RGMA

SOME NEW INEQUALITIES FOR THE TRACE CLASS $P ext{-}DETERMINANT$ OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \geq 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A).$$

In this paper we show among others that, if $P_i \geq 0$ with $P_i \in \mathcal{B}_1\left(H\right)$ and $\operatorname{tr}\left(P_i\right) = 1$ for $i \in \{1,...,n\}$, $p_i \geq 0$ with $\sum_{i=1}^n p_i = 1$ and $0 < mI \leq A_i \leq MI$ for $i \in \{1,...,n\}$, then

$$1 \leq \frac{\sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j})}{\prod_{j=1}^{n} \left[\Delta_{P_{j}} (A_{j}) \right]^{p_{j}}}$$

$$\leq \exp \left[\frac{1}{2m^{2}} \left(M - \sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j}) \right) \left(\sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j}) - m \right) \right]$$

$$\leq \exp \left[\frac{1}{8} \left(\frac{M}{m} - 1 \right)^{2} \right].$$

1. Introduction

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda),$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (FK-determinant) is defined by

$$\Delta_{FK}\left(T\right) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

If T is invertible, then

2

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \geq 0$) if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. In particular, A > 0 means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp \langle \ln Ax, x \rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [10].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$(1.1) \sum_{i \in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ are orthonormal bases for H and $A\in\mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}\left(H\right)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}\left(H\right)$. For $A\in\mathcal{B}_{2}\left(H\right)$ we define

(1.3)
$$||A||_2 := \sum_{i \in I} ||Ae_i||^2$$

for $\{e_i\}_{i\in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}\left(H\right)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_{2}(H), \|\cdot\|_{2})$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$; (ii) We have the inequalities

$$(1.5) ||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_2(H)$ and, if $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_2(H)$ with

$$(1.6) $||AT||_2, ||TA||_2 \le ||T|| \, ||A||_2$$$

(iii) $\mathcal{B}_2(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_{2}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{2}(H)$$
.

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}(H)$ is trace class if

(1.7)
$$||A||_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$. The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

- (i) $A \in \mathcal{B}_1(H)$;
- (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

$$||A||_1 = ||A^*||_1 \quad and \quad ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_1(H)\mathcal{B}(H)\subseteq\mathcal{B}_1(H)$$
;

(iii) We have

$$\mathcal{B}_{2}\left(H\right)\mathcal{B}_{2}\left(H\right)=\mathcal{B}_{1}\left(H\right);$$

(iv) We have

$$||A||_{1} = \sup \{ \langle A, B \rangle_{2} \mid B \in \mathcal{B}_{2}(H), ||B||_{2} \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

S. S. DRAGOMIR

Theorem 3. We have: (i) If $A \in \mathcal{B}_1(H)$ then $A^* \in \mathcal{B}_1(H)$ and

$$(1.10) \operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$$

(ii) If
$$A \in \mathcal{B}_1(H)$$
 and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \ \ and \ |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

- (iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$;
- (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with tr $(P^{1/2}TP^{1/2}) = \text{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

4

If $T \geq 0$, then $P^{1/2}TP^{1/2} \geq 0$, which implies that $\operatorname{tr}(PT) \geq 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n \to \infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [3] and the references therein.

Now, for a given P > 0 with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the Pdeterminant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right)$$

Assume that $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_x(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \le B$ implies $\Delta_P(A) \le \Delta_P(B)$.

In the recent paper [4] we obtained the following results:

Theorem 4. Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A, B > 0and $t \in [0,1]$,

$$\Delta_P((1-t) A + tB) \ge \left[\Delta_P(A)\right]^{1-t} \left[\Delta_P(B)\right]^t.$$

and

Theorem 5. Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A > 0 and a > 0 we have the double inequality

$$(1.13) a \exp\left[1 - a \operatorname{tr}\left(PA^{-1}\right)\right] \le \Delta_P(A) \le a \exp\left[a^{-1} \operatorname{tr}\left(PA\right) - 1\right].$$

In particular

(1.14)
$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$(1.15) 1 \leq \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \leq \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right].$$

The first inequalities in (1.14) and 1.15) are best possible from (1.13).

Motivated by the above results, in this paper we show among others that, if $P_i \ge 0$ with $P_i \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P_i) = 1$ for $i \in \{1, ..., n\}$, $p_i \ge 0$ with $\sum_{i=1}^n p_i = 1$ and $0 < mI \le A_i \le MI$ for $i \in \{1, ..., n\}$, then

$$1 \leq \frac{\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j)}{\prod_{j=1}^{n} \left[\Delta_{P_j}(A_j) \right]^{p_j}}$$

$$\leq \exp \left[\frac{1}{2m^2} \left(M - \sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j) \right) \left(\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j) - m \right) \right]$$

$$\leq \exp \left[\frac{1}{8} \left(\frac{M}{m} - 1 \right)^2 \right].$$

2. Some Trace Inequalities

We use the following result that was obtained in [1]:

Lemma 1. If $f:[a,b] \to \mathbb{R}$ is a convex function on [a,b], then

$$(2.1) 0 \le \frac{(b-t) f(a) + (t-a) f(b)}{b-a} - f(t)$$

$$\le (b-t) (t-a) \frac{f'_{-}(b) - f'_{+}(a)}{b-a} \le \frac{1}{4} (b-a) [f'_{-}(b) - f'_{+}(a)]$$

for any $t \in [a, b]$.

