
SOME NEW INEQUALITIES FOR THE TRACE CLASS
P -DETERMINANT OF POSITIVE OPERATORS IN HILBERT

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a complex Hilbert space. For a given operator P � 0

with P 2 B1 (H) ; the trace class associated to B (H) and tr (P ) = 1; we de�ne
the P -determinant of the positive invertible operator A by

�P (A) := exp tr (P lnA) :

In this paper we show among others that, if Pi � 0 with Pi 2 B1 (H) and
tr (Pi) = 1 for i 2 f1; :::; ng ; pi � 0 with

Pn
i=1 pi = 1 and 0 < mI � Ai �MI

for i 2 f1; :::; ng ; then

1 �
Pn
j=1 pj tr (PjAj)
nY
j=1

�
�Pj (Aj)

�pj
� exp

24 1

2m2

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A35
� exp

"
1

8

�
M

m
� 1

�2#
:

1. Introduction

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a �nite von Neumann algebra (M; �) with a faithful normal trace.
Let T 2M be normal and jT j := (T �T )1=2 its modulus. By the spectral theorem

one can represent T as an integral

T =

Z
Sp(T )

�dE (�) ;

where E (�) is a projection valued measure and Sp (T ) is the spectrum of T: The
measure �T := � �E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T ) :
For any T 2 M the Fuglede-Kadison determinant (FK-determinant) is de�ned

by

�FK (T ) := exp

�Z 1

0

ln td�jT j

�
:
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If T is invertible, then

�FK (T ) := exp (� (ln (jT j))) ;
where ln (jT j) is de�ned by the use of functional calculus.
Let B(H) be the space of all bounded linear operators on a Hilbert space H,

and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [6], [7], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by

�x(A) := exp hlnAx; xi
and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [10].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H; h�; �i) be a complex Hilbert space and feigi2I an orthonormal basis of H:

We say that A 2 B (H) is a Hilbert-Schmidt operator if

(1.1)
X
i2I

kAeik2 <1:

It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.2)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.3) kAk2 :=
X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H:
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)1=2 :
Because kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-

Schmidt and kAk2 = kjAjk2 : From (1.2) we have that if A 2 B2 (H) ; then A� 2
B2 (H) and kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 1. We have:
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.4) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii
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and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
(ii) We have the inequalities

(1.5) kAk � kAk2
for any A 2 B2 (H) and, if A 2 B2 (H) and T 2 B (H) ; then AT; TA 2 B2 (H)
with

(1.6) kATk2 ; kTAk2 � kTk kAk2
(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) :

If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.7) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) :

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;

(iii) We have

B2 (H)B2 (H) = B1 (H) ;
(iv) We have

kAk1 = sup fhA;Bi2 j B 2 B2 (H) ; kBk2 � 1g ;

(v) (B1 (H) ; k�k1) is a Banach space.

We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.9) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.10) tr (A�) = tr (A);

(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H),
(1.11) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;
(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) :

Now, if we assume that P � 0 and P 2 B1 (H) ; then for all T 2 B (H) ; PT;
TP 2 B1 (H) and tr (PT ) = tr (TP ) : Also, since P 1=2 2 B2 (H) ; TP 1=2 2 B2 (H),
hence P 1=2TP 1=2 and TP 1=2P 1=2 = TP 2 B1 (H) with tr

�
P 1=2TP 1=2

�
= tr (TP ) :

Therefore, if P � 0 and P 2 B1 (H) ;

tr (PT ) = tr (TP ) = tr
�
P 1=2TP 1=2

�
for all T 2 B (H) :
If T � 0; then P 1=2TP 1=2 � 0; which implies that tr (PT ) � 0 that shows that

the functional B (H) 3 T 7�! tr (PT ) is linear and isotonic functional. Also, by
(1.11), if Tn ! T for n ! 1 in B (H) then limn!1 tr (PTn) = tr (PT ) ; namely
B (H) 3 T 7�! tr (PT ) is also continuous in the norm topology.
For a survey on recent trace inequalities see [3] and the references therein.
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the P -

determinant of the positive invertible operator A by

(1.12) �P (A) := exp tr (P lnA) = exp tr ((lnA)P ) = exp tr
�
P 1=2 (lnA)P 1=2

�
:

Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: We observe that we have
the following elementary properties:

(i) continuity : the map A! �P (A) is norm continuous;
(ii) power equality: �P (At) = �P (A)t for all t > 0;
(iii) homogeneity : �P (tA) = t�x(A) and �P (tI) = t for all t > 0;
(iv) monotonicity : 0 < A � B implies �P (A) � �P (B).
In the recent paper [4] we obtained the following results:

Theorem 4. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A; B > 0
and t 2 [0; 1] ;

�P ((1� t)A+ tB) � [�P (A)]1�t [�P (B)]t :

and

Theorem 5. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A > 0 and
a > 0 we have the double inequality

(1.13) a exp
�
1� a tr

�
PA�1

��
� �P (A) � a exp

�
a�1 tr (PA)� 1

�
:

In particular

(1.14) 1 � tr (PA)

�P (A)
� exp

�
tr (PA) tr

�
PA�1

�
� 1
�

and

(1.15) 1 � �P (A)

[tr (PA�1)]
�1 � exp

�
tr
�
PA�1

�
tr (PA)� 1

�
:
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The �rst inequalities in (1.14) and 1.15) are best possible from (1.13).

Motivated by the above results, in this paper we show among others that, if
Pi � 0 with Pi 2 B1 (H) and tr (Pi) = 1 for i 2 f1; :::; ng ; pi � 0 with

Pn
i=1 pi = 1

and 0 < mI � Ai �MI for i 2 f1; :::; ng ; then

1 �
Pn

j=1 pj tr (PjAj)
nY
j=1

[�Pj (Aj)]
pj

� exp

24 1

2m2

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A35
� exp

"
1

8

�
M

m
� 1
�2#

:

2. Some Trace Inequalities

We use the following result that was obtained in [1]:

Lemma 1. If f : [a; b]! R is a convex function on [a; b] ; then

0 � (b� t) f (a) + (t� a) f (b)
b� a � f (t)(2.1)

� (b� t) (t� a)
f 0� (b)� f 0+ (a)

b� a � 1

4
(b� a)

�
f 0� (b)� f 0+ (a)

�
for any t 2 [a; b] :
If the lateral derivatives f 0� (b) and f

0
+ (a) are �nite, then the second inequality

and the constant 1=4 are sharp.

We have the following reverse for the Jensen�s trace inequality:

Theorem 6. Assume that f is di¤erentiable convex on the interior �I of an interval.
Let Qj � 0 with Qj 2 B1 (H) for j 2 f1; :::; ng and

Pn
j=1 tr (Qj) > 0; then for all

Bj with the spectra Sp (Bj) � [m;M ] � �I for j 2 f1; :::; ng, we have

0 �
Pn

j=1 tr [Qjf (Bj)]Pn
j=1 tr (Qj)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
(2.2)

�
f 0� (M)� f 0+ (m)

M �m

�
 
M �

Pn
j=1 tr (QjBj)Pn
j=1 tr (Qj)

! Pn
j=1 tr (QjBj)Pn
j=1 tr (Qj)

�m
!

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
:

Proof. Utilizing the continuous functional calculus for a selfadjoint operator T with
0 � T � 1H and the convexity of f on [m;M ] ; we have

(2.3) f (m (1H � T ) +MT ) � f (m) (1H � T ) + f (M)T
in the operator order.
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If we take in (2.3)

0 � T = Bj �m1H
M �m � 1H ;

then we get

f

�
m

�
1H �

Bj �m1H
M �m

�
+M

Bj �m1H
M �m

�
(2.4)

� f (m)
�
1H �

Bj �m1H
M �m

�
+ f (M)

Bj �m1H
M �m :

