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Abstract

Here we research the univariate quantitative approximation, ordinary

and fractional, of Banach space valued continuous functions on a compact

interval or all the real line by quasi-interpolation Banach space valued

neural network operators. These approximations are derived by estab-

lishing Jackson type inequalities involving the modulus of continuity of

the engaged function or its Banach space valued high order derivative

or fractional derivatives. Our operators are defined by using a density

function generated by a generalized symmetrical sigmoid function. The

approximations are pointwise and of the uniform norm. The related Ba-

nach space valued feed-forward neural networks are with one hidden layer.
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1 Introduction

The author in [1] and [2], see Chapters 2-5, was the first to establish neural net-

work approximation to continuous functions with rates by very specifically de-

fined neural network operators of Cardaliagnet-Euvrard and ”Squashing” types,

by employing the modulus of continuity of the engaged function or its high order

derivative, and producing very tight Jackson type inequalities. He treats there
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both the univariate and multivariate cases. The defining these operators ”bell-

shaped ”and ”squashing ”functions are assumed to be of compact suport. Also

in [2] he gives the Nth order asymptotic expansion for the error of weak approx-

imation of these two operators to a special natural class of smooth functions,

see Chapters 4-5 there.

The author inspired by [15], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators

of sigmoidal and hyperbolic tangent type which resulted into [3], [4], [5], [6],

[7], by treating both the univariate and multivariate cases. He did also the

corresponding fractional cases [8], [9], [13].

The author here performs generalized symmetrical sigmoid function based

neural network approximations to continuous functions over compact intervals

of the real line or over the whole R with valued to an arbitrary Banach space

(X, ‖·‖). Finally he treats completely the related X-valued fractional approx-

imation. All convergences here are with rates expressed via the modulus of

continuity of the involved function or its X-valued high order derivative, or X-

valued fractional derivatives and given by very tight Jackson type inequalities.

Our compact intervals are not necessarily symmetric to the origin. Some of

our upper bounds to error quantity are very flexible and general. In preparation

to prove our results we establish important properties of the basic density func-

tion defining our operators which is induced by generalized symmetrical sigmoid

function.

Feed-forward X-valued neural networks (FNNs) with one hidden layer, the

only type of networks we deal with in this article, are mathematically expressed

as

Nn (x) =

n∑
=0

cjσ (〈aj · x〉+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection

weights, cj ∈ X are the coefficients, 〈aj · x〉 is the inner product of aj and

x, and σ is the activation function of the network. About neural networks in

general read [17], [18], [20]. See also [9] for a complete study of real valued

approximation by neural network operators.

2 Auxiliary Results

Here we consider the generalized symmetrical sigmoid function ([16])

f1 (x) =
x

(1 + |x|µ)
1
µ

, µ > 0, x ∈ R. (1)

This has applications in immunology and protection from disease together with

probability theory. It is also called a symmetrical protection curve.
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The parameter µ is a shape parameter controling how fast the curve ap-

proaches the asymptotes for a given slope at the inflection point. When µ = 1

f1 is the absolute sigmoid function, and when µ = 2 f1 is the square root

sigmoid function. When µ = 1.5 the function approximates the arctangent

function, when µ = 2.9 it approximates the logistic function, and when µ = 3.4

it approximates the error function. Parameter µ is estimated in the likelihood

maximization ([16]). For more see [16].

Next we study the particular generator sigmoid function

f2 (x) =
x(

1 + |x|λ
) 1
λ

, λ is an odd number, x ∈ R. (2)

We have that f2 (0) = 0, and

f2 (−x) = − x(
1 + |x|λ

) 1
λ

= −f2 (x) ,

i.e.

f2 (−x) = −f2 (x) , (3)

so f2 is symmetric with respect to zero.

Let x ≥ 0, then f2 (x) = x

(1+|x|λ)
1
λ

, and

f2
′ (x) =

(
1 + xλ

) 1
λ − x 1

λ

(
1 + xλ

) 1
λ−1 λxλ−1

(1 + xλ)
2
λ

=

(
1 + xλ

) 1
λ

[
1−

(
1 + xλ

)−1
xλ
]

(1 + xλ)
2
λ

=

(
1 + xλ

) 1
λ

[
1− xλ

1+xλ

]
(1 + xλ)

2
λ

=

(
1 + xλ

) 1
λ
[
1 + xλ − xλ

]
(1 + xλ) (1 + xλ)

2
λ

=

(
1 + xλ

) 1
λ

(1 + xλ) (1 + xλ)
2
λ

=
1

(1 + xλ)
λ+1
λ

. (4)

That is when x ≥ 0, we get that

f ′2 (x) =
1

(1 + xλ)
λ+1
λ

> 0, (5)

and f2 is strictly increasing on [0,+∞). Let x1 < x2 ≤ 0, then −x1 > −x2 and

f2 (−x1) > f2 (−x2), hence −f2 (x1) > −f2 (x2) and f2 (x1) < f2 (x2). There-

fore f2 is strictly increasing on (−∞, 0]. Consequently f2 is strictly increasing

on R.