If the lateral derivatives $f'_{-}(b)$ and $f'_{+}(a)$ are finite, then the second inequality and the constant 1/4 are sharp.

We have the following reverse for the Jensen's trace inequality:

Theorem 6. Assume that f is differentiable convex on the interior \mathring{I} of an interval. Let $Q_j \geq 0$ with $Q_j \in \mathcal{B}_1(H)$ for $j \in \{1, ..., n\}$ and $\sum_{j=1}^n \operatorname{tr}(Q_j) > 0$, then for all B_j with the spectra $\operatorname{Sp}(B_j) \subseteq [m, M] \subset \mathring{I}$ for $j \in \{1, ..., n\}$, we have

$$(2.2) 0 \leq \frac{\sum_{j=1}^{n} \operatorname{tr} [Q_{j} f(B_{j})]}{\sum_{j=1}^{n} \operatorname{tr} (Q_{j})} - f\left(\frac{\sum_{j=1}^{n} \operatorname{tr} (Q_{j} B_{j})}{\sum_{j=1}^{n} \operatorname{tr} (Q_{j})}\right)$$

$$\leq \frac{f'_{-}(M) - f'_{+}(m)}{M - m}$$

$$\times \left(M - \frac{\sum_{j=1}^{n} \operatorname{tr} (Q_{j} B_{j})}{\sum_{j=1}^{n} \operatorname{tr} (Q_{j})}\right) \left(\frac{\sum_{j=1}^{n} \operatorname{tr} (Q_{j} B_{j})}{\sum_{j=1}^{n} \operatorname{tr} (Q_{j})} - m\right)$$

$$\leq \frac{1}{4} (M - m) \left[f'_{-}(M) - f'_{+}(m)\right].$$

Proof. Utilizing the continuous functional calculus for a selfadjoint operator T with $0 \le T \le 1_H$ and the convexity of f on [m, M], we have

$$(2.3) f(m(1_H - T) + MT) \le f(m)(1_H - T) + f(M)T$$

in the operator order.

S. S. DRAGOMIR

If we take in (2.3)

$$0 \le T = \frac{B_j - m1_H}{M - m} \le 1_H,$$

then we get

6

(2.4)
$$f\left(m\left(1_{H} - \frac{B_{j} - m1_{H}}{M - m}\right) + M\frac{B_{j} - m1_{H}}{M - m}\right)$$

$$\leq f\left(m\right)\left(1_{H} - \frac{B_{j} - m1_{H}}{M - m}\right) + f\left(M\right)\frac{B_{j} - m1_{H}}{M - m}.$$

Observe that

$$m\left(1_{H} - \frac{B_{j} - m1_{H}}{M - m}\right) + M\frac{B_{j} - m1_{H}}{M - m}$$
$$= \frac{m\left(M1_{H} - B_{j}\right) + M\left(B_{j} - m1_{H}\right)}{M - m} = B_{j}$$

and

$$f(m)\left(1_{H} - \frac{B_{j} - m1_{H}}{M - m}\right) + f(M)\frac{B_{j} - m1_{H}}{M - m}$$
$$= \frac{f(m)(M1_{H} - B_{j}) + f(M)(B_{j} - m1_{H})}{M - m}$$

and by (2.4) we get the following inequality of interest

(2.5)
$$f(B_j) \le \frac{f(m)(M1_H - B_j) + f(M)(B_j - m1_H)}{M - m}$$

for all $j \in \{1, ..., n\}$.

If we multiply (2.5) both sides with $Q_j^{1/2}$ we get

$$\begin{split} &\sum_{j=1}^{n} Q_{j}^{1/2} f\left(B_{j}\right) Q_{j}^{1/2} \\ &\leq \sum_{j=1}^{n} Q_{j}^{1/2} \left[\frac{f\left(m\right)\left(M1_{H} - B_{j}\right) + f\left(M\right)\left(B_{j} - m1_{H}\right)}{M - m} \right] Q_{j}^{1/2} \\ &= \frac{f\left(m\right) \sum_{j=1}^{n} Q_{j}^{1/2} \left(M1_{H} - B_{j}\right) Q_{j}^{1/2} + f\left(M\right) \sum_{j=1}^{n} Q_{j}^{1/2} \left(B_{j} - m1_{H}\right) Q_{j}^{1/2}}{M - m} \\ &= \frac{1}{M - m} \left[f\left(m\right) \left(M \sum_{j=1}^{n} Q_{j} - \sum_{j=1}^{n} Q_{j}^{1/2} B_{j} Q_{j}^{1/2}\right) \right. \\ &+ f\left(M\right) \left(\sum_{j=1}^{n} Q_{j}^{1/2} B_{j} Q_{j}^{1/2} - m \sum_{j=1}^{n} Q_{j}\right) \right] \end{split}$$

