
SOME FUNCTIONAL PROPERTIES FOR THE TRACE CLASS
P -DETERMINANT OF SEQUENCES OF POSITIVE OPERATORS

IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a complex Hilbert space. For a given operator P � 0

with P 2 B1 (H) ; the trace class associated to B (H) and tr (P ) = 1; we de�ne
the P -determinant of the positive invertible operator A by

�P (A) := exp tr (P lnA) :

We de�ne the determinant functional

Dn (q;A;Q) :=

h
tr
�

1
Qn

Pn
j=1 qjQAj

�iQn
nY
i=1

�
�Q (Aj)

�qi ;

where A =(A1; :::; An) is an n-tuple of selfadjoint positive operators, q 2P+n ,
the set of positive n-tuple and Q 2 B1 (H) ; Q > 0 with trQ = 1:

In this paper we show among others that, if p; q 2P+n , then we have
Dn (p+ q;A;Q) � Dn (p;A;Q)Dn (q;A;Q) � 1

i.e., the functional Jn (�; Q;A) is super-multiplicative on P+n : For p; q 2P+n
with p � q,

Dn (p;Q;A) � Dn (q;Q;A) � 1;
i.e., the functional Jn (�; Q;A) is monotonic non-decreasing on P+n :

1. Introduction

In 1952, in the paper [7], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a �nite von Neumann algebra (M; �) with a faithful normal trace.
Let T 2M be normal and jT j := (T �T )1=2 its modulus. By the spectral theorem

one can represent T as an integral

T =

Z
Sp(T )

�dE (�) ;

where E (�) is a projection valued measure and Sp (T ) is the spectrum of T: The
measure �T := � �E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T ) :
For any T 2 M the Fuglede-Kadison determinant (FK-determinant) is de�ned

by

�FK (T ) := exp

�Z 1

0

ln td�jT j

�
:
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If T is invertible, then

�FK (T ) := exp (� (ln (jT j))) ;
where ln (jT j) is de�ned by the use of functional calculus.
Let B(H) be the space of all bounded linear operators on a Hilbert space H,

and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [8], [9], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by

�x(A) := exp hlnAx; xi
and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [12].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H; h�; �i) be a complex Hilbert space and feigi2I an orthonormal basis of H:

We say that A 2 B (H) is a Hilbert-Schmidt operator if

(1.1)
X
i2I

kAeik2 <1:

It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.2)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.3) kAk2 :=
 X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H:
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)1=2 :
Because kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-

Schmidt and kAk2 = kjAjk2 : From (1.2) we have that if A 2 B2 (H) ; then A� 2
B2 (H) and kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 1. We have:
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.4) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii
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and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
(ii) We have the inequalities

(1.5) kAk � kAk2
for any A 2 B2 (H) and, if A 2 B2 (H) and T 2 B (H) ; then AT; TA 2 B2 (H)
with

(1.6) kATk2 ; kTAk2 � kTk kAk2
(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) :

If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.7) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) :

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;

(iii) We have

B2 (H)B2 (H) = B1 (H) ;
(iv) We have

kAk1 = sup fhA;Bi2 j B 2 B2 (H) ; kBk2 � 1g ;

(v) (B1 (H) ; k�k1) is a Banach space.

We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.9) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.10) tr (A�) = tr (A);

(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H),
(1.11) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;
(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) :
Now, if we assume that P � 0 and P 2 B1 (H) ; then for all T 2 B (H) ; PT;

TP 2 B1 (H) and tr (PT ) = tr (TP ) : Also, since P 1=2 2 B2 (H) ; TP 1=2 2 B2 (H),
hence P 1=2TP 1=2 and TP 1=2P 1=2 = TP 2 B1 (H) with tr

�
P 1=2TP 1=2

�
= tr (TP ) :