Let x > 0, then f2 (x) = x

(1+xλ)
1
λ

= 1

(1+xλ)
1
λ

x
λ
λ

= 1

( 1

xλ
+1)

1
λ
→

x→+∞
1. I.e.

f2 (+∞) = 1. (6)
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Let x < 0, then f2 (x) = x

(1+(−1)λxλ)
1
λ

= x

(1−xλ)
1
λ

= 1

( 1

xλ
−1)

1
λ
→

x→−∞
1

(−1)
1
λ

=

−1. I.e.

f2 (−∞) = 1. (7)

Let us consider the activation function:

χ (x) =
1

4
[f2 (x+ 1)− f2 (x− 1)] = (8)

1

4

 (x+ 1)(
1 + |x+ 1|λ

) 1
λ

− (x− 1)(
1 + |x− 1|λ

) 1
λ

 .
We have that

χ (−x) =
1

4

 −x+ 1(
1 + |−x+ 1|λ

) 1
λ

− (−x− 1)(
1 + |−x− 1|λ

) 1
λ

 =

1

4

 − (x− 1)(
1 + |x− 1|λ

) 1
λ

+
(x+ 1)(

1 + |x+ 1|λ
) 1
λ

 =

1

4

 (x+ 1)(
1 + |x+ 1|λ

) 1
λ

− (x− 1)(
1 + |x− 1|λ

) 1
λ

 = χ (x) .

I.e.

χ (x) = χ (−x) , ∀ x ∈ R. (9)

We see that

χ (0) =
1

4
[f2 (1)− f2 (−1)] =

1

4
[f2 (1)− (−f2 (1))] =

1

4
[f2 (1) + f2 (1)] =

1

2
f2 (1) =

1

2

1

2
1
k

=
1

2 k
√

2
.

That is

χ (0) =
1

2 k
√

2
. (10)

Since x+ 1 > x− 1, we get χ (x) > 0, ∀ x ∈ R.

Let x ≥ 1, then x− 1 ≥ 0, hence x+ 1 > x− 1(≥ 0). Thus

χ′ (x) =
1

4
[f ′2 (x+ 1)− f ′2 (x− 1)] =

4



1

4

 1(
1 + (x+ 1)

λ
)λ+1

λ

− 1(
1 + (x− 1)

λ
)λ+1

λ

 = (11)

1

4


(

1 + (x− 1)
λ
)λ+1

λ −
(

1 + (x+ 1)
λ
)λ+1

λ

(
1 + (x+ 1)

λ
)λ+1

λ
(

1 + (x− 1)
λ
)λ+1

λ

 =: (ξ) .

(from 0 ≤ x−1 < x+1, then (x− 1)
λ
< (x+ 1)

λ
and 1+(x− 1)

λ
< 1+(x+ 1)

λ
,

and
(

1 + (x− 1)
λ
)λ+1

λ

<
(

1 + (x+ 1)
λ
)λ+1

λ

).

Hence χ′ (x) = (ξ) < 0.

Therefore χ is strictly decreasing over [1,+∞).

Let now 0 ≤ x ≤ 1, then 1 − x ≥ 0, and f2 (x− 1) = f2 (− (1− x)) =

−f2 (1− x), and (f2 (x− 1))
′

= − (f2 (1− x))
′

= −f ′2 (1− x) (1− x)
′

=

−f ′2 (1− x) (−1) = f ′2 (1− x) .

That is

(f2 (x− 1))
′

= f ′2 (1− x) . (12)

Again we have

χ′ (x) =
1

4
[f ′2 (x+ 1)− f ′2 (x− 1)] =

1

4
[f ′2 (x+ 1)− f ′2 (1− x)] =

1

4

 1(
1 + (x+ 1)

λ
)λ+1

λ

− 1(
1 + (1− x)

λ
)λ+1

λ

 =

1

4


(

1 + (1− x)
λ
)λ+1

λ −
(

1 + (1 + x)
λ
)λ+1

λ

(
1 + (x+ 1)

λ
)λ+1

λ
(

1 + (1− x)
λ
)λ+1

λ

 < 0, (13)

(by −x < x and 0 ≤ 1−x < 1+x, (1− x)
λ
< (1 + x)

λ
and

(
1 + (1− x)

λ
)λ+1

λ

<(
1 + (1 + x)

λ
)λ+1

λ

)

when 0 < x ≤ 1, therefore χ′ (x) < 0, when 0 < x ≤ 1.

That is χ is strictly decreasing on (0, 1].

By continuity of χ it is strictly decreasing on [0,∞).

Since χ is symmetric with respect to y-axis, χ is striclty increasing on

(−∞, 0].