Observe that

m

�
1H �

Bj �m1H
M �m

�
+M

Bj �m1H
M �m

=
m (M1H �Bj) +M (Bj �m1H)

M �m = Bj

and

f (m)

�
1H �

Bj �m1H
M �m

�
+ f (M)

Bj �m1H
M �m

=
f (m) (M1H �Bj) + f (M) (Bj �m1H)

M �m

and by (2.4) we get the following inequality of interest

(2.5) f (Bj) �
f (m) (M1H �Bj) + f (M) (Bj �m1H)

M �m

for all j 2 f1; :::; ng :
If we multiply (2.5) both sides with Q1=2j we get

nX
j=1

Q
1=2
j f (Bj)Q

1=2
j

�
nX
j=1

Q
1=2
j

�
f (m) (M1H �Bj) + f (M) (Bj �m1H)

M �m

�
Q
1=2
j

=
f (m)

Pn
j=1Q

1=2
j (M1H �Bj)Q1=2j + f (M)

Pn
j=1Q

1=2
j (Bj �m1H)Q1=2j

M �m

=
1

M �m

24f (m)
0@M nX

j=1

Qj �
nX
j=1

Q
1=2
j BjQ

1=2
j

1A
+f (M)

0@ nX
j=1

Q
1=2
j BjQ

1=2
j �m

nX
j=1

Qj

1A35
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which implies, by taking the trace and using its properties, that
nX
j=1

tr [Qjf (Bj)]

� 1

M �m

24f (m)
0@M nX

j=1

tr (Qj)�
nX
j=1

tr (QjBj)

1A
+f (M)

0@ nX
j=1

tr (QjBj)�m
nX
j=1

tr (Qj)

1A35 ;
which gives thatPn

j=1 tr [Qjf (Bj)]Pn
j=1 tr (Qj)

�
f (m)

�
M �

Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�
+ f (M)

�Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�m
�

M �m ;

namely

0 �
Pn

j=1 tr [Qjf (Bj)]Pn
j=1 tr (Qj)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
(2.6)

�
f (m)

�
M �

Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�
+ f (M)

�Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�m
�

M �m

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
:

Here the �rst inequality is Jensen�s inequality.
Using the inequality (2.1) for

t =

Pn
j=1 tr (QjBj)Pn
j=1 tr (Qj)

2 [m;M ] ;

a = m and b =M we have

f (m)
�
M �

Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�
+ f (M)

�Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�m
�

M �m(2.7)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!

�
f 0� (M)� f 0+ (m)

M �m M �
Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

! Pn
j=1 tr (QjBj)Pn
j=1 tr (Qj)

�m
!

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
:

By making use of (2.6) and (2.7) we derive (2.2). �

We also have [1]:
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Lemma 2. Assume that f : [a; b] ! R is absolutely continuous on [a; b]. If f 0 is
K-Lipschitzian on [a; b], then

j(1� t) f (a) + tf (b)� f ((1� t) a+ tb)j(2.8)

� 1

2
K (b� t) (t� a) � 1

8
K (b� a)2

for all t 2 [0; 1] :
The constants 1=2 and 1=8 are the best possible in (2.8).

Remark 1. If f : [a; b]! R is twice di¤erentiable and f 00 2 L1 [a; b] ; then
j(1� t) f (a) + tf (b)� f ((1� t) a+ tb)j(2.9)

� 1

2
kf 00k[a;b];1 (b� t) (t� a) �

1

8
kf 00k[a;b];1 (b� a)

2
;

where kf 00k[a;b];1 := essupt2[a;b] jf 00 (t)j < 1: The constants 1=2 and 1=8 are the
best possible in (2.9).

