SOME IMPROVEMENTS OF THE MONOTONICITY PROPERTY
FOR THE NORMALIZED DETERMINANT OF POSITIVE
OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we show among others that, if0 <m < B—A < M
and 0 < v < AT, then

m M

v (er) =R = (0n)

for all x € H with |lz|| = 1.
If B> A >0, then for all x € H with ||z|| =1,

1
B *AH) [E-—a-1iz-al _ Az(B)
Al T Ax(4)

. <1+ = )'BA"'(BA>1”.
[CEE

1<(1+

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [2], [3], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
2]

For each unit vector x € H, see also [5], we have:
(i) continuity: the map A — A,(A) is norm continuous;
(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);
(iil) continuous mean: (Apm,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T Az(A)
for p T 0;
(iv) power equality: A, (AY) = AL (A)! for all ¢ > 0;
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) homogeneity: A, (tA) =tA,(A) and A, (tT) = ¢ for all ¢t > 0;
) monotonicity: 0 < A < B implies A, (A) < A, (B);
(vil) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
i) Ky Fan type inequality: A, ((1 —a) A+ aB) > A (A)'~*A,(B)* for 0 <
a <1

We define the logarithmic mean of two positive numbers a, b by

In ll;:ilna if b 7& a,
(1.1) L(a,b) =
aif b= a.

In [2] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

Mlnm—mlnMi
M—-—m

(1.2) 0<(Az,z) — Ay(A) < L(m,M) {lnL(m,M)+ 1

for all z € H, ||z]| = 1.
We recall that Specht’s ratio is defined by [9]

if he(0,1)U(1,00),

h
(1.3) S (h) := e ()

It is well known that lim,—, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).
In [3], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1< ﬁ“’(’j <S (%)

for0<mI<A<MIandz€H, |z| =1.
Motivated by the above results, in this paper we show among others that, if
0<m<B-—A<Mand0<vy<A<LT, then

M\ A(B) m\ "
i < < =
() =z =007

for all z € H with ||z|| =1.If B > A > 0, then for all x € H with ||z =1,

1< (1+”B_A”>I(B_A)_11“B_A < Ba(B)
| Al ~ AL(A)
IB-All||(B—4a)~|
(i A
-4

2. MAIN RESULTS

We can state the following representation result that is of interest in itself:
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Lemma 1. For all A, B > 0 we have
(21) mB—-InA

_ /OOO (A7 = 0By

:/OOO (/01()\+(1—t)A+tB)1(B—A)()\+(1—t)A+tB)1dt>d)\.

Proof. Observe that for ¢t > 0, t # 1, we have

/“ d\ _Int n 1 In u+t
o A+t)A+1) t—1 1—-t \u+l
for all u > 0.

By taking the limit over u — oo in this equality, we derive

Int / *° dA
t—1 Jo A+HH(A+1)
which gives the representation for the logarithm

0 A
(2.2) lnt:(t—l)A T 0TD

for all ¢ > 0.
If we use the continuous functional calculus for selfadjoint operators, we have

(2.3) lnT:/m%ﬂ(T—l) (A+T)""dx
0

for all operators T" > 0.
We have from (2.3) for A, B > 0 that

ey mp-ma= [T [B-D0EB T -@-D 0+ o
Since
B-1DA+B) " —(A-)A+4)"
=BA+B) ' —A\+A4)7 - ((A+B)*1 - (A+A)’1)
and
BA+B) ' =AM+ A"
—B+A-NA+B) ' —(A+r-NA+4)""
—1-AA+B) ' =1+ AQ0+ A =20+ A+ B!,
hence
(B-1)(A+B) " —(A-1)(A+4)"
“AQ+ AT -20+B) T = (BT =+ A7)
=(A+1) [(HA)—1 - (A+B)—1}
and by (2.4) we get

(2.5) lnB—lnA:/Oo [(HA)*-(HB)*} A,
0
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we proves the first equality in (2.1).