Next we would like to find χ′ (0):

Let now −1 ≤ x ≤ 0(< 1), then x + 1 ≥ 0, and 1 − x > 0, and again

(f2 (x− 1))
′

= f ′2 (1− x).
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Again it holds

χ′ (x) =
1

4

[
f ′2 (x+ 1)− (f2 (x− 1))

′]
=

1

4
[f ′2 (x+ 1)− f ′2 (1− x)] =

1

4


(

1 + (1− x)
λ
)λ+1

λ −
(

1 + (1 + x)
λ
)λ+1

λ

(
1 + (x+ 1)

λ
)λ+1

λ
(

1 + (1− x)
λ
)λ+1

λ

 , (14)

true for −1 ≤ x ≤ 0.

In fact χ′ (x) is given by the same formula (see (13), (14)) over [−1, 1], which

is a continuous function.

We have that

χ′ (0+) = lim
x→0+
(x>0)

χ′ (x) = 0. (15)

Clearly it holds

χ′ (0−) = lim
x→0−
(x<0)

χ′ (x) = 0. (16)

Therefore it is

χ′ (0) = 0,

by continuity of χ′ over [−1, 1].

Clearly it is

lim
x→+∞

χ (x) = 0, lim
x→−∞

χ (x) = 0, (17)

therefore the x-axis is the horizontal asymptote of χ (x) .

The value

χ (0) =
1

2 k
√

2

is the maximum of χ, which is a bell shaped function.

We give

Theorem 1 We have that

∞∑
i=−∞

χ (x− i) = 1, ∀ x ∈ R. (18)

Proof. We observe that

∞∑
i=−∞

(f2 (x− i)− f2 (x− 1− i)) =

∞∑
i=0

(f2 (x− i)− f2 (x− 1− i)) +

−1∑
i=−∞

(f2 (x− i)− f2 (x− 1− i)) .
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Furthermore (λ ∈ Z+) we have

∞∑
i=0

(f2 (x− i)− f2 (x− 1− i)) = lim
λ→∞

λ∑
i=0

(f2 (x− i)− f2 (x− 1− i)) (19)

(telescoping sum)

= lim
λ→∞

(
f2 (x)− f2

(
x−

(
λ+ 1

)))
= 1 + f2 (x) .

Similarly

−1∑
i=−∞

(f2 (x− i)− f2 (x− 1− i)) = lim
λ→∞

−1∑
i=−λ

(f2 (x− i)− f2 (x− 1− i))

= lim
λ→∞

(
f2
(
x+ λ

)
− f2 (x)

)
= 1− f2 (x) . (20)

So, by adding the last two limits we obtain

∞∑
i=−∞

(f2 (x− i)− f2 (x− 1− i)) = 2, ∀ x ∈ R. (21)

Therefore
∞∑

i=−∞
(f2 (x+ 1− i)− f2 (x− i)) = 2, ∀ x ∈ R. (22)

Consequently, by adding (21), (22) we get

∞∑
i=−∞

(f2 (x+ 1− i)− f2 (x− 1− i)) = 4, ∀ x ∈ R, (23)

proving the claim.

Furthemore we give:

Because χ is even it holds

∞∑
i=−∞

χ (i− x) = 1, ∀ x ∈ R, (24)

and
∞∑

i=−∞
χ (i+ x) = 1, ∀ x ∈ R. (25)

That is
∞∑

i=−∞
χ (x+ i) = 1, ∀ x ∈ R. (26)

We give
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Theorem 2 It holds ∫ ∞
−∞

χ (x) dx = 1.

Proof. We observe that∫ ∞
−∞

χ (x) dx =

∞∑
j=−∞

∫ j+1

j

χ (x) dx =

∞∑
j=−∞

∫ 1

0

χ (x+ j) dx = (27)

∫ 1

0

 ∞∑
j=−∞

χ (x+ j) dx

 =

∫ 1

0

1dx = 1.

So that χ (x) is a density function on R.
We need

Theorem 3 Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
 j = −∞

: |nx− j| ≥ n1−α

χ (nx− j) < 1

2λ (n1−α − 2)
λ
, (28)

where λ ∈ N is an odd number.

Proof. We have that

χ (x) =
1

4
[f2 (x+ 1)− f2 (x− 1)] , ∀ x ∈ R.

Let x ≥ 1. That is 0 ≤ x− 1 < x+ 1. Applying the mean value theorem we get

χ (x) =
1

4
· 2 · f ′2 (ξ) =

1

2 (1 + ξλ)
λ+1
λ

> 0, (29)

where 0 ≤ x− 1 < ξ < x+ 1.

Then,

(x− 1)
λ
< ξλ < (x+ 1)

λ
,

and

1 + (x− 1)
λ
< 1 + ξλ < 1 + (x+ 1)

λ
, (30)

and

2
(

1 + (x− 1)
λ
)λ+1

λ

< 2
(
1 + ξλ

)λ+1
λ < 2

(
1 + (x+ 1)

λ
)λ+1

λ

.