which implies, by taking the trace and using its properties, that

$$\sum_{j=1}^{n} \operatorname{tr}\left[Q_{j} f\left(B_{j}\right)\right]$$

$$\leq \frac{1}{M-m} \left[f\left(m\right) \left(M \sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right) - \sum_{j=1}^{n} \operatorname{tr}\left(Q_{j} B_{j}\right)\right) + f\left(M\right) \left(\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j} B_{j}\right) - m \sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)\right) \right],$$

which gives that

$$\frac{\sum_{j=1}^{n} \operatorname{tr} \left[Q_{j} f\left(B_{j}\right) \right]}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j}\right)} \\
\leq \frac{f\left(m\right) \left(M - \frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j}\right)}\right) + f\left(M\right) \left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j}\right)} - m\right)}{M - m},$$

namely

$$(2.6) 0 \leq \frac{\sum_{j=1}^{n} \operatorname{tr} \left[Q_{j} f\left(B_{j} \right) \right]}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} - f\left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} \right)$$

$$\leq \frac{f\left(m \right) \left(M - \frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} \right) + f\left(M \right) \left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)} \right) }{M - m}$$

$$- f\left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} \right).$$

Here the first inequality is Jensen's inequality.

Using the inequality (2.1) for

$$t = \frac{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j} B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)} \in [m, M],$$

a = m and b = M we have

$$(2.7) \qquad \frac{f(m)\left(M - \frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})}\right) + f(M)\left(\frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})} - m\right)}{M - m}$$

$$- f\left(\frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})}\right)$$

$$\leq \frac{f'_{-}(M) - f'_{+}(m)}{M - m} \quad M - \frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})}\right) \left(\frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})} - m\right)$$

$$\leq \frac{1}{4} (M - m) \left[f'_{-}(M) - f'_{+}(m)\right].$$

By making use of (2.6) and (2.7) we derive (2.2).

We also have [1]:

S. S. DRAGOMIR

Lemma 2. Assume that $f:[a,b] \to \mathbb{R}$ is absolutely continuous on [a,b]. If f' is K-Lipschitzian on [a,b], then

(2.8)
$$|(1-t) f(a) + tf(b) - f((1-t) a + tb)|$$

$$\leq \frac{1}{2} K(b-t) (t-a) \leq \frac{1}{8} K(b-a)^{2}$$

for all $t \in [0, 1]$.

8

The constants 1/2 and 1/8 are the best possible in (2.8).

Remark 1. If $f:[a,b]\to\mathbb{R}$ is twice differentiable and $f''\in L_{\infty}[a,b]$, then

(2.9)
$$|(1-t) f(a) + tf(b) - f((1-t) a + tb)|$$

$$\leq \frac{1}{2} ||f''||_{[a,b],\infty} (b-t) (t-a) \leq \frac{1}{8} ||f''||_{[a,b],\infty} (b-a)^{2},$$

where $||f''||_{[a,b],\infty} := \operatorname{essup}_{t \in [a,b]} |f''(t)| < \infty$. The constants 1/2 and 1/8 are the best possible in (2.9).

Theorem 7. Assume that f is twice differentiable convex on the interior \mathring{I} of the interval I and the derivative f'' is bounded on \mathring{I} . Let $Q_j \geq 0$ with $Q_j \in \mathcal{B}_1(H)$ for $j \in \{1, ..., n\}$ and $\sum_{j=1}^n \operatorname{tr}(Q_j) > 0$, then for all B_j with the spectra $\operatorname{Sp}(B_j) \subseteq [m, M] \subset \mathring{I}$ for $j \in \{1, ..., n\}$, we have

$$(2.10) 0 \leq \frac{\sum_{j=1}^{n} \operatorname{tr} \left[Q_{j} f \left(B_{j} \right) \right]}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} - f \left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} \right)$$

$$\leq \frac{1}{2} \| f'' \|_{[m,M],\infty} M - \frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} \right) \left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} - m \right)$$

$$\leq \frac{1}{8} \| f'' \|_{[m,M],\infty} \left(M - m \right)^{2}.$$

Proof. From (2.9) and the continuous functional calculus, we get

(2.11)
$$0 \leq \frac{f(m)(M1_H - B_j) + f(M)(B_j - m1_H)}{M - m} - f(B_j)$$
$$\leq \frac{1}{2} \|f''\|_{[m,M],\infty} (M1_H - B_j)(B_j - m1_H)$$
$$\leq \frac{1}{8} \|f''\|_{[m,M],\infty} (M - m)^2 1_H$$

where B_j are selfadjoint operators with the spectra $\operatorname{Sp}(B_j) \subset [m, M]$, $j \in \{1, ..., n\}$. Now, by employing a similar argument to the one in the proof of Theorem 6 we derive the desired result (2.10).