Therefore, if P � 0 and P 2 B1 (H) ;

tr (PT ) = tr (TP ) = tr
�
P 1=2TP 1=2

�
for all T 2 B (H) :
If T � 0; then P 1=2TP 1=2 � 0; which implies that tr (PT ) � 0 that shows that

the functional B (H) 3 T 7�! tr (PT ) is linear and isotonic functional. Also, by
(1.11), if Tn ! T for n ! 1 in B (H) then limn!1 tr (PTn) = tr (PT ) ; namely
B (H) 3 T 7�! tr (PT ) is also continuous in the norm topology.
For a survey on recent trace inequalities see [5] and the references therein.
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the P -

determinant of the positive invertible operator A by

(1.12) �P (A) := exp tr (P lnA) = exp tr ((lnA)P ) = exp tr
�
P 1=2 (lnA)P 1=2

�
:

Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: We observe that we have
the following elementary properties:

(i) continuity : the map A! �P (A) is norm continuous;
(ii) power equality: �P (At) = �P (A)t for all t > 0;
(iii) homogeneity : �P (tA) = t�x(A) and �P (tI) = t for all t > 0;
(iv) monotonicity : 0 < A � B implies �P (A) � �P (B).
In the recent paper [6] we obtained the following results:

Theorem 4. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A; B > 0
and t 2 [0; 1] we have the Ky Fan�s type inequality
(1.13) �P ((1� t)A+ tB) � [�P (A)]1�t [�P (B)]t :
and

Theorem 5. Let P � 0 with P 2 B1 (H) and tr (P ) = 1; then for all A > 0 and
a > 0 we have the double inequality

(1.14) a exp
�
1� a tr

�
PA�1

��
� �P (A) � a exp

�
a�1 tr (PA)� 1

�
:

In particular

(1.15) 1 � tr (PA)

�P (A)
� exp

�
tr (PA) tr

�
PA�1

�
� 1
�

and

(1.16) 1 � �P (A)

[tr (PA�1)]
�1 � exp

�
tr
�
PA�1

�
tr (PA)� 1

�
:
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The �rst inequalities in (1.15) and 1.16) are best possible from (1.14).

We de�ne the determinant functional

Dn (q;A;Q) :=

h
tr
�

1
Qn

Pn
j=1 qjQAj

�iQn

nY
i=1

[�Q (Aj)]
qi

;

where A =(A1; :::; An) is an n-tuple of selfadjoint positive operators, q 2P+n , the
set of positive n-tuple and Q 2 B1 (H) ; Q > 0 with trQ = 1:
In this paper we show among others that, if p; q 2P+n , then we have

Dn (p+ q;A;Q) � Dn (p;A;Q)Dn (q;A;Q) � 1

i.e., the functional Jn (�; Q;A) is super-multiplicative on P+n : For p; q 2P+n with
p � q,

Dn (p;Q;A) � Dn (q;Q;A) � 1;
i.e., the functional Jn (�; Q;A) is monotonic non-decreasing on P+n :

2. Functional Properties for Trace

Consider a convex function f on the interval I: We de�ne

B++1 (H) := fQ 2 B1 (H) j Q > 0g

and consider the n-tuples

Q := (Q1; :::; Qn) 2
�
B++1 (H)

�n
:= B++1 (H)� :::� B++1 (H)

and A := (A1; :::; An) with Sp (Aj) � I, j 2 f1; :::; ng : We have the following
Jensen type trace inequality for convex function f;

(2.1) f

0@ 1Pn
j=1 tr (Qj)

nX
j=1

tr (QjAj)

1A � 1Pn
j=1 tr (Qj)

nX
j=1

tr [Qjf (Aj)] ;

and can introduce the Jensen�s gap functional

Jn (Q;A;f) :=
nX
j=1

tr [Qjf (Aj)]�
nX
j=1

tr (Qj) f

0@ 1Pn
j=1 tr (Qj)

nX
j=1

tr (QjAj)

1A :
We have the following functional properties:

Theorem 6. Assume that f is convex on the interval I and A := (A1; :::; An) with
Sp (Aj) � I, j 2 f1; :::; ng :

(i) For all P; Q 2
�
B+1 (H)