Hence it holds

1

2 (1 + ξλ)
λ+1
λ

<
1

2
(

1 + (x− 1)
λ
)λ+1

λ

, ∀ x ≥ 1.
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We have found that

χ (x) <
1

2
(

1 + (x− 1)
λ
)λ+1

λ

, ∀ x ≥ 1. (31)

Thus, we have

∞∑
 j = −∞

: |nx− j| ≥ n1−α

χ (nx− j) =
∞∑

 j = −∞
: |nx− j| ≥ n1−α

χ (|nx− j|) <

∞∑
 j = −∞

: |nx− j| ≥ n1−α

1

2
(

1 + (|nx− j| − 1)
λ
)λ+1

λ

≤

1

2

∫ ∞
(n1−α−1)

1(
1 + (x− 1)

λ
)λ+1

λ

dx =
1

2

∫ ∞
(n1−α−2)

1

(1 + zλ)
λ+1
λ

dz =: (∗) . (32)

We see that

1 + zλ > zλ,(
1 + zλ

)λ+1
λ > zλ+1, (33)

1

zλ+1
>

1

(1 + zλ)
λ+1
λ

.

Therefore it holds

(∗) < 1

2

∫ ∞
(n1−α−2)

1

zλ+1
dz =

1

2

∫ ∞
(n1−α−2)

z−(λ+1)dz =

1

2

(
z−(λ+1)+1

− (λ+ 1) + 1

)∣∣∣∣∞
n1−α−2

=
1

2

(
−z
−λ

λ

)∣∣∣∣∞
n1−α−2

=

1

2λ

(
z−λ

)∣∣∣∣n1−α−2

∞
=

1

2λ (n1−α − 2)
λ
, (34)

proving (28).

Denote by b·c the integral part of the number and by d·e the ceiling of the

number.

Theorem 4 Let [a, b] ⊂ R and n ∈ N so that dnae ≤ bnbc. Then

1
bnbc∑

k=dnae
χ (|nx− k|)

< 2
λ
√

1 + 2λ, (35)

where λ is an odd number, ∀ x ∈ [a, b] .
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Proof. Let x ∈ [a, b]. We see that

1 =

∞∑
k=−∞

χ (nx− k) >

bnbc∑
k=dnae

χ (nx− k) =

bnbc∑
k=dnae

χ (|nx− k|) > χ (|nx− k0|) , (36)

∀ k0 ∈ [dnae , bnbc] ∩ Z.

We can choose k0 ∈ [dnae , bnbc] ∩ Z such that |nx− k0| < 1.

Therefore we get

χ (|nx− k0|) > χ (1) =
1

4
(f2 (2)− f2 (0)) =

1

4
f2 (2) = (37)

1

4

2

(1 + 2λ)
1
λ

=
1

2 (1 + 2λ)
1
λ

,

and
bnbc∑

k=dnae

χ (|nx− k|) > 1

2 (1 + 2λ)
1
λ

. (38)

That is
1

bnbc∑
k=dnae

χ (|nx− k|)
< 2

(
1 + 2λ

) 1
λ , (39)

proving the claim.

We make

Remark 5 We also notice that

1−
bnbc∑

k=dnae

χ (nb− k) =

dnae−1∑
k=−∞

χ (nb− k) +

∞∑
k=bnbc+1

χ (nb− k)

> χ (nb− bnbc − 1) (40)

(call ε := nb− bnbc, 0 ≤ ε < 1)

= χ (ε− 1) = χ (1− ε) ≥ χ (1) > 0.

Therefore

lim
n→→∞

1−
bnbc∑

k=dnae

χ (nb− k)

 > 0. (41)
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Similarly, it holds

1−
bnbc∑

k=dnae

χ (na− k) =

dnae−1∑
k=−∞

χ (na− k) +
∞∑

k=bnbc+1

χ (na− k)

> χ (na− dnae+ 1) (42)

(call η := dnae − na, 0 ≤ η < 1)

= χ (1− η) ≥ χ (1) > 0.

Therefore again

lim
n→∞

1−
bnbc∑

k=dnae

χ (na− k)

 > 0. (43)

Here we find that

lim
n→∞

bnbc∑
k=dnae

χ (nx− k) 6= 1, for at least some x ∈ [a, b] . (44)

Note 6 Let [a, b] ⊂ R. For large enough n we always obtain dnae ≤ bnbc. Also

a ≤ k
n ≤ b, iff dnae ≤ k ≤ bnbc.

In general it holds (by
∞∑

i=−∞
χ (x− i) = 1, ∀ x ∈ R) that

bnbc∑
k=dnae

χ (nx− k) ≤ 1. (45)

Let (X, ‖·‖) be a Banach space.