We also have the following scalar inequality of interest:

Lemma 3. Let $f:[a,b] \to \mathbb{R}$ be a convex function on [a,b] and $t \in [0,1]$, then

(2.12)
$$2\min\{t, 1 - t\} \left[\frac{f(a) + f(b)}{2} - f\left(\frac{a + b}{2}\right) \right]$$

$$\leq (1 - t) f(a) + tf(b) - f((1 - t) a + tb)$$

$$\leq 2\max\{t, 1 - t\} \left[\frac{f(a) + f(b)}{2} - f\left(\frac{a + b}{2}\right) \right].$$

The proof follows, for instance, by Corollary 1 from [2] for n=2, $p_1=1-t$, $p_2=t$, $t\in[0,1]$ and $x_1=a$, $x_2=b$.

Theorem 8. Assume that f is convex on the interior \mathring{I} of an interval I. Let $Q_j \geq 0$ with $Q_j \in \mathcal{B}_1(H)$ for $j \in \{1, ..., n\}$ and $\sum_{j=1}^n \operatorname{tr}(Q_j) > 0$, then for all B_j with the spectra $\operatorname{Sp}(B_j) \subseteq [m, M] \subset \mathring{I}$ for $j \in \{1, ..., n\}$, we have

$$(2.13) 0 \leq \frac{2}{M-m} \left[\frac{f(m)+f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]$$

$$\times \left(\frac{1}{2} (M-m) - \frac{\sum_{j=1}^{k} \operatorname{tr}(Q_{j} | B_{j} - \frac{1}{2} (m+M) 1_{H}|)}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})} \right)$$

$$\leq \frac{f(m) \left(M - \frac{\sum_{j=1}^{k} \operatorname{tr}(Q_{j} B_{j})}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})} \right) + f(M) \left(\frac{\sum_{j=1}^{k} \operatorname{tr}(Q_{j} B_{j})}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})} - m \right) }{M-m}$$

$$- \frac{\sum_{j=1}^{k} \operatorname{tr}(Q_{j} f(B_{j}))}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})}$$

$$\leq \frac{2}{M-m} \left[\frac{f(m)+f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]$$

$$\times \left(\frac{1}{2} (M-m) + \frac{1}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})} \sum_{j=1}^{k} \operatorname{tr}\left(Q_{j} | B_{j} - \frac{1}{2} (m+M) 1_{H} | \right) \right)$$

$$\leq 2 \left[\frac{f(m)+f(M)}{2} - f\left(\frac{m+M}{2}\right) \right].$$

Proof. We have from (2.12) that

$$(2.14) \qquad 0 \leq 2\left(\frac{1}{2} - \left|t - \frac{1}{2}\right|\right) \left[\frac{f\left(m\right) + f\left(M\right)}{2} - f\left(\frac{m+M}{2}\right)\right]$$

$$\leq (1-t)f\left(m\right) + tf\left(M\right) - f\left((1-t)m + tM\right)$$

$$\leq 2\left(\frac{1}{2} + \left|t - \frac{1}{2}\right|\right) \left[\frac{f\left(m\right) + f\left(M\right)}{2} - f\left(\frac{m+M}{2}\right)\right],$$

for all $t \in [0, 1]$.

Utilizing the continuous functional calculus for a selfadjoint operator T with $0 \le T \le 1_H$ we get from (2.14) that

$$(2.15) 0 \leq 2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right) \right] \left(\frac{1}{2} 1_{H} - \left| T - \frac{1}{2} 1_{H} \right| \right)$$

$$\leq (1 - T) f(m) + T f(M) - f((1 - T) m + T M)$$

$$\leq 2 \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right) \right] \left(\frac{1}{2} 1_{H} + \left| T - \frac{1}{2} 1_{H} \right| \right),$$

in the operator order.

