SOME NEW INEQUALITIES FOR THE TRACE CLASS
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr (PlnA).

In this paper we show among others that, if P, > 0 with P; € By (H) and
tr(P;) =1forie{l,..,n},p; >0with 3" ;pj=1and 0 <ml <A; < MI
for ¢ € {1,...,n}, then

Z?:l pj tr (PjAj)

< exp |:2;12 (M — ij tr(PjAj)> (ij tr (P;A; ) —m):|

j=1

1. INTRODUCTION

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)'/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / ME (),
Sp(T)

where E (X) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure pp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp (/ lntd,uT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [10].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL 17 =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) 1Al = 3 e )
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l el
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) [All < [|All

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Ae By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = 14", and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {{(A, B), | B € Ba(H), |Bly <1};

(v) (Bi(H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP) . Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2T P2 and TPY2PY? = TP € By (H) with tr (PY/2TPY/?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 3 T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr (PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [3] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) =exptr (P1/2 (InA) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;
(iii) homogeneity: Ap(tA) =tA;(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [4] we obtained the following results:
Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1],
Ap((1—1) A+tB) > [Ap (4] [Ap (B)].

and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(1.13) aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr(PA) —1].

In particular

tr (PA) 1
(1.14) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
(1.15) 1< Br) - <exp [tr (PA™Y) tr (PA) —1].

- e (PATH]
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The first inequalities in (1.14) and 1.15) are best possible from (1.13).

Motivated by the above results, in this paper we show among others that, if
P, >0 with P, € By (H) and tr (P;) =1 fori € {1,....,n}, p; >0 with > p; =1
and 0 <ml < A; < MI fori € {1,...,n}, then

2. SOME TRACE INEQUALITIES
We use the following result that was obtained in [1]:

Lemma 1. If f : [a,b] — R is a convez function on [a,b], then

(b—t)fla)+({t—a)f(b)
b—a
Jo)—fi(a) 1
<o-0)—a) FOZ Loy 10 - 1 )]
for any t € [a,b].
If the lateral derivatives f' (b) and f! (a) are finite, then the second inequality
and the constant 1/4 are sharp.

(2.1) 0<

We have the following reverse for the Jensen’s trace inequality:

Theorem 6. Assume that f is differentiable convex on the interior I of an interval.
Let Q; > 0 with Q; € By (H) for j € {1,...,n} and Y77, tr(Q;) > 0, then for all
B; with the spectra Sp (B;) C [m, M] C I for j € {1,...,n}, we have
(2.2) 0< Zj:lntr (Q; f (Bj)] B Zj:nl tr (Q;B;)

Zj:l tr (Q;) Zj:l tr (Q;)
_ IO — 7L (m)
- M—-m

g = (@B (i tr(@i5)
Z?:l tr (Q;) Z?:l tr (Q;)

< i(M—m) [/ (M) = f} (m)] .

Proof. Utilizing the continuous functional calculus for a selfadjoint operator T with
0 < T < 1y and the convexity of f on [m, M], we have

(2.3) fm(g =T)+MT) < f(m)(Ay —T)+ f(M)T

in the operator order.
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If we take in (2.3)

B; 1
0T = <y,
then we get
B'*?TL].H B-fmlH
24 | M=
e (e SR ) )

Observe that

m<1H_ Bj—mlH) +MBj—m1H

M—m M—-m
7m(M1HfBj)+M(ijm1H) — B.
B M—-—m Y

and

o) (1 = B oy B
f(m)(M1lyg — Bj)+ f (M) (B; —mly)
M—m

and by (2.4) we get the following inequality of interest

f(m)(Mly — B;)+ f(M)(B; —mly)
M—-—m

(2.5) f(Bj) <

for all j € {1,...,n}.
If we multiply (2.5) both sides with Q}/Q we get

S QP F(B) Q)"
j=1

Q)

P Z Q2 [f (m) (M1 — Bj\} f {n (M) (B; —mly)

_Fm) Y Q) (Mg — B) Q%+ f (M) YT, Q) (B —mlm) Q)
M—-m

= Ml— f(m) MZ Q; — Z Q;/2BJQ]1‘/2

m

j=1 j=1

+f (M) [ Y Q1 BQ)7 -mY
Jj=1 j=1
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which implies, by taking the trace and using its properties, that

S (Qsf (By)
sMime%MZH@%ZF@ﬂﬁ

+f (M) (Ztr(Q‘jB‘j) —mZtr (Qj))] 7

which gives that

i tr[Q;f (By)]
i tr(Qy)

27 tr(Q; By) 2ioatr(@QiBy)
_Fm) (M- SRR + £ 00 (S - m)

— M—m )

2@ f (By)] F > i1 tr(Q;Bj)
N E?:l tr (Q;) Z;‘l:1 tr(Q;)

2oi—q tr(Q; By) 2o tr(@iBy)
T (M- 5ewe) + 00 (S5 - m)

- M—-—m

_f Z?=1 tr (Q;B;)
Z?:1 tr (Q;) .