Definition 7 Let f ∈ C ([a, b] , X) and n ∈ N : dnae ≤ bnbc. We introduce and

define the X-valued linear neural network operators

Hn (f, x) :=

bnbc∑
k=dnae

f
(
k
n

)
χ (nx− k)

bnbc∑
k=dnae

χ (nx− k)

, x ∈ [a, b] . (46)

Clearly here Hn (f, x) ∈ C ([a, b] , X).

For convenience we use the same Hn for real valued functions when needed.

We study here the pointwise and uniform convergence of Hn (f, x) to f (x) with

rates.
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For convenience, also we call

H∗n (f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
χ (nx− k) , (47)

(similarly, H∗n can be defined for real valued functions) that is

Hn (f, x) :=
H∗n (f, x)

bnbc∑
k=dnae

χ (nx− k)

. (48)

So that

Hn (f, x)− f (x) =
H∗n (f, x)

bnbc∑
k=dnae

χ (nx− k)

− f (x) =

H∗n (f, x)− f (x)

(
bnbc∑

k=dnae
χ (nx− k)

)
bnbc∑

k=dnae
χ (nx− k)

. (49)

Consequently, we derive that

‖Hn (f, x)− f (x)‖ ≤ 2
(
λ
√

1 + 2λ
)∥∥∥∥∥∥H∗n (f, x)− f (x)

 bnbc∑
k=dnae

χ (nx− k)

∥∥∥∥∥∥ =

2
(
λ
√

1 + 2λ
)∥∥∥∥∥∥

bnbc∑
k=dnae

(
f

(
k

n

)
− f (x)

)
χ (nx− k)

∥∥∥∥∥∥ . (50)

We will estimate the right and hand side of (50).

For that we need, for f ∈ C ([a, b] , X) the first modulus of continuity

ω1 (f, δ) := sup

x, y ∈ [a, b]

|x− y| ≤ δ

‖f (x)− f (y)‖ , δ > 0. (51)

Similarly, it is defined ω1 for f ∈ CuB (R, X) (uniformly continuous and bounded

functions from R into X), for f ∈ CB (R, X) (continuous and bounded X-

valued), and for f ∈ Cu (R, X) (uniformly continuous).

The fact f ∈ C ([a, b] , X) or f ∈ Cu (R, X), is equivalent to lim
δ→0

ω1 (f, δ) = 0,

see [11].

We make
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Definition 8 When f ∈ CuB (R, X), or f ∈ CB (R, X), we define

Hn (f, x) :=

∞∑
k=−∞

f

(
k

n

)
χ (nx− k) , (52)

n ∈ N, x ∈ R,

the X-valued quasi-interpolation neural network operator.

We make

Remark 9 We have that∥∥∥∥f (kn
)∥∥∥∥ ≤ ‖f‖∞,R < +∞, (53)

and ∥∥∥∥f (kn
)∥∥∥∥χ (nx− k) ≤ ‖f‖∞,R χ (nx− k) (54)

and
λ∑

k=−λ

∥∥∥∥f (kn
)∥∥∥∥χ (nx− k) ≤ ‖f‖∞,R

 λ∑
k=−λ

χ (nx− k)

 , (55)

and finally
∞∑

k=−∞

∥∥∥∥f (kn
)∥∥∥∥χ (nx− k) ≤ ‖f‖∞,R , (56)

a convergent in R series.

So, the series
∞∑

k=−∞

∥∥f ( kn)∥∥χ (nx− k) is absolutely convergent in X, hence

it is convergent in X and Hn (f, x) ∈ X. We denote by ‖f‖∞ := sup
x∈[a,b]

‖f (x)‖,

for f ∈ C ([a, b] , X), similarly it is defined for f ∈ CB (R, X) .

3 Main Results

We present a set of X-valued neural network approximations to a function given

with rates.

Theorem 10 Let f ∈ C ([a, b] , X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ [a, b],

λ ∈ N is odd. Then

i)

‖Hn (f, x)− f (x)‖ ≤ 2
λ
√

1 + 2λ

[
ω1

(
f,

1

nα

)
+

‖f‖∞
λ (n1−α − 2)

λ

]
=: ρ1, (57)

and

13



ii)

‖Hn (f)− f‖∞ ≤ ρ1. (58)

We get that lim
n→∞

Hn (f) = f , pointwise and uniformly.