If we take in (2.15)

$$0 \le T = \frac{B_j - m1_H}{M - m} \le 1_H,$$

then we get

$$(2.16) 0 \leq \frac{2}{M-m} \left[\frac{f(m)+f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]$$

$$\times \left(\frac{1}{2} (M-m) 1_{H} - \left| B_{j} - \frac{1}{2} (m+M) 1_{H} \right| \right)$$

$$\leq \frac{f(m) (M 1_{H} - B_{j}) + f(M) (B_{j} - m 1_{H})}{M-m} - f(B_{j})$$

$$\leq \frac{2}{M-m} \left[\frac{f(m)+f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]$$

$$\times \left(\frac{1}{2} (M-m) 1_{H} + \left| B_{j} - \frac{1}{2} (m+M) 1_{H} \right| \right).$$

If we multiply both sides by $Q_j^{1/2}$ we derive

$$\begin{split} 0 &\leq \frac{2}{M-m} \left[\frac{f\left(m\right) + f\left(M\right)}{2} - f\left(\frac{m+M}{2}\right) \right] \\ &\times \left(\frac{1}{2} \left(M-m\right) Q_{j} - Q_{j}^{1/2} \left| B_{j} - \frac{1}{2} \left(m+M\right) 1_{H} \right| Q_{j}^{1/2} \right) \\ &\leq \frac{f\left(m\right) \left(M 1_{H} - Q_{j}^{1/2} B_{j} Q_{j}^{1/2}\right) + f\left(M\right) \left(Q_{j}^{1/2} B_{j} Q_{j}^{1/2} - m 1_{H}\right)}{M-m} \\ &- Q_{j}^{1/2} f\left(B_{j}\right) Q_{j}^{1/2} \\ &\leq \frac{2}{M-m} \left[\frac{f\left(m\right) + f\left(M\right)}{2} - f\left(\frac{m+M}{2}\right) \right] \\ &\times \left(\frac{1}{2} \left(M-m\right) Q_{j} + Q_{j}^{1/2} \left| B_{j} - \frac{1}{2} \left(m+M\right) 1_{H} \right| Q_{j}^{1/2} \right). \end{split}$$

Now, by taking the trace and summing over j from 1 to n, we derive

$$0 \leq \frac{2}{M-m} \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]$$

$$\times \left(\frac{1}{2} (M-m) \sum_{j=1}^{k} \operatorname{tr}(Q_{j}) - \sum_{j=1}^{k} \operatorname{tr}\left(Q_{j} \left| B_{j} - \frac{1}{2} (m+M) 1_{H} \right| \right) \right)$$

$$\leq \frac{1}{M-m} \left[f(m) \left(M \sum_{j=1}^{k} \operatorname{tr}(Q_{j}) - \sum_{j=1}^{k} \operatorname{tr}(Q_{j}B_{j}) \right) + f(M) \left(\sum_{j=1}^{k} \operatorname{tr}(Q_{j}B_{j}) - m \sum_{j=1}^{k} \operatorname{tr}(Q_{j}) \right) \right] - \sum_{j=1}^{k} \operatorname{tr}(Q_{j}f(B_{j}))$$

$$\leq \frac{2}{M-m} \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right) \right]$$

$$\times \left(\frac{1}{2} (M-m) \sum_{j=1}^{k} \operatorname{tr}(Q_{j}) + \sum_{j=1}^{k} \operatorname{tr}\left(Q_{j} \left| B_{j} - \frac{1}{2} (m+M) 1_{H} \right| \right) \right) .$$

This proves (2.13).

We also have:

Proposition 2. With the assumptions of Theorem 8 we have

(2.17)
$$0 \leq \frac{\sum_{j=1}^{n} \operatorname{tr} \left[Q_{j} f\left(B_{j} \right) \right]}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} - f\left(\frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} \right)$$
$$\leq \frac{2}{M - m} \left[\frac{f\left(m \right) + f\left(M \right)}{2} - f\left(\frac{m + M}{2} \right) \right]$$
$$\times \left(\frac{1}{2} \left(M - m \right) + \left| \frac{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} B_{j} \right)}{\sum_{j=1}^{n} \operatorname{tr} \left(Q_{j} \right)} - \frac{1}{2} \left(m + M \right) \right| \right)$$
$$\leq 2 \left[\frac{f\left(m \right) + f\left(M \right)}{2} - f\left(\frac{m + M}{2} \right) \right].$$

Proof. From (2.6) we have

$$(2.18) 0 \leq \frac{\sum_{j=1}^{n} \operatorname{tr}\left[Q_{j}f\left(B_{j}\right)\right]}{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)} - f\left(\frac{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)}\right) \\ \leq \frac{f\left(m\right)\left(M - \frac{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)}\right) + f\left(M\right)\left(\frac{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)} - m\right)}{M - m} \\ - f\left(\frac{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}B_{j}\right)}{\sum_{j=1}^{n} \operatorname{tr}\left(Q_{j}\right)}\right).$$

From the second part of the scalar version of (2.16) we also have the scalar inequality

$$(2.19) \qquad \frac{f(m)\left(M - \frac{\sum_{j=1}^{k} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})}\right) + f(M)\left(\frac{\sum_{j=1}^{k} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{k} \operatorname{tr}(Q_{j})} - m\right)}{M - m}$$

$$- f\left(\frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})}\right)$$

$$\leq \frac{2}{M - m} \left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2}\right)\right]$$

$$\times \left(\frac{1}{2}(M - m)1_{H} + \left|\frac{\sum_{j=1}^{n} \operatorname{tr}(Q_{j}B_{j})}{\sum_{j=1}^{n} \operatorname{tr}(Q_{j})} - \frac{1}{2}(m + M)\right|\right)$$

$$\leq 2\left[\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2}\right)\right].$$

By utilizing (2.18) and (2.19) we obtain the desired result (2.17).