Here the first inequality is Jensen’s inequality.
Using the inequality (2.1) for

2?21 tr (Q;B;)
Z?:l tr (Q;)

= E[maM}a

a=m and b = M we have
251 tr(Q; By) 2ioatr(QiBy)
7 (m) (M = 555 ) + 1 ) (K5 —m)
M—-—m

_f 2?21 tr (Q;B;)
Z?:l tr (Q;)

2.7)

M -Fim) 2 tr(@QiB)) ) (i tr(QiBg) m
B M—m > i1 tr(Q5) 2 tr(Qy)

1O = m) [£2.(a0) = £ (m)].

By making use of (2.6) and (2.7) we derive (2.2).

IN

We also have [1]:
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Lemma 2. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If f' is
K -Lipschitzian on [a,b], then

(2.8) (1= 1) f (@) +1F (b) -
< SK(b—1)(—a) <

F(1—=1t)a+1tdb)]
1
3 K(b— a)2
for allt €10,1].
The constants 1/2 and 1/8 are the best possible in (2.8).
Remark 1. If f : [a,b] — R is twice differentiable and f” € Ly [a,b], then

(2.9) |(1—t)f()+tf()—f((1—t)a+tb)|

*Ilf”ll[ab] (b—1)(t—a) < *Ilf”Hab (b—a)”,

where || f"||4 4,00 = €SSUPsefqp |7 (t)| < 00. The constants 1/2 and 1/8 are the
best possible in (2.9).

Theorem 7. Assume that f is twice diﬁerentiabole convex on the interior I of the
interval I and the derivative f" is bounded on I. Let Q; > 0 with Q; € By (H)
forje{l,...,n} and Z;;l tr (Q;) > 0, then for all B; with the spectra Sp (B;) C
[m,M] C I forje{l,...,n}, we have

Y tr[Qif (Bl F > i tr(Q;Bj)

Z?:l tr (Q;) Z?:l tr (Q;)
2t (@QiB)) ) (i tr(QiBg) -
> tr(Q) i (@)

1 2
= g HfHH[m,,M],oo (M - m) :

Proof. From (2.9) and the continuous functional calculus, we get

f(m)(Mly — Bj) + f (M) (Bj —mly)
i M —m T f(By)

1
QHf”H[m,M], (M1p — Bj) (B; —mlp)

(210) 0<

1
3 1 Npmam,00 M —

AN

(2.11) 0<

IN

IN

1 2
g HfHH[m,]W],oo (M - m) 1524

where B; are selfadjoint operators with the spectra Sp (B;) C [m, M],j € {1,...,n}.
Now, by employing a similar argument to the one in the proof of Theorem 6 we
derive the desired result (2.10). O

We also have the following scalar inequality of interest:

Lemma 3. Let f : [a,b] — R be a convex function on [a,b] and t € [0,1], then
(2.12) 2min {t,1 — }[ (a )+f() f(a;b)]
<A =t)f(a)+tf(b )—f((l—t)a-Hb)

< 2max {t,1 — t}[ (Hf() f(“;bﬂ.
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The proof follows, for instance, by Corollary 1 from [2] for n = 2, p; = 1 — ¢,
pe=t,t€0,1 and 1 = a, x5 = .

Theorem 8. Assume that f is convex on the interior I of an interval I. Let Q; > 0
with Q; € By (H) for j € {1,...,n} and Z?:l tr(Q;) > 0, then for all B; with the
spectra Sp (Bj) C [m, M] C I for j € {1,...n}, we have

i) o<t [LEIOD p (modt)

M—-m 2 2
1 Skt (Qy|Bj — L (m+ M) 14))
(M — _ Laj=1 Jl1Pi T 2 H
Z]‘:1 tr (Q;)
Z? 1t1(Q; Bj E?:l tr(Q; By) o
y f(m) (M T @) ) AEACY ( @) m)
- M—m

X (Qf (By)
Zf 1t (@)
2 f(m)+f(M)7 m+ M
("))

2 2

A

5 h Zk Z tr <QJ

p 1tr(Qj

[ 2o ()]

Proof. We have from (2.12) that

(2.14) 0§2<;_‘t_;‘> [f(m);f(M) _f<m4;M)]
<1 —t) f(m)+tf(M)—f(Q—t)m+tM)

e (23]

for all t € [0,1].