Proof. We see that∥∥∥∥∥∥
bnbc∑

k=dnae

(
f

(
k

n

)
− f (x)

)
χ (nx− k)

∥∥∥∥∥∥ ≤
bnbc∑

k=dnae

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥χ (nx− k) =

bnbc∑
k = dnae

:
∣∣ k
n − x

∣∣ ≤ 1
nα

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥χ (nx− k) +

bnbc∑
k = dnae

:
∣∣ k
n − x

∣∣ > 1
nα

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥χ (nx− k) ≤ (59)

bnbc∑
k = dnae

:
∣∣ k
n − x

∣∣ ≤ 1
nα

ω1

(
f,

∣∣∣∣kn − x
∣∣∣∣)χ (nx− k) +

2 ‖f‖∞
∞∑

k = −∞
: |k − nx| > n1−α

χ (nx− k) ≤

ω1

(
f,

1

nα

) ∞∑
k = −∞

:
∣∣ k
n − x

∣∣ ≤ 1
nα

χ (nx− k) +

2 ‖f‖∞
∞∑

k = −∞
: |k − nx| > n1−α

χ (nx− k) ≤
(by Theorem 3)

ω1

(
f,

1

nα

)
+

‖f‖∞
λ (n1−α − 2)

λ
.

14



That is ∥∥∥∥∥∥
bnbc∑

k=dnae

(
f

(
k

n

)
− f (x)

)
χ (nx− k)

∥∥∥∥∥∥ ≤
ω1

(
f,

1

nα

)
+

‖f‖∞
λ (n1−α − 2)

λ
. (60)

Using (50) we derive (57).

It follows

Theorem 11 Let f ∈ CB (R, X), 0 < α < 1, n ∈ N : n1−α > 2, x ∈ R, λ ∈ N
is odd. Then

i) ∥∥Hn (f, x)− f (x)
∥∥ ≤ ω1

(
f,

1

nα

)
+

‖f‖∞
λ (n1−α − 2)

λ
=: ρ2, (61)

and

ii) ∥∥Hn (f)− f
∥∥
∞ ≤ ρ2. (62)

For f ∈ CuB (R, X) we get lim
n→∞

Hn (f) = f , pointwise and uniformly.

Proof. We observe that∥∥Hn (f, x)− f (x)
∥∥ =

∥∥∥∥∥
∞∑

k=−∞

f

(
k

n

)
χ (nx− k)− f (x)

∞∑
k=−∞

χ (nx− k)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

k=−∞

(
f

(
k

n

)
− f (x)

)
χ (nx− k)

∥∥∥∥∥ ≤
∞∑

k=−∞

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥χ (nx− k) = (63)

∞∑
k = −∞

:
∣∣ k
n − x

∣∣ ≤ 1
nα

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥χ (nx− k) +

∞∑
k = −∞

:
∣∣ k
n − x

∣∣ > 1
nα

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥χ (nx− k) ≤

∞∑
k = −∞

:
∣∣ k
n − x

∣∣ ≤ 1
nα

ω1

(
f,

∣∣∣∣kn − x
∣∣∣∣)χ (nx− k) +

15



2 ‖f‖∞
∞∑

k = −∞
:
∣∣ k
n − x

∣∣ > 1
nα

χ (nx− k) ≤

ω1

(
f,

1

nα

) ∞∑
k = −∞

:
∣∣ k
n − x

∣∣ ≤ 1
nα

χ (nx− k) +
2 ‖f‖∞

2λ (n1−α − 2)
λ
≤ (64)

ω1

(
f,

1

nα

)
+

‖f‖∞
λ (n1−α − 2)

λ
,

proving the claim.

In the next we study the high order neural network X-valued approximation

by using the smoothness of f . Derivarives are defined similar to numerical ones,

see [21].

Theorem 12 Let f ∈ CN ([a, b] , X), n,N ∈ N, λ is odd, 0 < α < 1, x ∈ [a, b]

and n1−α > 2. Then

i)

‖Hn (f, x)− f (x)‖ ≤ λ
√

1 + 2λ


N∑
j=1

∥∥f (j) (x)
∥∥

j!

[
2

nαj
+

(b− a)
j

λ (n1−α − 2)
λ

]
+

(65)[
ω1

(
f (N),

1

nα

)
2

nαNN !
+

2
∥∥f (N)

∥∥
∞ (b− a)

N

N !λ (n1−α − 2)
λ

]}
,

ii) assume further f (j) (x0) = 0, j = 1, ..., N, for some x0 ∈ [a, b], it holds

‖Hn (f, x0)− f (x0)‖ ≤ λ
√

1 + 2λ·[
ω1

(
f (N),

1

nα

)
2

nαNN !
+

2
∥∥f (N)

∥∥
∞ (b− a)

N

N !λ (n1−α − 2)
λ

]
, (66)

and

iii)

‖Hn (f)− f‖∞ ≤
λ
√

1 + 2λ


N∑
j=1

∥∥f (j)∥∥∞
j!

[
2

nαj
+

(b− a)
j

λ (n1−α − 2)
λ

]
+

[
ω1

(
f (N),

1

nα

)
2

nαNN !
+

2
∥∥f (N)

∥∥
∞ (b− a)

N

N !λ (n1−α − 2)
λ

]}
. (67)

We derive that lim
n→∞

Hn (f) = f , pointwise and uniformly.
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Proof. The proof is lengthy and very similar to the proof of the correspond-

ing result in [14]. As such is omitted.