Theorem 7. Assume that f is twice di¤erentiable convex on the interior �I of the
interval I and the derivative f 00 is bounded on �I: Let Qj � 0 with Qj 2 B1 (H)
for j 2 f1; :::; ng and

Pn
j=1 tr (Qj) > 0; then for all Bj with the spectra Sp (Bj) �

[m;M ] � �I for j 2 f1; :::; ng, we have

0 �
Pn

j=1 tr [Qjf (Bj)]Pn
j=1 tr (Qj)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
(2.10)

� 1

2
kf 00k[m;M ];1 M �

Pn
j=1 tr (QjBj)Pn
j=1 tr (Qj)

! Pn
j=1 tr (QjBj)Pn
j=1 tr (Qj)

�m
!

� 1

8
kf 00k[m;M ];1 (M �m)2 :

Proof. From (2.9) and the continuous functional calculus, we get

0 � f (m) (M1H �Bj) + f (M) (Bj �m1H)
M �m � f (Bj)(2.11)

� 1

2
kf 00k[m;M ];1 (M1H �Bj) (Bj �m1H)

� 1

8
kf 00k[m;M ];1 (M �m)2 1H

whereBj are selfadjoint operators with the spectra Sp (Bj) � [m;M ] ; j 2 f1; :::; ng :
Now, by employing a similar argument to the one in the proof of Theorem 6 we

derive the desired result (2.10). �

We also have the following scalar inequality of interest:

Lemma 3. Let f : [a; b]! R be a convex function on [a; b] and t 2 [0; 1] ; then

2min ft; 1� tg
�
f (a) + f (b)

2
� f

�
a+ b

2

��
(2.12)

� (1� t) f (a) + tf (b)� f ((1� t) a+ tb)

� 2max ft; 1� tg
�
f (a) + f (b)

2
� f

�
a+ b

2

��
:
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The proof follows, for instance, by Corollary 1 from [2] for n = 2, p1 = 1 � t;
p2 = t, t 2 [0; 1] and x1 = a; x2 = b:

Theorem 8. Assume that f is convex on the interior �I of an interval I. Let Qj � 0
with Qj 2 B1 (H) for j 2 f1; :::; ng and

Pn
j=1 tr (Qj) > 0; then for all Bj with the

spectra Sp (Bj) � [m;M ] � �I for j 2 f1; :::; ng, we have

0 � 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
(2.13)

�
 
1

2
(M �m)�

Pk
j=1 tr

�
Qj
��Bj � 1

2 (m+M) 1H
���Pk

j=1 tr (Qj)

!

�
f (m)

�
M �

Pk
j=1 tr(QjBj)Pk
j=1 tr(Qj)

�
+ f (M)

�Pk
j=1 tr(QjBj)Pk
j=1 tr(Qj)

�m
�

M �m

�
Pk

j=1 tr (Qjf (Bj))Pk
j=1 tr (Qj)

� 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��

�

0@1
2
(M �m) + 1Pk

j=1 tr (Qj)

kX
j=1

tr

�
Qj

����Bj � 12 (m+M) 1H
�����
1A

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
:

Proof. We have from (2.12) that

0 � 2
�
1

2
�
����t� 12

����� �f (m) + f (M)2
� f

�
m+M

2

��
(2.14)

� (1� t) f (m) + tf (M)� f ((1� t)m+ tM)

� 2
�
1

2
+

����t� 12
����� �f (m) + f (M)2

� f
�
m+M

2

��
;

for all t 2 [0; 1] :
Utilizing the continuous functional calculus for a selfadjoint operator T with

0 � T � 1H we get from (2.14) that

0 � 2
�
f (m) + f (M)

2
� f

�
m+M

2

���
1

2
1H �

����T � 121H
�����(2.15)

� (1� T ) f (m) + Tf (M)� f ((1� T )m+ TM)

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

���
1

2
1H +

����T � 121H
����� ;

in the operator order.
If we take in (2.15)

0 � T = Bj �m1H
M �m � 1H ;
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then we get

0 � 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
(2.16)

�
�
1

2
(M �m) 1H �

����Bj � 12 (m+M) 1H
�����

� f (m) (M1H �Bj) + f (M) (Bj �m1H)
M �m � f (Bj)