Utilizing the continuous functional calculus for a selfadjoint operator T with
0 <T <1y we get from (2.14) that

(2.15) 0<2 [f(m);f(M) —f(m;Mﬂ (;1;1— ‘T—;IHD

S@=17)f(m)+Tf (M)~ f(Q-T)m+TM)
L (20 ().

in the operator order.
If we take in (2.15)

L)
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then we get

(2.16) 0<M2m{f(m)42‘f(M)_f(m+M>}

x(;(M—m)lH—BJ ;(m—l—M D
o fm)(M1y — Bj) + f (M) (Bj —mlp)

= M—m
2 {f(m)Jrf(M)_f(erMﬂ

— f(By)

“M-m 2 2

1

If we multiply both sides by Q;/ % we derive

o g2 [L 00 ey

1

x (; (M —m)Q; —Q;"* |Bj — 5 (m+ M) 1y Q;“)

10 (310 5,02) 450 (05,02 - )

:Q;/2f<Bj)Q}/2 e
< 2 [f(m);f(M) » (m;M)]

x <;(Mm)Qj+Q;/2 Bj—%(erM)lH Q}”).

Now, by taking the trace and summing over j from 1 to n, we derive

0§M2m{f(m);f(M)‘f<W>}
X (; (Mm)itr(Qj)itr (Qj Bj;(m+M)1HD)
< Mi [f(m) (Mitr(Qj)—itr(Qij))

Jj=1 Jj=1
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This proves (2.13). O
‘We also have:

Proposition 2. With the assumptions of Theorem 8 we have
i tr[Qif (B))] > t1(Q;B))

2.17 0 = —fl =S

( ) = Zj:l tr (Q;) / ( Zj:l tr (Q;) >
2 {f(m)—kf(M)_f(m—kMﬂ

“M-m 2 2

X <; (M —m)+ ZXJ::LI :iii)éB)]) ; (m + M)D

Jj= J

<o[LmeIOD _y (medry]

Proof. From (2.6) we have
2o tr@if (B (Xt (Q;B))
(2.18) 0< ST (@) f <Z;_L_ltr ) )

>oi_q tr(Q; By) >0, tr(Q;By)
I (M- J25G8) + F 0 (K5iegy - m)
M—-—m

_f Z?:1 tr (Q; B;)
Yiatr(@) )

From the second part of the scalar version of (2.16) we also have the scalar inequality

fmon_Z%w%mm>+fM@<zjm@ﬂﬂ_m>
J

=1 tr(Q;) k_tr(Qy)

(2.19) S

_f Z?:l tr (Q;B;)

22;1 tr (Q;)
< 2 {f(m)—kf(M)_f(m—kM)}
M —m 2 2
1 > tr(@;B)) 1
X (2 (M —m)1ly + —ZJ)?:ltr(Qj) —5(m+ M)D
oLl I0n (i)
2 2

By utilizing (2.18) and (2.19) we obtain the desired result (2.17). O

3. DETERMINANT INEQUALITIES

Our first main result is as follows:

Theorem 9. Assume that P; > 0 with P; €A, (H) and tr(P;) = 1 for j €
{1,..,n}. If p; > 0 with Z;;lpj =1 and A; with the property that 0 < ml <
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A; <MI, je{l,..,n} forje{1,...,n}, then

Z?:l pj tr (PJAJ)

(3.1) 1< —
TT 180 (4,))"
< exp []Wlm (M - ij tr (PjAj)> <ij tr (PjA;) — m)]
j=1 j=1
< exp [le\;m (M — m)ﬂ .
Also,
(3.2) | < 23;1 p; tr (P A;)
[11Ar; (A1
< exp [2;2 (M - ij tr (PjAj)) (ij tr (PjA;) m)]
j=1 j=1

If we take the exponential in (3.3), then we get

exp In (Z;‘L:1 pj tr (PjAj))
exp (Z}Ll p; tr[PjIn (Aj)])
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which is equivalent to

n
> j=1P; tr (PjA;)

1< —
H (exptr (P;ln A;))"
j=1

1 n n
< exp | 4 M= pitr(PAy) | | D pytr(PiA;) —m
=1

Jj=1

< exp {m (M - m)z] )

and the inequality (3.1) is proved.
The proof of (3.2) follows by (2.10) in a similar way and the details are omitted.
(]