The integrals from now on are of Bochner type [19].

We need

Definition 13 ([12]) Let [a, b] ⊂ R, X be a Banach space, α > 0; m = dαe ∈ N,

(d·e is the ceiling of the number), f : [a, b] → X. We assume that f (m) ∈
L1 ([a, b] , X). We call the Caputo-Bochner left fractional derivative of order α:

(Dα
∗af) (x) :=

1

Γ (m− α)

∫ x

a

(x− t)m−α−1 f (m) (t) dt, ∀ x ∈ [a, b] . (68)

If α ∈ N, we set Dα
∗af := f (m) the ordinary X-valued derivative (defined similar

to numerical one, see [21], p. 83), and also set D0
∗af := f.

By [12], (Dα
∗af) (x) exists almost everywhere in x ∈ [a, b] and Dα

∗af ∈
L1 ([a, b] , X).

If
∥∥f (m)

∥∥
L∞([a,b],X)

<∞, then by [12], Dα
∗af ∈ C ([a, b] , X) , hence ‖Dα

∗af‖ ∈
C ([a, b]) .

We mention

Lemma 14 ([11]) Let α > 0, α /∈ N, m = dαe, f ∈ Cm−1 ([a, b] , X) and

f (m) ∈ L∞ ([a, b] , X). Then Dα
∗af (a) = 0.

We mention

Definition 15 ([10]) Let [a, b] ⊂ R, X be a Banach space, α > 0, m := dαe.
We assume that f (m) ∈ L1 ([a, b] , X), where f : [a, b]→ X. We call the Caputo-

Bochner right fractional derivative of order α:

(
Dα
b−f

)
(x) :=

(−1)
m

Γ (m− α)

∫ b

x

(z − x)
m−α−1

f (m) (z) dz, ∀ x ∈ [a, b] . (69)

We observe that
(
Dm
b−f

)
(x) = (−1)

m
f (m) (x) , for m ∈ N, and

(
D0
b−f

)
(x) =

f (x) .

By [10],
(
Dα
b−f

)
(x) exists almost everywhere on [a, b] and

(
Dα
b−f

)
∈ L1 ([a, b] , X).

If
∥∥f (m)

∥∥
L∞([a,b],X)

< ∞, and α /∈ N, by [10], Dα
b−f ∈ C ([a, b] , X) , hence∥∥Dα

b−f
∥∥ ∈ C ([a, b]) .

We need

Lemma 16 ([11]) Let f ∈ Cm−1 ([a, b] , X), f (m) ∈ L∞ ([a, b] , X), m = dαe,
α > 0, α /∈ N. Then Dα

b−f (b) = 0.
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Convention 17 We assume that

Dα
∗x0

f (x) = 0, for x < x0, (70)

and

Dα
x0−f (x) = 0, for x > x0, (71)

for all x, x0 ∈ [a, b] .

Next we present the corresponding X-valued fractional approximation by

neural networks.

Theorem 18 Let α > 0, N = dαe, α /∈ N, f ∈ CN ([a, b] , X), 0 < β < 1, λ is

odd, x ∈ [a, b], n ∈ N : n1−β > 2. Then

i) ∥∥∥∥∥∥Hn (f, x)−
N−1∑
j=1

f (j) (x)

j!
Hn

(
(· − x)

j
)

(x)− f (x)

∥∥∥∥∥∥ ≤
2 λ
√

1 + 2λ

Γ (α+ 1)


(
ω1

(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

1

2λ (n1−β − 2)
λ

(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

, (72)

ii) if f (j) (x) = 0, for j = 1, ..., N − 1, we have

‖Hn (f, x)− f (x)‖ ≤ 2 λ
√

1 + 2λ

Γ (α+ 1)
(
ω1

(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

1

2λ (n1−β − 2)
λ

(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

, (73)

iii)

‖Hn (f, x)− f (x)‖ ≤ 2
λ
√

1 + 2λ·
N−1∑
j=1

∥∥f (j) (x)
∥∥

j!

{
1

nβj
+

(b− a)
j

2λ (n1−β − 2)
λ

}
+

1

Γ (α+ 1)


(
ω1

(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+
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1

2λ (n1−β − 2)
λ

(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}}

, (74)

∀ x ∈ [a, b] ,

and

iv)

‖Hnf − f‖∞ ≤ 2
λ
√

1 + 2λ·
N−1∑
j=1

∥∥f (j)∥∥∞
j!

{
1

nβj
+

(b− a)
j

2λ (n1−β − 2)
λ

}
+

1

Γ (α+ 1)



(
sup
x∈[a,b]

ω1

(
Dα
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(b− a)
α

2λ (n1−β − 2)
λ

(
sup
x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x] + sup

x∈[a,b]
‖Dα
∗xf‖∞,[x,b]

)}}
. (75)

Above, when N = 1 the sum
∑N−1
j=1 · = 0.