Consider the continuous function g defined on an interval I for which the cor-
responding operator function is Gateaux differentiable on the segment [C, D] :

{1—=¢t)C+tD, te€]0,1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

fC,D (t) :f((l_t)0+tD)v te [071}
Then we have, by the properties of the integral, that

FD)=1(©) = [ G en@it= [ Vi peun D=0yt

If we write this equality for the function f (t) = —t~! and C, D > 0, then we get
the representation

(26) Cl1-D'— /1((1—t)0+tD)1 (D—C)((1—4)C+tD) " dt.
0

Now, if we take in (2.6) C = A+ A, D = A+ B, then
(2.7) A+AT—A+B)!

:/01((1—t)(/\+A)+t(/\+B))_1 (B— 4)
X (1—=t)(AN+A)+t(A+ B)) " dt
/01 O+ (1) A+tB) " (B—A) (A +(1— 1) A+1tB) " dL.
By employing (2.7) and (2.5) we derive the desired result (2.1). 0

Theorem 1. For all A, B> 0 and x € H with ||z|| = 1, we have

(2.8) izg; — exp [/OOO (/01 (B2 +(0-1A+B) ",

A+ (1—t)A+tB)"" x> dt) dA} .

Proof. From (2.1) we get
(2.9) (In Bz, z) — (In Az, x)

_ /Ooo {<(A+A)*1x,x> - <(>\ + B)*lx,xﬂ X

:/OO </1<()\+(1t)A+tB)_1(BA)
0 0
X (A+(1—t)A+tB)*1x,x>dt) X

:/Oo (/1<(B—A)()\+(1—t)A+tB)1m,
0 0
(A+(1—t)A+tB)*1x> dt) X

for x € H with ||z|| = 1.
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If we take the exponential, then we get

exp (ln Bz, x)
exp (In Az, z)

exp UOOO (/01<(B—A)(/\+(1—t)A+tB)_1x,
(/\+(1—t)A+tB)_1:c> dt) dA]

for x € H with ||z|| = 1, which proves (2.8).

Corollary 1. Assume that A > my1 >0, B> mg > 0, then

AL (B
Ay (A)

Ir o—1Ir 1 7
227 m ” mao 7é m 5
@(m ,mg) =

~—

(2.10)  exp[=® (m1, ma) B — Al < < exp [® (my, m2) | B — All],

where

1, _ _
— if mg =my =m.

Proof. If we take the modulus in (2.9), then we get for x € H with ||z|| = 1 that

|(In Bz, ) — (In Ax, x)|

g/o (/0 ((B-20+0-na+m) s
(A+(1—t)A+tB)*1m>’dt)dA

<IB—A] /OOO (/01 lo+a _t)A+tB)—1xH2dt> d
< 1B = Al || /Ooo (/01 lora- t)A—I—tB)_ledt) dx

_ ||B—A||/OOO (/01H(A+(1-t>A+tB)—1H2dt) oy

Assume that mo > m1. Then
(I1—=t)A4+tB+A>(1—t)my +tma+ A,
which implies that
(L=t) A+tB+N)"" < (1 —t)ymy +tma+ A",
and
[(@-ta+i+ /\)_1H2 < (1= t)my + tmg + N) 2

for all t € [0,1] and A > 0.
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Therefore

(2.11) |{(In Bz, z) — (In Az, x)|

<|B- AH/ </ 1—t)m1+tm2+)\)2dt>d)\

_1B=A] O (/ (1= t)my +tmg + N) ™"

mo —my 0
% (ma —ma) (1 — t)my + tma + A) " dt) d,

for x € H with ||z|| = 1.
If we use the identity (2.1) for A = my, B = mgy we get the scalar identity