� 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m) 1H +

����Bj � 12 (m+M) 1H
����� :

If we multiply both sides by Q1=2j we derive

0 � 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m)Qj �Q1=2j

����Bj � 12 (m+M) 1H
����Q1=2j

�

�
f (m)

�
M1H �Q1=2j BjQ

1=2
j

�
+ f (M)

�
Q
1=2
j BjQ

1=2
j �m1H

�
M �m

�Q1=2j f (Bj)Q
1=2
j

� 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
�
�
1

2
(M �m)Qj +Q1=2j

����Bj � 12 (m+M) 1H
����Q1=2j

�
:

Now, by taking the trace and summing over j from 1 to n; we derive

0 � 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��

�

0@1
2
(M �m)

kX
j=1

tr (Qj)�
kX
j=1

tr

�
Qj

����Bj � 12 (m+M) 1H
�����
1A

� 1

M �m

24f (m)
0@M kX

j=1

tr (Qj)�
kX
j=1

tr (QjBj)

1A
+f (M)

0@ kX
j=1

tr (QjBj)�m
kX
j=1

tr (Qj)

1A35� kX
j=1

tr (Qjf (Bj))

� 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��

�

0@1
2
(M �m)

kX
j=1

tr (Qj) +

kX
j=1

tr

�
Qj

����Bj � 12 (m+M) 1H
�����
1A :
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This proves (2.13). �

We also have:

Proposition 2. With the assumptions of Theorem 8 we have

0 �
Pn

j=1 tr [Qjf (Bj)]Pn
j=1 tr (Qj)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
(2.17)

� 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
�
 
1

2
(M �m) +

�����
Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

� 1
2
(m+M)

�����
!

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
:

Proof. From (2.6) we have

0 �
Pn

j=1 tr [Qjf (Bj)]Pn
j=1 tr (Qj)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
(2.18)

�
f (m)

�
M �

Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�
+ f (M)

�Pn
j=1 tr(QjBj)Pn
j=1 tr(Qj)

�m
�

M �m

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!
:

From the second part of the scalar version of (2.16) we also have the scalar inequality

f (m)

�
M �

Pk
j=1 tr(QjBj)Pk
j=1 tr(Qj)

�
+ f (M)

�Pk
j=1 tr(QjBj)Pk
j=1 tr(Qj)

�m
�

M �m(2.19)

� f
 Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

!

� 2

M �m

�
f (m) + f (M)

2
� f

�
m+M

2

��
�
 
1

2
(M �m) 1H +

�����
Pn

j=1 tr (QjBj)Pn
j=1 tr (Qj)

� 1
2
(m+M)

�����
!

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
:

By utilizing (2.18) and (2.19) we obtain the desired result (2.17). �

3. Determinant Inequalities

Our �rst main result is as follows:

Theorem 9. Assume that Pj � 0 with Pj 2A1 (H) and tr (Pj) = 1 for j 2
f1; :::; ng : If pj � 0 with

Pn
j=1 pj = 1 and Aj with the property that 0 < mI �
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Aj �MI; j 2 f1; :::; ng for j 2 f1; :::; ng ; then

1 �
Pn

j=1 pj tr (PjAj)
nY
j=1

[�Pj (Aj)]
pj

(3.1)

� exp

24 1

Mm

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A35
� exp

�
1

4Mm
(M �m)2

�
:

Also,

1 �
Pn

j=1 pj tr (PjAj)
nY
j=1

[�Pj (Aj)]
pj

(3.2)

� exp

24 1

2m2

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A35
� exp

"
1

8

�
M

m
� 1
�2#

:

Proof. If we take f (t) = � ln t; t > 0; Aj = Aj ; Qj = pjPj , j 2 f1; :::; ng ; in (2.2),
then we get

0 � ln

0@ nX
j=1

pj tr (PjAj)

1A� nX
j=1

pj tr [Pjf (Aj)](3.3)

� 1

Mm

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A
� 1

4Mm
(M �m)2 :