Theorem 10. With the assumptions of Theorem 9, we have

(3.4) 1< \/n%TM

[T 1ar; (4,

m4M >1_1Mzm Z?:l V21 tr(Pj|Aj—%(m+M)1H|)

< =1
— M= pjtr(PjAj ) Sy pjtr(PjA)—m

m M—m M—m

s \ s S s tr(Py A5 =5 (m+M)1u ) mtM \ 2
2 < 2
IRV mM) o \/mM>
Also,
21 pj tr(PjA;)
(3.5) 1< =2

b \ YA | oy P tr (P Aj) = § (m+M)| ma M\ 2
< 2
vmM vmM

Proof. If we take f (t) = —Int, ¢ >0, A, = A;, Q; =p; Pj, j € {1,...,n},in (2.13),
then we get
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<

-

tr (Q] In AJ)

<
Il
—

(M = S5y pytr (P A7) ) o+ (S5 by tr (P A7) = m) In M

M—-—m
m+M
< 2 In 2 >

k
X (;(Mm)Jerjtr <Pj

Jj=1

1
Ay — 5 (m+ M) 1HD

m-+M 2
2
- W) '

This is equivalent to

et \ (1= 32 X5oy py (P Aj— 5 (m+M)1x]))
0<In 2
N \/mM>
k M-"_ pjtr(PjA; 7y pjtr(PjA;)—m
<3S pit(PnAy) —lmaem M mem
j=1
et \ (I 5oy i tr(Ps| A= 5 (m+M)1x])) o \ 2
<In 2 <In 2
- vmM ) - W)

By taking the exponential, we derive

1< 2

m+M ) 17ﬁ Z.I;Zl Pj tr(Pj |Aj7%(m+M)1H|)

- ovmM
n
H (exptr (Pjln A;))"
< =1
— 1\4—2;.":1 Pj tr(Pj Aj E}":1 Py tr(Pj Aj)—m
m M—m M—m
e \ A S v te(Ps] A5 =3 (m+M) 1) m+M \ 2
2 < 2
\/T)’LM) - \/mM> ’

which proves (3.4).
Inequality (3.5) follows in a similar way from (2.17). O

Remark 2. The case of one operator is as follows: Let P > 0 with P € By (H)
and tr (P) = 1, then for all A satisfying the condition 0 < mI < A < MT we have
the inequalities

(3.6) 1< fo;jg < exp L\/}m (M —tr (PA)) (tr (PA) —m)
< exp LU\im (M — m)z} ,
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(3.7) g Cicc [2; (M — tr (PA)) (1 (PA) — m)

wear \ 1 (Pl A= 0m4 M) 1)
3.8 1< 2
) : m)
Ap (4)
—_ M—tr(PA) tr(PA)—m
m~ M-m N M-m
M \ e tr(PlA= 3 (mt M) 1) mtM \ 2
2 < 2
\/mM> - \/mM> ’
and
tr (PA)
3.9 1< —+=
(39) ~ Ap(4)
M\ 1w [ (PA) =3 (m+M)| M\ 2
< 2 < 2
- VmM - vmM

Remark 3. The case of two operators is as follows: Let P,Q > 0 with P,Q €
By (H) and tr (P) = tr(Q) = 1, then for all A, B satisfying the condition 0 <
ml < A, B < MI we have the inequalities

(1—t)tr (PA) + ttr (QB)
[Ap ()" [Ag (B)]'

[ 1

i

(1 —t)tr (PA) +ttr (QB) —m) ]

[ 1
< exp me(M—m)Q},

(3.10) 1<

< exp (M —(1=t)tr (PA) —ttr (@B))

(1 —t)tr (PA) +ttr (QB)
[Ap ()" [Ag (B))

< exp ﬁ (M = (1= 1)t (PA) — ttr (QB))

(3.11) 1<

% (1 —t)tr (PA) + ttr (QB) — m) ]

< oxp [; (fflﬂ
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artm (A=) tr(P|[A— L (m+M)1g |)+tr(Q|B— L (m+M)1])]

3
+
S

3.12) 1< —2

%

[Ap (A" [Aq (B))

S M (1— f)t;;P?”) ftr(QB)M(l t)rr(PA)i-:ntr(QB)—m
M I+ 3725 (A=) tr(P|A— L (m+ M) 1 | )+tr(Q| B— S (m+M)1x|)]
< 2
< %M)
m+M
< 2
- \/mM>

and

+

(3.13) 1< 4=

r (PA) +ttr (QB)

A)]“ [Aq (B)]'

(1-t) tr(PA)+ttr(QB)— % (m+M)|
<

5 2

P
+

vV mM

m+M

2
vmM

<

for all t € ]0,1].
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