�n
we have

(2.2) Jn (P+Q;A;f) � Jn (P;A;f) + Jn (Q;A;f) � 0;

i.e., the functional Jn (�;A;f) is superadditive on
�
B++1 (H)

�n
;

(ii) For all P; Q 2
�
B+1 (H)

�n
with P � Q; namely Pj � Qj for j 2 f1; :::; ng ;

(2.3) Jn (P;A;f) � Jn (Q;A;f) � 0;

i.e., the functional Jn (�;A;f) is monotonic non-decreasing on
�
B++1 (H)

�n
:
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Proof. (i). If P; Q 2
�
B+1 (H)

�n
; then we have

Jn (P+Q;A;f)(2.4)

=
nX
j=1

tr [(Pj +Qj) f (Aj)]

�
nX
j=1

tr (Pj +Qj) f

 Pn
j=1 tr ((Pj +Qj)Aj)Pn

j=1 tr (Pj +Qj)

!

=
nX
j=1

tr [Pjf (Aj)] +
nX
j=1

tr [Qjf (Aj)]

�
nX
j=1

[tr (Pj) + tr (Qj)] f

 Pn
j=1 tr (PjAj) +

Pn
j=1 tr (QjAj)Pn

j=1 [tr (Pj) + tr (Qj)]

!
:

By the convexity of f we obtain

f

 Pn
j=1 tr (PjAj) +

Pn
j=1 tr (QjAj)Pn

j=1 [tr (Pj) + tr (Qj)]

!

= f

0@Pn
j=1 tr (Pj)

Pn
j=1 tr(PjAj)Pn
j=1 tr(Pj)

+
Pn

j=1 tr (Qj)
Pn

j=1 tr(QjAj)Pn
j=1 tr(Qj)Pn

j=1 [tr (Pj) + tr (Qj)]

1A
�

Pn
j=1 tr (Pj)Pn

j=1 [tr (Pj) + tr (Qj)]
f

 Pn
j=1 tr (PjAj)Pn
j=1 tr (Pj)

!

+

Pn
j=1 tr (Qj)Pn

j=1 [tr (Pj) + tr (Qj)]
f

 Pn
j=1 tr (QjAj)Pn
j=1 tr (Qj)

!
:

Therefore

�
nX
j=1

[tr (Pj) + tr (Qj)] f

 Pn
j=1 tr (PjAj) +

Pn
j=1 tr (QjAj)Pn

j=1 [tr (Pj) + tr (Qj)]

!

� �
Pn

j=1 [tr (Pj) + tr (Qj)]
Pn

j=1 tr (Pj)Pn
j=1 [tr (Pj) + tr (Qj)]

f

 Pn
j=1 tr (PjAj)Pn
j=1 tr (Pj)

!

�
Pn

j=1 [tr (Pj) + tr (Qj)]
Pn

j=1 tr (Qj)Pn
j=1 [tr (Pj) + tr (Qj)]

f

 Pn
j=1 tr (QjAj)Pn
j=1 tr (Qj)

!

= �
nX
j=1

tr (Pj) f

 Pn
j=1 tr (PjAj)Pn
j=1 tr (Pj)

!
�

nX
j=1

tr (Qj) f

 Pn
j=1 tr (QjAj)Pn
j=1 tr (Qj)

!
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and by (2.4) we derive

Jn (P+Q;A;f)

�
nX
j=1

tr [Pjf (Aj)] +
nX
j=1

tr [Qjf (Aj)]

�
nX
j=1

tr (Pj) f

 Pn
j=1 tr (PjAj)Pn
j=1 tr (Pj)

!
�

nX
j=1

tr (Qj)

 Pn
j=1 tr (QjAj)Pn
j=1 tr (Qj)

!

=
nX
j=1

tr [Pjf (Aj)]�
nX
j=1

tr (Pj) f

 Pn
j=1 tr (PjAj)Pn
j=1 tr (Pj)

!