If we take the exponential in (3.3), then we get

1 �
exp ln

�Pn
j=1 pj tr (PjAj)

�
exp

�Pn
j=1 pj tr [Pj ln (Aj)]

�
� exp

24 1

Mm

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A35
� exp

�
1

4Mm
(M �m)2

�
;
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which is equivalent to

1 �
Pn

j=1 pj tr (PjAj)
nY
j=1

(exp tr (Pj lnAj))
pj

� exp

24 1

Mm

0@M �
nX
j=1

pj tr (PjAj)

1A0@ nX
j=1

pj tr (PjAj)�m

1A35
� exp

�
1

4Mm
(M �m)2

�
;

and the inequality (3.1) is proved.
The proof of (3.2) follows by (2.10) in a similar way and the details are omitted.

�

Theorem 10. With the assumptions of Theorem 9, we have

1 �
m+M
2p
mM

!1� 2
M�m

Pk
j=1 pj tr(PjjAj� 1

2 (m+M)1H j)
(3.4)

�

nY
j=1

[�Pj (Aj)]
pj

m
M�

Pn
j=1

pj tr(PjAj)
M�m M

Pn
j=1

pj tr(PjAj)�m
M�m

�
m+M
2p
mM

!1+ 2
M�m

Pk
j=1 pj tr(PjjAj� 1

2 (m+M)1H j)
�

m+M
2p
mM

!2
:

Also,

1 �
Pn

j=1 pj tr (PjAj)
nY
j=1

[�Pj (Aj)]
pj

(3.5)

�
m+M
2p
mM

!1+ 2
M�m j

Pn
j=1 pj tr(PjAj)� 1

2 (m+M)j
�

m+M
2p
mM

!2
:

Proof. If we take f (t) = � ln t; t > 0; Aj = Aj ; Qj = pjPj , j 2 f1; :::; ng ; in (2.13),
then we get

0 � 2

M �m ln
m+M
2p
mM

!

�

0@1
2
(M �m)�

kX
j=1

pj tr

�
Pj

����Aj � 12 (m+M) 1H
�����
1A
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�
kX
j=1

tr (Qj lnAj)

�

�
M �

Pn
j=1 pj tr (PjAj)

�
lnm+

�Pn
j=1 pj tr (PjAj)�m

�
lnM

M �m

� 2

M �m ln
m+M
2p
mM

!

�

0@1
2
(M �m) +

kX
j=1

pj tr

�
Pj

����Aj � 12 (m+M) 1H
�����
1A

� ln
m+M
2p
mM

!2
:

This is equivalent to

0 � ln
m+M
2p
mM

!(1� 2
M�m

Pk
j=1 pj tr(PjjAj� 1

2 (m+M)1H j))

�
kX
j=1

pj tr (Pj lnAj)� lnm
M�

Pn
j=1 pj tr(PjAj)
M�m M

Pn
j=1 pj tr(PjAj)�m

M�m

� ln
m+M
2p
mM

!(1+ 2
M�m

Pk
j=1 pj tr(PjjAj� 1

2 (m+M)1H j))
� ln

m+M
2p
mM

!2
:

By taking the exponential, we derive

1 �
m+M
2p
mM

!1� 2
M�m

Pk
j=1 pj tr(PjjAj� 1

2 (m+M)1H j)

�

nY
j=1

(exp tr (Pj lnAj))
pj

m
M�

Pn
j=1

pj tr(PjAj)
M�m M

Pn
j=1

pj tr(PjAj)�m
M�m

�
m+M
2p
mM

!1+ 2
M�m

Pk
j=1 pj tr(PjjAj� 1

2 (m+M)1H j)
�

m+M
2p
mM

!2
;

which proves (3.4).
Inequality (3.5) follows in a similar way from (2.17). �

Remark 2. The case of one operator is as follows: Let P � 0 with P 2 B1 (H)
and tr (P ) = 1; then for all A satisfying the condition 0 < mI � A � MI we have
the inequalities

1 � tr (PA)

