SOME FUNCTIONAL PROPERTIES FOR THE TRACE CLASS
P-DETERMINANT OF SEQUENCES OF POSITIVE OPERATORS
IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by
Ap (A) :=exptr (PlnA).

We define the determinant functional

Qn

[ (32 T 004))]
DTL (qa A:Q) = n I
[T [2e )]

i=1

where A = (Ay, ..., Ay) is an n-tuple of selfadjoint positive operators, q €P;,
the set of positive n-tuple and @ € By (H), Q > 0 with trQ = 1.
In this paper we show among others that, if p, q E'P,T, then we have
Dn(p+a;A,Q) > Dn (p;A,Q) Dn (9;A,Q) > 1
i.e., the functional J, (-, @, A) is super-multiplicative on P . For p, q €P;F
with p > q,
Dr (p; Q,A) > Dy (q;Q, A) > 1,
i.e., the functional Jy, (-, Q, A) is monotonic non-decreasing on Pl .

1. INTRODUCTION

In 1952, in the paper [7], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)'/? its modulus. By the spectral theorem
one can represent 7' as an integral

T / ME (),
Sp(T)

where E (\) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp </ lntduT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [8], [9], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [12].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) [A]l < [|All

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Aec By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [l = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since PY/2 € By (H), TP'? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (Pl/QTPl/Q)

forall T € B(H).

If T >0, then PY/2T P2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [5] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tA,(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [6] we obtained the following results:
Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0, 1] we have the Ky Fan’s type inequality
(1.13) Ap((1—t)A+tB) > [Ap (A)]' "' [Ap (B)].
and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(1.14) aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr(PA) —1].

In particular

tr (PA) 1
(1.15) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
(1.16) 1< Br) - <exp [tr (PA™Y) tr (PA) —1].

- e (PATH]
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The first inequalities in (1.15) and 1.16) are best possible from (1.14).

We define the determinant functional
n Q
[tr (Q” Zj:l quA]'>:|
[T1aq (4™
i=1

Dy (q; AQ) =

where A =(Ay, ..., 4,) is an n-tuple of selfadjoint positive operators, q €P;, the
set of positive n-tuple and @ € By (H), Q > 0 with tr@Q = 1.
In this paper we show among others that, if p, @ €P;", then we have
Dy (p+aq;AQ) = Dn(p;AQ) D (q;AQ) > 1

i.e., the functional J, (-, @, A) is super-multiplicative on P} . For p, q €P;} with
P=q,
Dy (p;Q,A) = Dn (q;Q,A) 2 1,

i.e., the functional J,, (-, @, A) is monotonic non-decreasing on P;'.

2. FUNCTIONAL PROPERTIES FOR TRACE
Consider a convex function f on the interval I. We define
Bi" (H):={Q e Bi(H)| Q> 0}
and consider the n-tuples
Q= (Q1,...Qn) € [Bf T (H)]" =B (H) x ... x Bf " (H)

and A := (A1,...,A4,) with Sp(4,) C I, j € {1,...,n}. We have the following
Jensen type trace inequality for convex function f,

n

1
) 1| sy M) < s Y e

and can introduce the Jensen’s gap functional

n 1 n
W (Q ALf) Ztr Q;f Z:: m;tr (Q;4;)

We have the following functional properties:

Theorem 6. Assume that f is convex on the interval I and A := (A4, ..., A,) with
Sp(A;)C1I,jed{l,..,n}.

(i) For all P, Q € [Bf (H)}n we have
(22) In (P+Q,Af) 2 Jn (P,Af) +Jn (Q,A,f) 20,
i.e., the functional J, (-, A,f) is superadditive on [BiH' (H)]n,
(ii) For all P, Q € [Bf (H)}n with P > Q, namely P; > Q; for j € {1,...,n},
(2.3) Jn (P, ALf) > T, (Q,A,f) >0,

i.e., the functional J,, (-, A,f) is monotonic non-decreasing on [Bf“" (H)]n
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Proof. (i). f P, Q € [Bf (H)]", then we have

(2.4) Jn (P +Q, A, f)
=St (P +Q)) £ (45)]
j=1
) S tr (P + Q) A))
_jz:ltr(Pj'l-Qj)f( > tr (P + Q) >