+
nX
j=1

tr [Qjf (Aj)]�
nX
j=1

tr (Qj)

 Pn
j=1 tr (QjAj)Pn
j=1 tr (Qj)

!
= Jn (P;A;f) + Jn (Q;A;f) � 0

and the inequality (2.2) is proved.
(ii) If P � Q; then P = P�Q+Q and if we use the property (2.2), then we

get

Jn (P;A;f) = Jn (P�Q+Q;A;f) � Jn (P�Q;A;f) + Jn (Q;A;f) ;
which gives

Jn (P;A;f)� Jn (Q;A;f) � Jn (P�Q;A;f) � 0
and the inequality (2.3) is proved. �

Corollary 1. With the assumptions of Theorem 6 and if we assume that there
exists the positive constants m < M such that

(2.5) mQ � P �MQ;
then

(2.6) mJn (Q;A;f) � Jn (P;A;f) �MJn (Q;A;f) :

Proof. Observe that for � > 0 we have Jn (�Q;A) = �Jn (Q;A) : Utilizing the
monotonicity property (2.3) we have

Jn (mQ;A;f) � Jn (P;A;f) � Jn (MQ;A;f) ;
which imply the desired result (2.6). �

We denote by P+n the set of all n-tuples q=(q1; :::; qn) ; qj � 0 with j 2 f1; :::; ng
and Qn :=

Pn
j=1 qj > 0: For p; q 2P+n we denote p � q if pj � qj for any j 2

f1; :::; ng :
For Q 2 B++1 (H) with trQ = 1; we de�ne the functional

Jn (q;Q;A;f) :=
nX
j=1

qj tr [Qf (Aj)]�Qnf

0@ 1

Qn

nX
j=1

qj tr (QAj)

1A ;
where Qn :=

Pn
j=1 qj > 0:

We observe that if we put Qj = qjQ; j 2 f1; :::; ng then Jn (q; Q;A;f) =
Jn (Q;A;f) and we can state the following result:



8 S. S. DRAGOMIR

Theorem 7. Assume that f is convex on the interval I; Q 2 B++1 (H) with trQ = 1
and A := (A1; :::; An) with Sp (Aj) � I, j 2 f1; :::; ng :

(i) For all p; q 2P+n we have

(2.7) Jn (p+ q;Q;A;f) � Jn (p;Q;A;f) + Jn (p;Q;A;f) � 0;

i.e., the functional Jn (�; Q;A;f) is superadditive on P+n ;
(ii) For p; q 2P+n with p � q

(2.8) Jn (p;Q;A;f) � Jn (q;Q;A;f) � 0;

i.e., the functional Jn (�; Q;A;f) is monotonic non-decreasing on P+n :

Remark 1. We observe that if all qj > 0 then we have the inequality

min
j2f1;:::;ng

�
pj
qj

�
Jn (q;Q;A;f) � Jn (p;Q;A;f)(2.9)

� max
j2f1;:::;ng

�
pj
qj

�
Jn (p;Q;A;f) :

In particular, if q is the uniform distribution, i.e., qj = 1
n ; j 2 f1; :::; ng ; then

we have the inequalities

n min
j2f1;:::;ng

fpjg Jn (Q;A;f) � Jn (p;Q;A;f)(2.10)

� n max
j2f1;:::;ng

fpjg Jn (Q;A;f) ;

where

(2.11) Jn (Q;A;f) :=
1

n

nX
j=1

tr [Qf (Aj)]� f

0@ 1
n

nX
j=1

tr (QAj)

1A :
For n = 2 and by choosing p1 = �; p2 = 1�� with � 2 [0; 1] ; we get from (2.10)

the inequality

2min f�; 1� �g(2.12)

�
�
tr [Qf (A)] + tr [Qf (B)]

2
� f

�
tr

�
Q

�
A+B

2

����
� (1� �) tr [Qf (A)] + � tr [Qf (B)]� f (tr (Q [(1� �)A+ �B]))
� 2max f�; 1� �g