�P (A)
� exp

�
1

Mm
(M � tr (PA)) (tr (PA)�m)

�
(3.6)

� exp
�

1

4Mm
(M �m)2

�
;
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1 � tr (PA)

�P (A)
� exp

�
1

2m2
(M � tr (PA)) (tr (PA)�m)

�
(3.7)

� exp
"
1

8

�
M

m
� 1
�2#

;

1 �
m+M
2p
mM

!1� 2
M�m tr(P jA� 1

2 (m+M)1H j)
(3.8)

� �P (A)

m
M�tr(PA)

M�m M
tr(PA)�m
M�m

�
m+M
2p
mM

!1+ 2
M�m tr(P jA� 1

2 (m+M)1H j)
�

m+M
2p
mM

!2
;

and

1 � tr (PA)

�P (A)
(3.9)

�
m+M
2p
mM

!1+ 2
M�m jtr(PA)� 1

2 (m+M)j
�

m+M
2p
mM

!2
:

Remark 3. The case of two operators is as follows: Let P;Q � 0 with P;Q 2
B1 (H) and tr (P ) = tr (Q) = 1; then for all A; B satisfying the condition 0 <
mI � A; B �MI we have the inequalities

1 � (1� t) tr (PA) + t tr (QB)
[�P (A)]

(1�t)
[�Q (B)]

t
(3.10)

� exp
�
1

Mm
(M � (1� t) tr (PA)� t tr (QB))

� ((1� t) tr (PA) + t tr (QB)�m)
i

� exp
�

1

4Mm
(M �m)2

�
;

1 � (1� t) tr (PA) + t tr (QB)
[�P (A)]

(1�t)
[�Q (B)]

t
(3.11)

� exp 1

2m2
(M � (1� t) tr (PA)� t tr (QB))

� ((1� t) tr (PA) + t tr (QB)�m)
i

� exp
"
1

8

�
M

m
� 1
�2#

;
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1 �
m+M
2p
mM

!1� 2
M�m [(1�t) tr(P jA� 1

2 (m+M)1H j)+tr(QjB� 1
2 (m+M)1H j)]

(3.12)

� [�P (A)]
(1�t)

[�Q (B)]
t

m
M�(1�t) tr(PA)�t tr(QB)

M�m M
(1�t) tr(PA)+t tr(QB)�m

M�m

�
m+M
2p
mM

!1+ 2
M�m [(1�t) tr(P jA� 1

2 (m+M)1H j)+tr(QjB� 1
2 (m+M)1H j)]

�
m+M
2p
mM

!2
;

and

1 � (1� t) tr (PA) + t tr (QB)
[�P (A)]

(1�t)
[�Q (B)]

t
(3.13)

�
m+M
2p
mM

!1+ 2
M�m j(1�t) tr(PA)+t tr(QB)� 1

2 (m+M)j
�

m+M
2p
mM

!2
for all t 2 [0; 1] :

References

[1] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its
extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225�248.

[2] S. S. Dragomir, Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74
(2006), no. 3, 471�478.

[3] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent
results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online
https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].

[4] S. S. Dragomir, Some properties of trace class P -determinant of positive operators in Hilbert
spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.

[5] B. Fuglede and R. V. Kadison, Determinant theory in �nite factors, Ann. of Math. (2) 55
(1952), 520�530.

[6] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153�156.
[7] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht�s Theorem,

Sci. Math., 1 (1998), 307�310.
[8] S. Furuichi, Re�ned Young inequalities with Specht�s ratio, J. Egyptian Math. Soc. 20 (2012),

46�49.
[9] T. Furuta, J. Miµcíc-Hot, J. Peµcaríc and Y. Seo, Mond-Peµcaríc Method in Operator Inequali-

ties, Element, Croatia.
[10] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim�s inequality, J.

Math. Inequal., Volume 15 (2021), Number 4, 1637�1645.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand,, Private Bag 3, Johannesburg 2050, South Africa