0o 1
lnmgflnmlz/ </ (1 —t)my +tma + A) " (ng — mq)
0 0
X (L= )my +tma + A) " dt) dx

and by (2.11) we obtain

Inms — Inmy

(2.12) |(In Bz, x) — (In Az, z)| < 1B — Al

™mo — My
for x € H with ||z|| = 1.
The case ms < my goes in a similar way.
Now, assume that A, B > m > 0. Let ¢ > 0, then B+ ¢ > m + ¢e. Put mg =
m+ e > m = my. If we write the inequality (2.12) for B + ¢ and A, we get

(I (B + &) 3,2 — (In Az, 2)] < lmFe) = Inm

1B = Al

for x € H with ||z| = 1.
If we take the limit over € — 0+ and observe that

In(m+e—lnm 1

b

lim
e—0+ € m

then we get
1
[(In Bz, z) — (In Az, z)| < — ||B — A]|
m

for x € H with ||z|| = 1.
Therefore

—® (my,mso) ||B — A|| < (InBzx,z) — (In Az, z) < & (mq1,m2) ||B — A
for x € H with ||z|| = 1, which gives the desired result (2.10). O

Theorem 2. Assume that 0 <m < B— A< M and 0 <~y < A<LT, then

(2.13) 1< (1+ J\g)ﬁ < iig; - <1+ :L)Aﬁ

for all x € H with ||z| = 1.
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Proof. Since m < B—A < M then by multiplying both sides by (A + (1 — ) A+ ¢B) ™"
0 we derive
(2.14) mA+(1—t)A+tB)">

<A+(1=t)A+tB) " (B-A) A+ (1 —t)A+tB)""

<M+ (1—t)A+tB)?

for all t € [0,1] and A > 0.
Observe that

(1-t)A+tB=A+t(B—A),
and since v < A < T, hence
At y+tm <A+ (1—-t)A+tB<A+T+tM,
namely,
A+T+tM) ' <A+ (1 - A+tB) ' < A+y+tm) ",
which gives that
(2.15) A+T+tM) 2 <A+ (1 —t) A+tB) > < A+~ +tm)~

for all t € [0,1] and A > 0.
By utilizing (2.14) and (2.15), we derive

2

(2.16) mA+T +tM) >
<A+Q—-t)A+tB) " (B=A)A+(1—t)A+tB)"
<M A4y +tm) >

for all t € [0,1] and A > 0.
If we take the integrals in (2.16), then we get

m/ooo (/01(A+F+tM)2dt> dX

g/l()\—i—(l—t)A—i—tB)1(B—A)(A+(1—t)A+tB)1

SM/Oo (/01()\+’y+tm)2dt)d)\,

namely, by (2.1)

(2.17) m/ (/ )\+F+tM)2dt>d>\§1nB1nA
o) 1

gM/ </ (A+'y+tm)2dt>d)\.
0 0

! _ 1 1 _
/ A+y+tm) 2dt=——N+y+m) "+ =N+ "

Observe that

= (Ot Oy )Y,
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which gives

AIAM<AuA+7+mﬂ4dOdA:i?AMQA+w_“%A+7+medk

By the first identity in (2.1) in the scalar case, we have

ln(’y—l—m)—ln'y—/ooo {()\—I—”y)_l—(x\-k’y—&—m)_l} X

and then
oS 1
_ 1 -1
M/ (/ (A+ 7 + tm) 2dt>d>\—Mn(7+m) il
0 0 m
M
:ln<1—|—m) .
v
Similarly,
<! _ In(T'+M)-InT
m/ (/ ()\+F+tM)2dt>d)\:mn( +M)-ln
0 0 M
M)\
=In(l+—
(0 F)
and by (2.17) we get
m M
M\ M m
(2.18) m(lkr) gmBmAg<1+m)
v

If x € H with ||z|| = 1, then by (2.18) we obtain

M\ M o
In (1 + F) <(ln Bz,z) — (In Az, z) < In (1 + m)
Y

and by taking the exponential, we derive
m M
M\ ™  exp(lnBzx,x) my ™
1 1+ — < ——— < (14—
<( + F) ~ exp(ln Az, z) — +7
for x € H with ||z|| = 1 and the inequality (2.13) is obtained. O