�
�
tr [Qf (A)] + tr [Qf (B)]

2
� f

�
tr

�
Q

�
A+B

2

����
;

where f : I ! R is a convex function and A and B are two bounded selfadjoint
operators on the complex Hilbert space H with Sp (A) ; Sp (B) � I:

Let Pf (N) be the family of �nite parts of the set of natural numbers N, A(H)
the linear space of all sequences of selfadjoint operators de�ned on the complex
Hilbert space, i.e.,

A(H) =
�
A =(Ak)k2N j Ak are selfadjoint operators on H for all k 2 N

	
and S+

�
B++1 (H)

�
the family of positive sequences from B1 (H) :
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Let f : I ! R is a convex function on the interval I: We consider the functional

JK (Q;A; f) :=
X
j2K

tr [Qjf (Aj)]�
X
j2K

tr (Qj) f

 P
j2K tr (QjAj)P
j2K tr (Qj)

!
;

where K 2 Pf (N) ; Q 2S+
�
B++1 (H)

�
; A 2A(H) and Sp (Aj) � I; j 2 N.

Theorem 8. Let f : I ! R be a convex function on the interval I andQ 2S+
�
B++1 (H)

�
;

A 2A(H) with Sp (Aj) � I; j 2 N.
(i) If K; L 2 Pf (N)� f;g with K \ L = ;; then we have the inequality

(2.13) JK[L (Q;A; f) � JK (Q;A; f) + JL (Q;A; f) � 0;

i.e., J� (Q;A;f) is super-additive as an index set functional.
(ii) If ; 6= K � L; then we have

(2.14) JL (Q;A; f) � JK (Q;A; f) � 0;

i.e., J� (Q;A;f) is monotonic non-decreasing as an index set functional.

Proof. (i). If K; L 2 Pf (N)� f;g with K \ L = ;, then we have

JK[L (Q;A; f)(2.15)

=
X

j2K[L
tr [Qjf (Aj)]�

X
j2K[L

tr (Qj) f

 P
j2K[L tr (QjAj)P
j2K[L tr (Qj)

!
=
X
j2K

tr [Qjf (Aj)] +
X
j2L

tr [Qjf (Aj)]

�
X

j2K[L
tr (Qj)

� f

0@Pj2K tr (Qj)
P

j2K tr(QjAj)P
j2K tr(Qj)

+
P

j2L tr (Qj)
P

j2L tr(QjAj)P
j2L tr(Qj)P

j2K[L tr (Qj)

1A
�
X
j2K

tr [Qjf (Aj)] +
X
j2L

tr [Qjf (Aj)]

�
X

j2K[L
tr (Qj)

" P
j2K tr (Qj)P

j2K[L tr (Qj)
f

 P
j2K tr (QjAj)P
j2K tr (Qj)

!

+

P
j2L tr (Qj)P

j2K[L tr (Qj)
f

 P
j2L tr (QjAj)P
j2L tr (Qj)

!#

=
X
j2K

tr [Qjf (Aj)]�
X
j2K

tr (Qj)

 P
j2K tr (QjAj)P
j2K tr (Qj)

!

+
X
j2L

tr [Qjf (Aj)]�
X
j2L

tr (Qj) f

 P
j2L tr (QjAj)P
j2L tr (Qj)

!
= JK (Q;A; f) + JL (Q;A; f) � 0;

which proves (2.13).
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(ii). If ; 6= K � L with L�K 6= ;; then we have by (2.13) that

JL (Q;A; f) = JK[(L�K) (Q;A; f)

� JL (Q;A; f) + JL�K (Q;A; f) � JK (Q;A; f)

and the inequality (2.14) is thus proved. �

Corollary 2. Assume that f is convex on the interval I and A := (A1; :::; An) with
Sp (Aj) � I, j 2 f1; :::; ng : Then we have the inequality

(2.16) Jk (Q;A;f) � Jk�1 (Q;A;f) � 0

for any k 2 f1; :::; ng with n � k � 2:
We also have that

Jn (Q;A;f) � max
j;k2f1;:::;ng

n
tr [Qjf (Aj)] + tr [Qkf (Ak)](2.17)