3. Determinant Inequalities

Our first main result is as follows:

Theorem 9. Assume that $P_j \geq 0$ with $P_j \in A_1(H)$ and $\operatorname{tr}(P_j) = 1$ for $j \in \{1,...,n\}$. If $p_j \geq 0$ with $\sum_{j=1}^n p_j = 1$ and A_j with the property that $0 < mI \leq n$

12

 $A_j \leq MI, j \in \{1, ..., n\} \text{ for } j \in \{1, ..., n\}, \text{ then}$

$$(3.1) 1 \leq \frac{\sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j})}{\prod_{j=1}^{n} \left[\Delta_{P_{j}} (A_{j}) \right]^{p_{j}}}$$

$$\leq \exp \left[\frac{1}{Mm} \left(M - \sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j}) \right) \left(\sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j}) - m \right) \right]$$

$$\leq \exp \left[\frac{1}{4Mm} (M - m)^{2} \right].$$

Also,

$$(3.2) 1 \leq \frac{\sum_{j=1}^{n} p_{j} \operatorname{tr}(P_{j}A_{j})}{\prod_{j=1}^{n} \left[\Delta_{P_{j}}(A_{j})\right]^{p_{j}}}$$

$$\leq \exp\left[\frac{1}{2m^{2}} \left(M - \sum_{j=1}^{n} p_{j} \operatorname{tr}(P_{j}A_{j})\right) \left(\sum_{j=1}^{n} p_{j} \operatorname{tr}(P_{j}A_{j}) - m\right)\right]$$

$$\leq \exp\left[\frac{1}{8} \left(\frac{M}{m} - 1\right)^{2}\right].$$

Proof. If we take $f(t) = -\ln t$, t > 0, $A_j = A_j$, $Q_j = p_j P_j$, $j \in \{1, ..., n\}$, in (2.2), then we get

$$(3.3) 0 \leq \ln \left(\sum_{j=1}^{n} p_j \operatorname{tr} (P_j A_j) \right) - \sum_{j=1}^{n} p_j \operatorname{tr} [P_j f (A_j)]$$

$$\leq \frac{1}{Mm} \left(M - \sum_{j=1}^{n} p_j \operatorname{tr} (P_j A_j) \right) \left(\sum_{j=1}^{n} p_j \operatorname{tr} (P_j A_j) - m \right)$$

$$\leq \frac{1}{4Mm} (M - m)^2.$$

If we take the exponential in (3.3), then we get

$$1 \leq \frac{\exp \ln \left(\sum_{j=1}^{n} p_{j} \operatorname{tr} \left(P_{j} A_{j}\right)\right)}{\exp \left(\sum_{j=1}^{n} p_{j} \operatorname{tr} \left[P_{j} \ln \left(A_{j}\right)\right]\right)}$$

$$\leq \exp \left[\frac{1}{Mm} \left(M - \sum_{j=1}^{n} p_{j} \operatorname{tr} \left(P_{j} A_{j}\right)\right) \left(\sum_{j=1}^{n} p_{j} \operatorname{tr} \left(P_{j} A_{j}\right) - m\right)\right]$$

$$\leq \exp \left[\frac{1}{4Mm} \left(M - m\right)^{2}\right],$$

which is equivalent to

$$1 \leq \frac{\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j)}{\prod_{j=1}^{n} (\exp \operatorname{tr}(P_j \ln A_j))^{p_j}}$$

$$\leq \exp \left[\frac{1}{Mm} \left(M - \sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j) \right) \left(\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j) - m \right) \right]$$

$$\leq \exp \left[\frac{1}{4Mm} (M - m)^2 \right],$$

and the inequality (3.1) is proved.

The proof of (3.2) follows by (2.10) in a similar way and the details are omitted.