—Ztr Pif(A +Ztr Q,f(

Zj:l tr (P;A;) + 22:1 tr (Q;4;)
‘Z” )@l ( S o (P) + (@) >

By the convexity of f we obtain

s D1 tr(PAy) + 300 tr(Qj4))
Z?:1 [tr (Pj) + tr (Q;)]

2o tr(P5Aj)

tr(QJA )
_ (Z?—l tr (P)) Semy + 2= (@) M)

2= [tr (Py) + tr (Q5)]

21 tr(P)) ; 21 tr(PjA;)
B Z] L [t (Py) + tr (Qy)] Z?:1 tr (P;)
Zj:l tr (Q;) Z?:1 tr (QjAj)>
A

" Z?:l [tr (P;) + tr (Q;)] / < Z?:1 tr (Q;

Therefore

Z?:1 tr (P;A;) + 22:1 tr (Q;4;)
‘Z” )+ (@l ( S [ (P) + 1 (Qy) )

>_Z}Z:1[ (P)) +tr Q)] 25—y tr (By) (305, tr (P A))
- 2= [or (Py) + tr (Q5)] > tr ()

B Z?:l [tr (P5) + tr (Q;)] Z;‘L:1 tr (Q;) f Z?:1 tr (Q;A;)
> [t (Py) + 1 (Qy)] 21 tr(Qy)

. n Z?thr(PjAj) B n , Z?thl"(QjAj)
_—;tr(P])f< Z;z:ltr(Pj)> Ztr(Qﬂf( Z?zltr(Qj) >

Jj=1
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and by (2.4) we derive
Jn (P +Q,A.f)

>Ztr P;f (A —I—Ztr Qi f(

Zn 1tI‘(PA Zn 1131' (QJAJ)
_ztr(Pj)f<Ej Tt ( ) Zt (Q)) (Z" tr(Q;) >

Zj: tr(PjAj)
= Ztr [P f (A Ztr (W)

> jo1 17 (Q54)
+Ztr Qi f ( Ztr @) (W)

= Jn (P, A f) + Jn (Q7A,f) >

and the inequality (2.2) is proved.
(ii) f P > Q, then P =P — Q + Q and if we use the property (2.2), then we
get

Jn(PAf)=Jn (P-Q+Q,Af) 21, (P—-QAf)+Jn(QA,S),
which gives
Jn (P, Af) = Jn (QAf) > T (P—Q,A,f) >0
and the inequality (2.3) is proved. O

Corollary 1. With the assumptions of Theorem 6 and if we assume that there
exists the positive constants m < M such that

(2.5) mQ <P < MQ,
then

Proof. Observe that for @ > 0 we have J, (aQ,A) = aJ, (Q,A). Utilizing the
monotonicity property (2.3) we have

‘]n (mQ7 Avf) S ‘IVL (Pa A?f) S ‘]n (MQ7 Aaf) ’
which imply the desired result (2.6). O

We denote by P, the set of all n-tuples ¢= (g1, ...,qn), ¢; > 0 with j € {1,...,n}
and @, = Z;L:lqj > 0. For p, q €P,/ we denote p >q if p; > ¢; for any j €

{1,...,n}.

For Q € B ™ (H) with tr Q = 1, we define the functional

1 n
o (@Q,ALf) : qutr Qf (A)] = Quf Q—qutr<QAj> :
where @, := Zj:l g; > 0.
We observe that if we put Q; = ¢;Q, j € {L,...,n} then J,(q,Q,A,f) =
Jn (Q, A, f) and we can state the following result:
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Theorem 7. Assume that f is convex on the interval I, Q € BiH' (H) withtr@ =1
and A := (Aq, ..., Ay) with Sp(A;) C 1, j€{1,..,n}.

(i) For all p, q €P;} we have
(2.7) Jn(P+ QA f) > Jn (P Q5 ALf) + Jn (P5Q,ALf) 20
i.e., the functional J,, (-,Q, A, f) is superadditive on P, ;
(ii) Forp, q €P} withp > q
(2.8) In (P Q, AL f) > Jn (a4;Q, A f) >0,

i.e., the functional J, (-, Q, A,f) is monotonic non-decreasing on P;}.

Remark 1. We observe that if all g; > 0 then we have the inequality

29)  min {p} @D AS) < (0, ALP)

JE{l,...,n}

< max {p} n (P;Q,Af).