� tr (Qj +Qk) f
�
tr (QjAj) + tr (QkAk)

tr (Qj +Qk)

��
� 0:

Now, consider the weighted functional

JK (q;Q;A;f) :=
X
j2K

qj tr [Qf (Aj)]�QKf

0@ 1

QK

X
j2K

qj tr (QAj)

1A ;
where K 2 Pf (N) ; Q 2 B++1 (H) with trQ = 1 and q 2P+n with QK :=

P
j2K qj >

0:

Proposition 2. If K; L 2 Pf (N)� f;g with K\L = ;; then we have the inequality

JK[L (q;Q;A;f) � JK (q;Q;A;f) + JL (q;Q;A;f) � 0;

i.e., J� (q; Q;A;f) is super-additive as an index set functional.
If ; 6= K � L; then we have

JL (q;Q;A;f) � JK (q;Q;A;f) � 0;

i.e., J� (Q;A;f) is monotonic non-decreasing as an index set functional.
We have the inequality

Jk (q;Q;A;f) � Jk�1 (q;Q;A;f) � 0

for any k 2 f1; :::; ng with n � k � 2:
We also have the lower bound:

Jn (q;Q;A;f) � max
j;k2f1;:::;ng

n
pj tr [Qf (Aj)] + pk tr [Qf (Ak)]

� (pj + pk) f
�
pj tr (QAj) + pk tr (QAk)

pj + pk

��
� 0:
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3. Determinant Inequalities

We de�ne the determinant functional

(3.1) Dn (q;A;Q) :=

h
tr
�

1
Qn

Pn
j=1 qjQAj

�iQn

nY
i=1

[�Q (Aj)]
qi

;

where A =(A1; :::; An) is an n-tuple of selfadjoint positive operators p 2P+n and
Q 2 B++1 (H) with trQ = 1:

Theorem 9. Let Q 2 B++1 (H) with trQ = 1 and A := (A1; :::; An) with Sp (Aj) �
I, j 2 f1; :::; ng :

(i) For all p; q 2P+n we have

(3.2) Dn (p+ q;A;Q) � Dn (p;A;Q)Dn (q;A;Q) � 1

i.e., the functional Jn (�; Q;A) is super-multiplicative on P+n ;
(ii) For p; q 2P+n with p � q

(3.3) Dn (p;Q;A) � Dn (q;Q;A) � 1;

i.e., the functional Jn (�; Q;A) is monotonic non-decreasing on P+n :

Proof. (i) Consider the convex function f (t) = � ln t; t > 0: Observe that for
A =(A1; :::; An) an n-tuple of selfadjoint positive operators p 2P+n andQ 2 B++1 (H)
with trQ = 1; then

Jn (q;Q;A;� ln) = Qn ln

0@ 1

Qn

nX
j=1

qj tr (QAj)

1A� nX
j=1

qj tr [Q ln (Aj)]

= ln

0@ 1

Qn

nX
j=1

qj tr (QAj)

1AQn

�
nX
j=1

qj tr [Q ln (Aj)] :

If we take the exponential, then we get

exp Jn (q;Q;A;� ln)

= exp

264ln
0@ 1

Qn

nX
j=1

qj tr (QAj)

1AQn

�
nX
j=1

qj tr [Q ln (Aj)]

375
=
exp ln

�
1
Qn

Pn
j=1 qj tr (QAj)

�Qn

exp
�Pn

j=1 qj tr [Q ln (Aj)]
� =

�
1
Qn

Pn
j=1 qj tr (QAj)

�Qn

nY
i=1

[�Q (Aj)]
qi

= Dn (q;A;Q) :
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Therefore, by the properties of Jn (�; Q;A;� ln) ;
Dn (p+ q;A;Q) = exp Jn (p+ q; Q;A;� ln)