3. RELATED RESULTS

Let A and B be strictly positive operators on a Hilbert space H such that
B — A > mlyg > 0. In 2015, [4], T. Furuta obtained the following result for any
non-constant operator monotone function f on [0, 00)

3.1 f(B)=f(A) = Al +m) = fAl) = £ BI) = f(IB]l —m) > 0.
If B> A >0, then

(3-2) f(B) = f(A)

Y

f ||A|+M —F(AD

FaBn - (1B - ——— | >0

247

v
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The inequality between the first and third term in (3.2) was obtained earlier by
H. Zuo and G. Duan in [10].
If we write the inequality (3.1) for f (¢) = Int, then we get for B— A>m >0

InB—InA>In <M+m) > In (B”) > 0.
IB]| —m
By taking the inner product over x € H with ||z|| = 1, we get
Al +m 1Bl
(InBz,z) — (In Az, z) > In <||A||> >1In (HB—m) > 0.

If we take the exponential, we can state

exp (In Bz, x) S |A]] +m S | B

exp(InAz,z) = [[A] T [[Bl|-m

> 1,

namely

AB) _ Al +m _ |B]

Ar(A) — Al T IBII=m

provided that B — A >m > 0 and € H with ||z| = 1.
If B> A >0, then by (3.2) written for for f (t) = Int, we get that

(3.3) > 1

InB—-InA>In|1+ L —
|| - a7
181 |- 27|
>1In — > 0.
18I | (B - )7 -1
By utilizing a similar argument as above, we get
181 - 4
(3.4) im(i) >1+ ! — 2 - ‘ >1
ST ay -7 T sl|e- a7 -1

provided that B > A > 0 and € H with ||z| = 1.
Its is well known that, if P > 0, then

[(Pz,y)|* < (Pz,z) (Py,y)

for all z, y € H.
Therefore, if T > 0, then

0< (m,x)Q = <T_1Tx733>2 = <Tm7T_1:1c>2
< (Tx,z) (TT 2, T "'z) = (Tx,z) (x, T ')

for all z € H.
If x € H, ||z|| = 1, then

1< (Tx,x) (x, T "x) < (Tx,x) sup (x, T 'z) = (Tw,z)||T"

lzl=1

)

which implies the following operator inequality

(3.5) |7 < T
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Proposition 1. If B, A > 0, then for all x € H with ||z| = 1,

Ay (B)

AL(A)

< exp [W (|4 [[B7) 1B = All]

3:6) exp [~ (|47 B 15 - 41] <

where

(a7

1B1))
In||B~||=In|lA—* _ — ; - -
.{BlAl»A131|#M1#Bl

1B=H] o A= = 1B -

9

Proof. Since A > HA_lH_l and B > HB_lH_1 , then by (2.10) for my = HA_1H_1

and my = ||B’1||71 we get

(3.7) exp [~ ([ 1B 7) 1B - Al

IA
®

o @ (477 1B ) 1B - 4l
where
@ (a7 57
{miiilxillﬁM1#W1,
|B=2) it A = 1B
= (a7 187

and the inequality (3.6) is proved. O

Finally, we can also state:

Proposition 2. If B > A > 0, then for all x € H with ||z| = 1,

1B — A ) TE—a=TTE—a1 _ Au(B)
IA] ~ AL(A)

IB—All[[(B—A)~|
; ( 4~ ) |
U Je-a7

(3.8) 1< <1 +

Proof. We have H(BfA)’lH_l <B-A<|B-Aland|[A| " <A< |4

1 B
By taking m = H(B —A)_lH M = |B=A|,v=[A"Y " and T = |A] in
(2.13), we get (3.8) for all x € H with |z|| = 1. O
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