 1 we have

(3.2) 1< Dy (p; Az)

()

m+ M\
< .
o <2x/mM>

Proof. We write the inequality (3.1) for the operator convex function f (¢t) = —Int,
t >0 to get

Pin Z?zl pjA;— mEM 1 |”£,:r>)

1 & 1 &
nj:1 "j:l
m+ M\ M-m
<In
o <2\/mM>
1 +M
X (M m)lyg + ij _m 1

2
m+ M\ M-m
< (22 1.
= (2\/mM> i

If we take the inner product for z € H, ||z|| = 1, then we get
1 < 1 «

(3.4) 0<(Iln B ijAj 2,0 )~ 5 ij (InAjz,x)
n i=1 n =1

<In <m+M)Mm
- 2vmM

1 M
X 2(M m1H+< ij m+ 1y z,w>

<1 <m+M)Mm
n
- 2vVmM

If we take the exponential in (3.4), then we get

exp<ln(P ZJ 1DjA; )x x>
exp( ZJ 1P (InAjz, x})

1<
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m+ M\ M-
s || T

namely
1 F
) [Aﬂc(? Zj:l pJAJ)}
[T1a. (4
=1
N T P )
o (2\/mM>
2vmM
and the inequality (3.2) is proved. O

Remark 3. The case of two operators is as follows: if 0 <m < A, B < M and
a € [0,1], then

Au((1—a)A+aB)
(A, (A)' 7 [A (B)]”

<m+M> (14 372 (| (1~ @) A+aB— =M

m+M>

(3.5) 1

)

IN

for all z € H, ||z|| = 1.
Corollary 5. If 0 <m < A, B< M and z € H, ||z| =1, then

(3.6) L(A,(A),A,(B)) < /01 A ((1—t)A+tB)dt

S(?J%)mL(AI(A),Az(B)),

where L (-, ) is the logarithmic mean (1.1).

Proof. From (3.5) we have
[As ()" [As (B) < Au((1—t) A+ tB)
(m +M

IN

) T A I (A (BT

for all t € [0,1].
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If we take the integral over ¢, then we get

(3.7) / AL (A (A, (B dt < / AL At Bt

m w-m 1 1—t t
< (2207 [ty
Since
| 1A A A (B = LA, (4). 8, (B)).
hence by (3.7) we derive (3.6). O

In we obtained among other, the following reverse of Jensen’s inequality:

Lemma 4. Let f : [m,M] — R be an operator convezx function on [m,M] and
A; selfadjoint operators with the spectrum Sp (A;) C [m,M] for j = 1,...k. If
C; € B(H) for j =1,...,n satisfying the condition 2?21 C;Cj =1y, then

(w)o<Zm C(fZﬁAC

j=1

fL M _f/ - * = *
(Z\}_T;(m) (M]-H_ZC]AJCJ) (;C]AJC]—m1H>

IN

j=1

3 (=) [72 (M) = ff (m)] 1

By the use of this lemma we can state the following result as well:

IN

Theorem 5. Assume that A = (A4, ..., A,) an n-tuple of selfadjoint operators with
spectra in [m, M| C (0,00), then for any p €P;} and x € H, ||z|| = 1 we have

(39) 1< D,(p;Ax)

1 1 ¢ 1 —
< exp [m ( E pj (Ajz, ) (P E pj (Ajz, ) — m)}
by j=1 noi=1

<
<o g 0]

Proof. If we take in (3.8) C; = ,/%I, j =1,...,n, then we get

j=1 Jj=1
LA = [ (m)
- M—-m
n 1 n
X | M1y — P leijj P j;pJAJ mlg
< (M —m) [£- (M) — £} (m)] 1n
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If we take the inner product for € H, ||z|| = 1, then we get

IN

IN

If we write this inequality for the operator convex function f(¢t) = —Int, ¢t > 0,
then we get

(3.10) 0< <ln ijAj x,x> - ;njz_;pj (f (Aj) z, )

j=1
< ! M Ly (Ajz, x) 12”: (Ajz,x) —m
=M nj:1pj 35 Pnj:1pj 35
<L(M—m)2
~ 4m

Now, if we take the exponential in (3.10), then we get

ex <ln (Z;.lzl ijj) z, a?>
A pi U (Ay)3,2))

3

pj (Ajz, ) —m

IN
@

o]
gl

| T

‘H
=

|
S|~
NE
3
=
&
&

| =

<
Il
—
3
~
Il
N

which proves the desired result (3.9). O

Finally, by the use of [5]

Lemma 5. Let f : [m, M] — R be an operator convezx function on [m,M] and
A;j selfadjoint operators with the spectrum Sp (A;) C [m,M] for j = 1,... k. If
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C; € B(H) for j =1,...,k satisfying the condition Z§:1 C;Cj =1y, then

(311) 0< ZC’* )C—f ZO*A .C,
Jj=1
1 k k
3 1 N ry o0 | Mar = D CrACH ] [ D CrAC —miy

j=1

IN

1 2
17 i 0 (M =) 1
we can also state:
Theorem 6. With the assumptions of Theorem 5, we have

(3.12) 1< Dy(p;Ax)
1 1 o 1
<exp |5 M——ij<ij,x> —ij(Aj:L@—m
2m Pnj:1 P"j:1
HeR)
<exp|=|— -1
8\m

The case of two operators is as follows: if 0 < m < A, B < M and « € [0, 1],
then from (3.9) we obtain

3.13) Bel(l =) A +aB)
= A, (4) a[ . B)"
<o [ (M~ (1~ a) (Av,2) — o (Ba,x)
a) (Az,z) + a (Bz, z) — m)]
< exp lelM (M —m)*

for all x € H, ||z|| = 1, while from (3.12) we derive

< A ((1—a)A+aB)

3.14
N e T
<exp (5o (M = (M - (1- ) (Az,z) - a (Bz, 1)

% (1 - ) {Az,2) + a (Br,z) — m)]

Hel
<exp|=-|— -1
8\m
for all x € H, ||z|| = 1.

We observe that if M > 2m then the bound in (3.13) is better than the one from
(3.14). If M < 2m, then the conclusion is the other way around.
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