� exp [Jn (p; Q;A;� ln) + Jn (q; Q;A;� ln)]
= expJn (p; Q;A;� ln) exp Jn (q; Q;A;� ln)
= Dn (p;A;Q)Dn (q;A;Q) :

(ii) The monotonicity ofDn (�;A;Q) follows by the monotonicity of Jn (�; Q;A;� ln).
�

Corollary 3. Let Q 2 B++1 (H) with trQ = 1 and A := (A1; :::; An) with Sp (Aj) �
I, j 2 f1; :::; ng : Then

[Dn (q;Q;A)]
minj2f1;:::;ng

n
pj
qj

o
� Dn (p;A;Q)(3.4)

� [Dn (q;Q;A)]
maxj2f1;:::;ng

n
pj
qj

o
and

Dn (Q;A)
nminj2f1;:::;ngfpjg � Dn (p;A;Q)(3.5)

� [Dn (Q;A)]nmaxj2f1;:::;ngfpjg ;
where

Dn (A;Q) :=
tr
�
1
n

Pn
j=1QAj

�
nY
j=1

[�Q (Aj)]
1=n

:

For n = 2 and by choosing p1 = �; p2 = 1� � with � 2 [0; 1] ; we get from (3.8)
the inequality for two positive operators A; B

1 �
 

tr
�
QA+B

2

�
[�Q (A)]

1=2
[�Q (B)]

1=2

!2minf�;1��g
(3.6)

� tr(Q ((1� �)A+ �B))
[�Q (A)]

1��
[�Q (B)]

� �
 

tr
�
QA+B

2

�
[�Q (A)]

1=2
[�Q (B)]

1=2

!2maxf�;1��g
:

We also consider

DK (q;Q;A) :=

h
tr
�

1
QK

P
j2K qjQAj

�iQKY
j2K

[�Q (Aj)]
qi

where K 2 Pf (N) :

Proposition 3. If K; L 2 Pf (N)� f;g with K\L = ;; then we have the inequality
(3.7) DK[L (p+ q;A;Q) � DK (p;A;Q)DL (q;A;Q) � 1
i.e., D� (q;Q;A) is super-multiplicative as an index set functional.
If ; 6= K � L; then we have

(3.8) DL (q;A;Q) � DK (p;A;Q) � 1;
i.e., D� (q;Q;A) is monotonic non-decreasing as an index set functional.
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We have the inequality

(3.9) Dk (q;A;Q) � Dk�1 (p;A;Q) � 1
for any k 2 f1; :::; ng with n � k � 2:
We also have that

(3.10) Dn (q;Q;A) � max
j;k2f1;:::;ng

h
tr
�
Q
qjAj+qkAk

qj+qk

�iqj+qk
[�Q (Aj)]

qj [�Q (Ak)]
qk � 1:

4. Other Properties

We de�ne C1
�
B+1 (H)

�
the class of non-negative operators Q from B1 (H) with

tr (Q) = 1: We observe that, if Q1; Q2 2 C1
�
B+1 (H)

�
then for all t 2 [0; 1] ;

(1� t)Q1 + tQ2 2 C1
�
B+1 (H)

�
showing that C1

�
B+1 (H)

�
is a convex subset of

B1 (H) : Also, if Qn 2 C1
�
B+1 (H)

�
and Qn ! Q in the operator norm topology,

then also Q 2 C1
�
B+1 (H)

�
:

Proposition 4. The mapping �� (A) is convex on C1
�
B+1 (H)

�
for all positive

invertible operator A:

Proof. Let Q1; Q2 2 C1
�
B+1 (H)

�
then for all t 2 [0; 1] ;

�(1�t)Q1+tQ2
(A) = exp tr (((1� t)Q1 + tQ2) lnA)

= exp [(1� t) tr (Q1 lnA) + t tr (Q2 lnA)]
= (exp tr (Q1 lnA))