As we see here we obtain X-valued fractionally type pointwise and uniform

convergence with rates of Hn → I the unit operator, as n→∞.

Proof. The proof is very lengthy and very similar to the proof of the

corresponding result in [14]. As such is omitted.

Next we apply Theorem 18 for N = 1.

Theorem 19 Let 0 < α, β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2,

λ is odd. Then

i)

‖Hn (f, x)− f (x)‖ ≤

2 λ
√

1 + 2λ

Γ (α+ 1)


(
ω1

(
Dα
x−f,

1
nβ

)
[a,x]

+ ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

1

2λ (n1−β − 2)
λ

(∥∥Dα
x−f

∥∥
∞,[a,x] (x− a)

α
+ ‖Dα

∗xf‖∞,[x,b] (b− x)
α
)}

, (76)

and

ii)

‖Hnf − f‖∞ ≤
2 λ
√

1 + 2λ

Γ (α+ 1)
·
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(
sup
x∈[a,b]

ω1

(
Dα
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
Dα
∗xf,

1
nβ

)
[x,b]

)
nαβ

+

(b− a)
α

2λ (n1−β − 2)
λ

(
sup
x∈[a,b]

∥∥Dα
x−f

∥∥
∞,[a,x] + sup

x∈[a,b]
‖Dα
∗xf‖∞,[x,b]

)}
. (77)

When α = 1
2 we derive

Corollary 20 Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2,

λ is odd. Then

i)

‖Hn (f, x)− f (x)‖ ≤

4 λ
√

1 + 2λ√
π


(
ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ ω1

(
D

1
2
∗xf,

1
nβ

)
[x,b]

)
n
β
2

+

1

2λ (n1−β − 2)
λ

(∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

√
(x− a) +

∥∥∥D 1
2
∗xf
∥∥∥
∞,[x,b]

√
(b− x)

)}
, (78)

and

ii)

‖Hnf − f‖∞ ≤
4 λ
√

1 + 2λ√
π

·

(
sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2
∗xf,

1
nβ

)
[x,b]

)
n
β
2

+

√
(b− a)

2λ (n1−β − 2)
λ

(
sup
x∈[a,b]

∥∥∥D 1
2
x−f

∥∥∥
∞,[a,x]

+ sup
x∈[a,b]

∥∥∥D 1
2
∗xf
∥∥∥
∞,[x,b]

)}
<∞. (79)

Next we make

Conclusion 21 Some convergence analysis follows:

Let 0 < β < 1, f ∈ C1 ([a, b] , X), x ∈ [a, b], n ∈ N : n1−β > 2, λ is odd. We

elaborate on (79). Assume that

ω1

(
D

1
2
x−f,

1

nβ

)
[a,x]

≤ K1

nβ
, (80)
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and

ω1

(
D

1
2
∗xf,

1

nβ

)
[x,b]

≤ K2

nβ
, (81)

∀ x ∈ [a, b], ∀ n ∈ N, where K1,K2 > 0.

Then it holds[
sup
x∈[a,b]

ω1

(
D

1
2
x−f,

1
nβ

)
[a,x]

+ sup
x∈[a,b]

ω1

(
D

1
2
∗xf,

1
nβ

)
[x,b]

]
n
β
2

≤

(K1+K2)
nβ

n
β
2

=
(K1 +K2)

n
3β
2

=
K

n
3β
2

, (82)

where K := K1 +K2 > 0.

The other summand of the right hand side of (79), for large enough n, con-

verges to zero at the speed 1
nλ(1−β)

, so it is about L
nλ(1−β)

, where L > 0 is a

constant.

Then, for large enough n ∈ N, by (79), (82) and the above comment, we

obtain that

‖Hnf − f‖∞ ≤
M

min
(
n

3β
2 , nλ(1−β)

) , (83)

where M > 0.

Clearly we have two cases:

i)

‖Hnf − f‖∞ ≤
M

nλ(1−β)
, when

2λ

3 + 2λ
≤ β < 1, (84)

with speed of convergence 1
nλ(1−β)

,

and

ii)

‖Hnf − f‖∞ ≤
M

n
3β
2

, when 0 < β ≤ 2λ

3 + 2λ
, (85)

with speed of convergence 1

n
3β
2

.

In Theorem 10, for f ∈ C ([a, b] , X) and for large enough n ∈ N, when

0 < β ≤ λ
1+λ , the speed is 1

nβ
. So when 0 < β ≤ 2λ

3+2λ (< λ
1+λ), we get by

(85) that ‖Hnf − f‖∞ converges much faster to zero. The last comes because

we assumed differentiability of f .

Notice that in Corollary 20 no initial condition is assumed.

Conclusion 22 When (X, ‖·‖) = (C, |·|), all of our main results give nice and

great applications, etc.
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