Jj€{l,...,n}

In particular, if q is the uniform distribution, i.e., g; = %,j e {1,....,n}, then
we have the inequalities

(2.10) njeﬁnn {pi} I (Q,A,f) < J0 (p;Q,A,f)

<n max i+ A,
<n max {p} . (QA)

where
(2.11) W (Q,ALf) : Ztr Qf (A Ztr QA;)

Forn =2 and by choosing p1 = «, ps = 1 —a with « € [0, 1], we get from (2.10)
the inequality

(2.12) 2min {e,1 — a}

QAL I B ([ (448)])]

<A -a)tr[Qf (A +atr[Qf (B)] - f(tr (Q[(1 - a) A+ aB))
< 2max{a,1— a}

; {tr QI ()4 wlQT (B) _ (tr {Q (A;B)m ’

where f : I — R is a convex function and A and B are two bounded selfadjoint
operators on the complex Hilbert space H with Sp (A), Sp (B) C I.

Let P (N) be the family of finite parts of the set of natural numbers N, A(H)
the linear space of all sequences of selfadjoint operators defined on the complex
Hilbert space, i.e.,

A(H) = {A =(Ak) ey | Ar are selfadjoint operators on H for all k € N}

and S} (Bt (H)) the family of positive sequences from By (H).
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Let f: I — R is a convex function on the interval I. We consider the functional
Yjex tr(Qi4;)
Kk (Q,A,[f): tr[Q; f tr(Q) f| ==~ | »
-2 e 2 @) )
where K € Py (N), Q €Sy (B (H)), A €A(H) and Sp(A;) C1,j€N.

Theorem 8. Let f : I — R be a convex function on the interval I and Q €S (lS’fJr (H)) ,
A cA(H) with Sp(A;) €I, 5 €N.

(i) If K, L € Py (N)\ {0} with KN L =0, then we have the inequality
(213) JKUL (QaAaf) ZJK (QaA,f)+JL (Q?Aaf) ZO,

ie., J (Q,A,f) is super-additive as an index set functional.
(ii) If0 # K C L, then we have

ie., J.(Q,A,f) is monotonic non-decreasing as an index set functional.
Proof. (i). If K, L € Py (N)\ {0} with K N L =, then we have
(215) JKUL (Q7Aaf)

] T A
- Y vl - Y w@) (Zﬁemt - )J)>

jEKUL JEKUL ZjeKuL tr (Q;
- Z tr[Q;f (A;)] + Ztr Q;f
JjEK JEL
- > w(@))
JjEKUL
“ deKtr (@) % + ZJGL tr (Q;) %
ZJGKUL tr(Q;)
> Z tr Qj + Ztr QJ
JjeEK jEL
B _ ZjeKtr<Qj) ZjeK tr (QjAj)
je;_JLtr (@) lzjeKuL tr (Qj)f ( ZjeKtr (Qy)
>jer tr(Qy) > jern tr(Qs4;)
ZjEKUL tr (Q;) ZjeL tr (Q;)
tr(Q;A,)
= tr [ tr ( LjER T A\RITTT)
Jg( @l ; @) ( > jex tr(@j) )
ZjeL tr(Q;4;)
tl" j tr i == - -7
+aez; @l Jez; @ ( > jer tr(Q) )

= JK (QaAvf) +JL(Q7Aaf) Z 07
which proves (2.13).
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(ii). If ) # K C L with L\ K # 0, then we have by (2.13) that

JL(Q, A, f) = Jrui~ k) (Q, A, f)
> JL (Q7Aaf) +JL\K (QvAvf) > ']K (Q7A7f)

and the inequality (2.14) is thus proved. a

Corollary 2. Assume that f is convex on the interval I and A := (A4, ..., Ay,) with
Sp(A4;) C1I, je{l,..,n}. Then we have the inequality

for any k € {1,...,n} withn >k > 2.
We also have that

(217 L(QAN > max  {[Qf (4)] + tr[Quf (Ap)]

j.ke{l,...,n}
T A T A
—tr(Q; + Q) f (t (Qér (g;r_: Q(kQ)k k)>}
> 0.