Theorem 10. With the assumptions of Theorem 9, we have

$$(3.4) 1 \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \bigg)^{1-\frac{2}{M-m} \sum_{j=1}^{k} p_{j} \operatorname{tr}\left(P_{j} \left| A_{j} - \frac{1}{2}(m+M)1_{H} \right|\right)} \\ \leq \frac{\prod_{j=1}^{n} \left[\Delta_{P_{j}}\left(A_{j}\right) \right]^{p_{j}}}{m^{\frac{M-\sum_{j=1}^{n} p_{j} \operatorname{tr}\left(P_{j}A_{j}\right)}{M-m} M^{\frac{\sum_{j=1}^{n} p_{j} \operatorname{tr}\left(P_{j}A_{j}\right) - m}{M-m}}} \\ \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \bigg)^{1+\frac{2}{M-m} \sum_{j=1}^{k} p_{j} \operatorname{tr}\left(P_{j} \left| A_{j} - \frac{1}{2}(m+M)1_{H} \right|\right)} \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \bigg)^{2}.$$

Also,

$$(3.5) 1 \leq \frac{\sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j})}{\prod_{j=1}^{n} \left[\Delta_{P_{j}} (A_{j}) \right]^{p_{j}}}$$

$$\leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{1 + \frac{2}{M-m} \left| \sum_{j=1}^{n} p_{j} \operatorname{tr} (P_{j} A_{j}) - \frac{1}{2} (m+M) \right|} \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{2}.$$

Proof. If we take $f(t) = -\ln t$, t > 0, $A_j = A_j$, $Q_j = p_j P_j$, $j \in \{1, ..., n\}$, in (2.13), then we get

$$0 \le \frac{2}{M-m} \ln \left(\frac{\frac{m+M}{2}}{\sqrt{mM}} \right) \times \left(\frac{1}{2} (M-m) - \sum_{j=1}^{k} p_j \operatorname{tr} \left(P_j \left| A_j - \frac{1}{2} (m+M) 1_H \right| \right) \right)$$

$$\leq \sum_{j=1}^{k} \operatorname{tr}\left(Q_{j} \ln A_{j}\right)$$

$$-\frac{\left(M - \sum_{j=1}^{n} p_{j} \operatorname{tr}\left(P_{j} A_{j}\right)\right) \ln m + \left(\sum_{j=1}^{n} p_{j} \operatorname{tr}\left(P_{j} A_{j}\right) - m\right) \ln M}{M - m}$$

$$\leq \frac{2}{M - m} \ln \frac{\frac{m + M}{2}}{\sqrt{m M}}$$

$$\times \left(\frac{1}{2} \left(M - m\right) + \sum_{j=1}^{k} p_{j} \operatorname{tr}\left(P_{j} \left|A_{j} - \frac{1}{2} \left(m + M\right) 1_{H}\right|\right)\right)$$

$$\leq \ln \frac{\frac{m + M}{2}}{\sqrt{m M}} \right)^{2}.$$

This is equivalent to

14

$$0 \leq \ln \frac{\frac{m+M}{2}}{\sqrt[3]{mM}} \begin{pmatrix} (1 - \frac{2}{M-m} \sum_{j=1}^{k} p_j \operatorname{tr}(P_j | A_j - \frac{1}{2}(m+M) 1_H |)) \\ \leq \sum_{j=1}^{k} p_j \operatorname{tr}(P_j \ln A_j) - \ln m \frac{M - \sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j)}{M-m} M^{\frac{\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j) - m}{M-m}} \\ \leq \ln \frac{m+M}{2} \end{pmatrix} \begin{pmatrix} (1 + \frac{2}{M-m} \sum_{j=1}^{k} p_j \operatorname{tr}(P_j | A_j - \frac{1}{2}(m+M) 1_H |)) \\ \leq \ln \frac{m+M}{2} \end{pmatrix}^2.$$

By taking the exponential, we derive

$$1 \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{1-\frac{2}{M-m} \sum_{j=1}^{k} p_j \operatorname{tr}(P_j | A_j - \frac{1}{2}(m+M)1_H|)}$$

$$\leq \frac{\prod_{j=1}^{n} \left(\exp \operatorname{tr}(P_j \ln A_j) \right)^{p_j}}{m^{\frac{M-\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j)}{M-m}} M^{\frac{\sum_{j=1}^{n} p_j \operatorname{tr}(P_j A_j) - m}{M-m}}$$

$$\leq \frac{m+M}{2} \choose{\sqrt{mM}} \right)^{1+\frac{2}{M-m} \sum_{j=1}^{k} p_j \operatorname{tr}(P_j | A_j - \frac{1}{2}(m+M)1_H|)} \leq \frac{m+M}{2} \choose{\sqrt{mM}}^2,$$

which proves (3.4).

Inequality (3.5) follows in a similar way from (2.17).