(1�t)
(exp tr (Q2 lnA))

t

� (1� t) exp tr (Q1 lnA) + t exp tr (Q2 lnA)
= (1� t)�Q1

(A) + t�Q2
(A) ;

which proves the convexity of �� (A) : �

Using Jensen�s inequality we have

(4.1) �Pn
k=1 pkQk

(A) �
nX
k=1

pk�Qk
(A)

for all Qk 2 C1
�
B+1 (H)

�
; pk � 0; k 2 f1; :::; ng with

Pn
k=1 pk = 1:

By Hermite-Hadamard integral inequalities we also have

(4.2) �P+Q
2
(A) �

Z 1

0

�(1�t)P+tQ (A) dt �
1

2
[�P (A) + �Q (A)]

for all P; Q 2 C1
�
B+1 (H)

�
:

SinceZ 1

0

�(1�t)P+tQ (A) dt =

Z 1

0

exp [(1� t) tr (P lnA) + t tr (Q lnA)] dt

=

8<:
�Q(A)��P (A)
tr((Q�P ) lnA) if tr ((Q� P ) lnA) 6= 0

exp tr (P lnA) if tr ((Q� P ) lnA) 6= 0;
hence

(4.3) �P+Q
2
(A) � �Q (A)��P (A)

tr ((Q� P ) lnA) �
1

2
[�P (A) + �Q (A)]



14 S. S. DRAGOMIR

provided tr ((Q� P ) lnA) 6= 0:

Theorem 10. For all P; Q 2 C1
�
B+1 (H)

�
and positive invertible operator A such

that tr ((Q� P ) lnA) 6= 0 we have

0 � �Q (A)��P (A)
tr ((Q� P ) lnA) ��P+Q

2
(A)(4.4)

� 1

8
tr ((Q� P ) lnA) [�Q (A)��P (A)]

and

0 � 1

2
[�P (A) + �Q (A)]�

�Q (A)��P (A)
tr ((Q� P ) lnA)(4.5)

� 1

8
tr ((Q� P ) lnA) [�Q (A)��P (A)] :

Proof. For P; Q 2 C1
�
B+1 (H)

�
; we consider the function 'P;Q : [0; 1]! (0;1) ;

'P;Q (t) := �(1�t)P+tQ (A) ; t 2 [0; 1] :
Observe that

'P;Q (t) = exp [(1� t) tr (P lnA) + t tr (Q lnA)] ;
for all t 2 [0; 1] : Obviously, the function 'P;Q is also a convex function on [0; 1] :In
The function 'P;Q is di¤erentiable on (0; 1) and

'0P;Q (t) = tr ((Q� P ) lnA) exp [(1� t) tr (P lnA) + t tr (Q lnA)] :
The lateral derivatives '0+P;Q (0) and '

0
�P;Q (1) also exist,

'0+P;Q (0) = tr ((Q� P ) lnA)�P (A)
and

'0�P;Q (1) = tr ((Q� P ) lnA)�Q (A) :
In [1] we obtained the following reverse of �rst Hermite-Hadamard inequality for

the convex function f : [a; b]! R,

0 � 1

b� a

Z b

a

f (s) ds� f
�
a+ b

2

�
� 1

8
(b� a)

�
f 0� (b)� f 0+ (a)

�
;

with 1
8 the best possible constant.

Therefore

0 �
Z 1

0

'P;Q (t) dt� 'P;Q
�
1

2

�
� 1

8

�
'0�P;Q (1)� '0+P;Q (0)

�
;

namely

0 �
Z 1

0

�(1�t)P+tQ (A) dt��P+Q
2
(A)

� 1

8
tr ((Q� P ) lnA) [�Q (A)��P (A)] ;

which gives (4.4).
In [2] we also obtained the revese of the second Hermite-Hadamard inequality

for the convex function f : [a; b]! R,

0 � f (a) + f (b)

2
� 1

b� a

Z b

a

f (s) ds � 1

8
(b� a)

�
f 0� (b)� f 0+ (a)

�
;
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with 1
8 the best possible constant. Applying this inequality, we derive the inequality

(4.5). �
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