Now, consider the weighted functional

k(G QAS) =Y ¢;tr[Qf (4; me( qutrQA)

JjeEK ]EK

where K € Py (N), Q € Bf " (H) with trQ = 1 and q €P;} with Q := Y, ¢ >
0. '

Proposition 2. If K, L € Py (N)\ {0} with KNL = 0, then we have the inequality

JKUL (an7A)f) Z JK (q7Q7Aaf> + JL (anaAaf) Z Oa

5 J(q,Q, A, f) is super-additive as an index set functional.
If # K C L, then we have

i.e., J.(Q,A,f) is monotonic non-decreasing as an index set functional.
We have the inequality

Jk (quaAaf) 2 Jk—l (quaAvf) Z 0

for any k € {1,...,n} withn >k > 2.
We also have the lower bound:

T (@@ A > max  {prQF (A7) + pe tr[QF (44)]

kel
(QA;) + p tr (QAk)) }
pj + Pk

—(pj +pr) f (pj b

> 0.
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3. DETERMINANT INEQUALITIES

We define the determinant functional

[tr (ﬁ i1 quAj)} -

n )

(3.1) Dy (q; A,Q) =

[Aq (A7)
1

?

where A =(Aj,...,A,) is an n-tuple of selfadjoint positive operators p €P, and
Q € Bt (H) with tr@Q = 1.

Theorem 9. Let Q € Bf " (H) withtrQ =1 and A := (Ay, ..., A,) with Sp (A;) C
I,5€{l,...,n}.

(i) For all p, q €P,5 we have

(3.2) D, (p+q;A,Q)> D, (p;AQ) Dy, (q;A,Q) > 1

i.e., the functional J, (-,Q, A) is super-multiplicative on P, ;
(ii) Forp, q €P} withp > q

(3.3) D, (p;Q,A) > Dy, (q;Q, A) > 1,
i.e., the functional J, (-,Q, A) is monotonic non-decreasing on P, .
Proof. (i) Consider the convex function f(f) = —Int, ¢ > 0. Observe that for

A =(Ay, ..., A,,) an n-tuple of selfadjoint positive operators p €P; and Q € B (H)
with tr QQ = 1, then

Jo (@A, — ) = @, In Qi S gt (@A) | =g tr[Qn (4))]
" j=1 j=1

Qn
1 n n
=In Q—qutr(QAj) —qutr[an(Aj)].
=1 j=1
If we take the exponential, then we get
exp Jn (qa Q7 Aa - ln)
n @n n
1
=exp |In 0. Z g tr (QA,) - Z gjtr[Q1In (4;)]
=1 j=1
expln (& >j—145tr (QAj)> B (Q% >j—145tr (QAj)>
exp <Z?:1 g; tr[QIn (Aj)D [T12q (4"
i=1
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Therefore, by the properties of J, (-, @, A, —In),
Dy (p+a;AQ)=expJy (p+qQ, A, —In)
>exp[J, (P, @, A, —In) + J, (q,Q, A, — In)]
=expJ, (p,Q,A, —In)expJ, (q,Q, A, —In)
=D, (p; A,Q) Dy (q; A,Q) .

(i) The monotonicity of D,, (+; A,Q) follows by the monotonicity of J,, (-, @, A, — In).

O

Corollary 3. Let Q € BT (H) withtrQ = 1 and A := (A4, ..., A,,) with Sp (A;) C
I,5€{l,...,n}. Then

(34)  [Dn(q;Q, A)]I“h‘““““’"}{%} <D, (p;AQ)

< [Dn(q; @, A)]max.fe{l,___m}{%}

and
(3.5) D, (Q7A)"minj6{l ,,,,, ni{pi} < D, (p: A,Q)

< [Dn (Q,A)]nmaxje{l,...,n}{pj} 7
where

tr (137, Q4;)

[Ag (A7)

DTL (AaQ) =

—.

1

J

For n = 2 and by choosing p; = a, po = 1 — @ with « € [0, 1], we get from (3.8)
the inequality for two positive operators A, B

tr (QA%B) >2min{o¢,1o¢}
3.6 1<
(30 ([AQ (A2 [aq (B)]'?

< tr(Q ((1*0&)A+QB)) < ( tr (QAJFTB> >2max{a,1a}
T A (A [Ag (B T \[Ag (A)]?[Ag (B)])? :

We also consider

i (g e @)]*
IT [aq (4"

jEK

D (q; Q,A) :=

where K € Py (N).
Proposition 3. If K, L € Py (N)\ {0} with KNL = 0, then we have the inequality
(3.7) Drur (P+a;A,Q) > Dk (p; A,Q) D (q; A,Q) > 1

i.e., D.(q; Q, A) is super-multiplicative as an index set functional.
If 0 # K C L, then we have

i.e., D.(q;Q, A) is monotonic non-decreasing as an index set functional.
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We have the inequality

(3.9) Dy (q;A,Q) > D1 (p; AQ) > 1

for any k € {1,...,n} withn >k > 2.
We also have that

(3.10) D, (q;Q,A) > max 9+

jke{l,...n} [Ag (4; g [Ag ( > 1.

)]Qk =

br (Qq’A +qkAk)}q1+qk
A

4. OTHER PROPERTIES

We define C; (B; (H)) the class of non-negative operators Q from By (H) with
tr (Q) = 1. We observe that, if Q1, Q2 € Ci (Bf (H)) then for all ¢t € [0,1],
(1-1)Q1 +tQ2 € Ci (Bf (H)) showing that C; (B (H)) is a convex subset of
By (H). Also, if @, € C; (31+ (H)) and @,, — @ in the operator norm topology,
then also Q € Cy (B; (H)) .
Proposition 4. The mapping A. (A) is conver on Cq (Bf' (H)) for all positive
inwvertible operator A.

Proof. Let Q1, Q2 € Cy (B (H)) then for all t € [0,1],

Aq—0,4tQ, (A) = exptr(((1 —1t) Q1 +tQ2)In A)
exp[(1—¢)tr(Q1InA)+ttr(Qaln A)]
(exptr (@1 In A))(l_t) (exptr (Q2In A))t
< (I—t)exptr(Q1InA) 4+ texptr (Q21n A)
(1=1)Aq, (4) +1Aq, (4),
which proves the convexity of A. (A). O

Using Jensen’s inequality we have

(4.1) Asr peqi ( Z Prlg, (A

for all Q € Cy (Bl+ (H)) c Pk >0, ke{l,...,n} with Y7 pr = 1.
By Hermite-Hadamard integral inequalities we also have

1
1
42 Ana (= [ Aasprao(A)d < 3R () + g (4)
for all P, Q € C1 (B (H)).
Since
1
/ Aq—tp+to ( :/0 exp[(1 —t)tr (PlnA) 4+ ttr (Qln A)]dt
{ Dol Sl if tr((Q — P)lnA) #£0
exptr (PInA) if tr((Q — P)InA) #0
hence
Ao (A)—Ap(A) 1
43 Ana < TS < lan )+ g ()
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provided tr ((Q — P)In A) # 0.

Theorem 10. For all P, Q € C; (Bfr (H)) and positive invertible operator A such
that tr ((Q — P)In A) # 0 we have

Ag (4) = Ap(4)

(4.4) 0 < L (@-P A —Arga (4)
< St ((Q — P)InA) [Ag (4) —~ Ap (4)
and
(45) 0< 3180 (4) + Ag ()] - $HE=FE L
< S ((Q - P)nA)[Aq (4) — Ap (4)].

Proof. For P, Q € C; (Bf (H)), we consider the function ¢po:[0,1] = (0,00),
opo ) =An_yprq(A), t€0,1].
Observe that
opo(t) =exp[(1—t)tr (PInA) +ttr (QIn A)],
for all ¢ € [0, 1] . Obviously, the function ¢p g is also a convex function on [0,1] .In
The function ¢p () is differentiable on (0,1) and
¢pot)=tr((Q—P)lnA)exp[(1—t)tr (PInA)+ttr(QInA).
The lateral derivatives ¢', p 5 (0) and ¢’ p (1) also exist,
Ppa ()= tr((Q = P)ln A) Ap (4)
and
?po (1) = tr (@ = P)In ) Ag (4).
In [1] we obtained the following reverse of first Hermite-Hadamard inequality for
the convex function f : [a,b] — R,

b
o<t | f(s)ds—f(aer) <Lb-a)[f ) - f (@),

2 8

with % the best possible constant.
Therefore

! 1 1
0< /0 po (t)dt —ppg <2> < 3 ¢ po()— ¢\ po(0)],

namely

1
0 < / Aq—pypiiq (A)dt — A% (A4)
0

N

é“ (Q — P)InA) [Ag (A) — Ap (4)],

which gives (4.4).
In [2] we also obtained the revese of the second Hermite-Hadamard inequality
for the convex function f : [a,b] — R,

a b
0 @ +10) _bia/a F(s)ds < < (0 a) [£2.(8) ~ 1 (@]
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with % the best possible constant. Applying this inequality, we derive the inequality
(4.5). O

(1]

2]

(3]
(4]

(5]

ME
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