Remark 2. The case of one operator is as follows: Let $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A satisfying the condition $0 < mI \le A \le MI$ we have $the\ inequalities$

(3.6)
$$1 \leq \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \leq \exp\left[\frac{1}{Mm} (M - \operatorname{tr}(PA)) (\operatorname{tr}(PA) - m)\right]$$
$$\leq \exp\left[\frac{1}{4Mm} (M - m)^2\right],$$

(3.7)
$$1 \leq \frac{\operatorname{tr}(PA)}{\Delta_{P}(A)} \leq \exp\left[\frac{1}{2m^{2}}(M - \operatorname{tr}(PA))(\operatorname{tr}(PA) - m)\right]$$
$$\leq \exp\left[\frac{1}{8}\left(\frac{M}{m} - 1\right)^{2}\right],$$

$$(3.8) 1 \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \Big)^{1-\frac{2}{M-m}} \operatorname{tr}(P|A-\frac{1}{2}(m+M)1_{H}|)$$

$$\leq \frac{\Delta_{P}(A)}{m^{\frac{M-\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA)-m}{M-m}}}$$

$$\leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \Big)^{1+\frac{2}{M-m}} \operatorname{tr}(P|A-\frac{1}{2}(m+M)1_{H}|) \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \Big)^{2},$$

and

$$(3.9) 1 \leq \frac{\operatorname{tr}(PA)}{\Delta_P(A)}$$

$$\leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{1+\frac{2}{M-m}\left|\operatorname{tr}(PA)-\frac{1}{2}(m+M)\right|} \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^2.$$

Remark 3. The case of two operators is as follows: Let $P, Q \ge 0$ with $P, Q \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = \operatorname{tr}(Q) = 1$, then for all A, B satisfying the condition $0 < mI \le A$, $B \le MI$ we have the inequalities

$$(3.10) 1 \leq \frac{(1-t)\operatorname{tr}(PA) + t\operatorname{tr}(QB)}{[\Delta_P(A)]^{(1-t)}[\Delta_Q(B)]^t}$$

$$\leq \exp\left[\frac{1}{Mm}(M - (1-t)\operatorname{tr}(PA) - t\operatorname{tr}(QB))\right]$$

$$\times ((1-t)\operatorname{tr}(PA) + t\operatorname{tr}(QB) - m)\right]$$

$$\leq \exp\left[\frac{1}{4Mm}(M-m)^2\right],$$

(3.11)
$$1 \leq \frac{(1-t)\operatorname{tr}(PA) + t\operatorname{tr}(QB)}{[\Delta_{P}(A)]^{(1-t)}[\Delta_{Q}(B)]^{t}} \\ \leq \exp\frac{1}{2m^{2}}(M - (1-t)\operatorname{tr}(PA) - t\operatorname{tr}(QB)) \\ \times ((1-t)\operatorname{tr}(PA) + t\operatorname{tr}(QB) - m) \end{bmatrix} \\ \leq \exp\left[\frac{1}{8}\left(\frac{M}{m} - 1\right)^{2}\right],$$

(3.12) S. S. DRAGOMIR
$$(3.12) \qquad 1 \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{1-\frac{2}{M-m} \left[(1-t) \operatorname{tr} \left(P \middle| A - \frac{1}{2} (m+M) 1_H \middle| \right) + \operatorname{tr} \left(Q \middle| B - \frac{1}{2} (m+M) 1_H \middle| \right) \right]}$$

$$\leq \frac{\left[\Delta_P \left(A \right) \right]^{(1-t)} \left[\Delta_Q \left(B \right) \right]^t}{m^{\frac{M-(1-t) \operatorname{tr} \left(PA \right) - t \operatorname{tr} \left(QB \right)}{M-m}} M^{\frac{(1-t) \operatorname{tr} \left(PA \right) + t \operatorname{tr} \left(QB \right) - m}{M-m}}$$

$$\leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{1+\frac{2}{M-m}} \left[(1-t) \operatorname{tr} \left(P \middle| A - \frac{1}{2} (m+M) 1_H \middle| \right) + \operatorname{tr} \left(Q \middle| B - \frac{1}{2} (m+M) 1_H \middle| \right) \right]$$

$$\leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^2,$$

and

16

$$(3.13) 1 \leq \frac{(1-t)\operatorname{tr}(PA) + t\operatorname{tr}(QB)}{\left[\Delta_{P}(A)\right]^{(1-t)}\left[\Delta_{Q}(B)\right]^{t}} \\ \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{1+\frac{2}{M-m}\left|(1-t)\operatorname{tr}(PA) + t\operatorname{tr}(QB) - \frac{1}{2}(m+M)\right|} \leq \frac{\frac{m+M}{2}}{\sqrt{mM}} \right)^{2}$$

for all $t \in [0, 1]$.

References

- [1] S. S. Dragomir, Bounds for the deviation of a function from the chord generated by its extremities. Bull. Aust. Math. Soc. 78 (2008), no. 2, 225–248.
- [2] S. S. Dragomir, Bounds for the normalised Jensen functional. Bull. Austral. Math. Soc. 74 (2006), no. 3, 471–478.
- [3] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [4] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.
- [5] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530.
- [6] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.
- [7] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307-310.
- [8] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46 - 49.
- [9] T. Furuta, J. Mičić-Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Croatia.
- [10] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637-1645.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

 URL : http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA