
SOME IMPROVEMENTS OF THE MONOTONICITY PROPERTY
FOR THE NORMALIZED DETERMINANT OF POSITIVE

OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A on a Hilbert space H and a
�xed unit vector x 2 H; de�ne the normalized determinant by �x(A) :=
exp hlnAx; xi. In this paper we show among others that, if 0 < m � B�A �M
and 0 < 
 � A � �; then

1 <

�
1 +

M

�

�m
M

� �x(B)

�x(A)
�
�
1 +

m




�M
m

for all x 2 H with kxk = 1:
If B > A > 0; then for all x 2 H with kxk = 1;

1 <

�
1 +

kB �Ak
kAk

� 1

k(B�A)�1kkB�Ak � �x(B)

�x(A)

�

0@1 + 

A�1




(B �A)�1



1AkB�Akk(B�A)�1k

:

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [2], [3], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by�x(A) := exp hlnAx; xi and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.
Some of the fundamental properties of normalized determinant are as follows,

[2].
For each unit vector x 2 H; see also [5], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
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2 S. S. DRAGOMIR

(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.

We de�ne the logarithmic mean of two positive numbers a; b by

(1.1) L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [2] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.2) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [9]

(1.3) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [3], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
Motivated by the above results, in this paper we show among others that, if

0 < m � B �A �M and 0 < 
 � A � �; then

1 <

�
1 +

M

�

�m
M

� �x(B)

�x(A)
�
�
1 +

m




�M
m

for all x 2 H with kxk = 1: If B > A > 0; then for all x 2 H with kxk = 1;

1 <

�
1 +

kB �Ak
kAk

� 1

k(B�A)�1kkB�Ak
� �x(B)

�x(A)

�

0@1 + 

A�1




(B �A)�1



1AkB�Akk(B�A)�1k

:

2. Main Results

We can state the following representation result that is of interest in itself:
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Lemma 1. For all A; B > 0 we have

lnB � lnA(2.1)

=

Z 1

0

h
(�+A)

�1 � (�+B)�1
i
d�

=

Z 1

0

�Z 1

0

(�+ (1� t)A+ tB)�1 (B �A) (�+ (1� t)A+ tB)�1 dt
�
d�:

Proof. Observe that for t > 0; t 6= 1; we haveZ u

0

d�

(�+ t) (�+ 1)
=

ln t

t� 1 +
1

1� t ln
�
u+ t

u+ 1

�
for all u > 0:
By taking the limit over u!1 in this equality, we derive

ln t

t� 1 =
Z 1

0

d�

(�+ t) (�+ 1)
;

which gives the representation for the logarithm

(2.2) ln t = (t� 1)
Z 1

0

d�

(�+ 1) (�+ t)

for all t > 0:
If we use the continuous functional calculus for selfadjoint operators, we have

(2.3) lnT =

Z 1

0

1

�+ 1
(T � 1) (�+ T )�1 d�

for all operators T > 0:
We have from (2.3) for A; B > 0 that

(2.4) lnB � lnA =
Z 1

0

1

�+ 1

h
(B � 1) (�+B)�1 � (A� 1) (�+A)�1

i
d�:

Since

(B � 1) (�+B)�1 � (A� 1) (�+A)�1

= B (�+B)
�1 �A (�+A)�1 �

�
(�+B)

�1 � (�+A)�1
�

and

B (�+B)
�1 �A (�+A)�1

= (B + �� �) (�+B)�1 � (A+ �� �) (�+A)�1

= 1� � (�+B)�1 � 1 + � (�+A)�1 = � (�+A)�1 � � (�+B)�1 ;
hence

(B � 1) (�+B)�1 � (A� 1) (�+A)�1

= � (�+A)
�1 � � (�+B)�1 �

�
(�+B)

�1 � (�+A)�1
�

= (�+ 1)
h
(�+A)

�1 � (�+B)�1
i

and by (2.4) we get

(2.5) lnB � lnA =
Z 1

0

h
(�+A)

�1 � (�+B)�1
i
d�;
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we proves the �rst equality in (2.1).
Consider the continuous function g de�ned on an interval I for which the cor-

responding operator function is Gâteaux di¤erentiable on the segment [C;D] :
f(1� t)C + tD; t 2 [0; 1]g for C; D selfadjoint operators with spectra in I: We
consider the auxiliary function de�ned on [0; 1] by

fC;D (t) := f ((1� t)C + tD) ; t 2 [0; 1] :

Then we have, by the properties of the integral, that

f (D)� f (C) =
Z 1

0

d

dt
(fC;D (t)) dt =

Z 1

0

rf(1�t)C+tD (D � C) dt:

If we write this equality for the function f (t) = �t�1 and C; D > 0; then we get
the representation

(2.6) C�1 �D�1 =

Z 1

0

((1� t)C + tD)�1 (D � C) ((1� t)C + tD)�1 dt:

Now, if we take in (2.6) C = �+A; D = �+B; then

(�+A)
�1 � (�+B)�1(2.7)

=

Z 1

0

((1� t) (�+A) + t (�+B))�1 (B �A)

� ((1� t) (�+A) + t (�+B))�1 dt

=

Z 1

0

(�+ (1� t)A+ tB)�1 (B �A) (�+ (1� t)A+ tB)�1 dt:

By employing (2.7) and (2.5) we derive the desired result (2.1). �

Theorem 1. For all A; B > 0 and x 2 H with kxk = 1; we have

�x(B)

�x(A)
= exp

�Z 1

0

�Z 1

0

D
(B �A) (�+ (1� t)A+ tB)�1 x;(2.8)

(�+ (1� t)A+ tB)�1 x
E
dt
�
d�
i
:

Proof. From (2.1) we get

hlnBx; xi � hlnAx; xi(2.9)

=

Z 1

0

hD
(�+A)

�1
x; x

E
�
D
(�+B)

�1
x; x

Ei
d�

=

Z 1

0

�Z 1

0

D
(�+ (1� t)A+ tB)�1 (B �A)

� (�+ (1� t)A+ tB)�1 x; x
E
dt
�
d�

=

Z 1

0

�Z 1

0

D
(B �A) (�+ (1� t)A+ tB)�1 x;

(�+ (1� t)A+ tB)�1 x
E
dt
�
d�

for x 2 H with kxk = 1:
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If we take the exponential, then we get

exp hlnBx; xi
exp hlnAx; xi

= exp

�Z 1

0

�Z 1

0

D
(B �A) (�+ (1� t)A+ tB)�1 x;

(�+ (1� t)A+ tB)�1 x
E
dt
�
d�
i

for x 2 H with kxk = 1; which proves (2.8). �

Corollary 1. Assume that A � m1 > 0; B � m2 > 0; then

(2.10) exp [�� (m1;m2) kB �Ak] �
�x(B)

�x(A)
� exp [� (m1;m2) kB �Ak] ;

where

� (m1;m2) :=

8<:
lnm2�lnm1

m2�m1
if m2 6= m1;

1
m if m2 = m1 = m:

Proof. If we take the modulus in (2.9), then we get for x 2 H with kxk = 1 that

jhlnBx; xi � hlnAx; xij

�
Z 1

0

�Z 1

0

���D(B �A) (�+ (1� t)A+ tB)�1 x;
(�+ (1� t)A+ tB)�1 x

E��� dt� d�
� kB �Ak

Z 1

0

�Z 1

0




(�+ (1� t)A+ tB)�1 x


2 dt� d�
� kB �Ak kxk

Z 1

0

�Z 1

0




(�+ (1� t)A+ tB)�1


2 dt� d�
= kB �Ak

Z 1

0

�Z 1

0




(�+ (1� t)A+ tB)�1


2 dt� d�:
Assume that m2 > m1: Then

(1� t)A+ tB + � � (1� t)m1 + tm2 + �;

which implies that

((1� t)A+ tB + �)�1 � ((1� t)m1 + tm2 + �)
�1
;

and 


((1� t)A+ tB + �)�1


2 � ((1� t)m1 + tm2 + �)
�2

for all t 2 [0; 1] and � � 0:
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Therefore

jhlnBx; xi � hlnAx; xij(2.11)

� kB �Ak
Z 1

0

�Z 1

0

((1� t)m1 + tm2 + �)
�2
dt

�
d�

=
kB �Ak
m2 �m1

Z 1

0

�Z 1

0

((1� t)m1 + tm2 + �)
�1

� (m2 �m1) ((1� t)m1 + tm2 + �)
�1
dt
�
d�;

for x 2 H with kxk = 1:
If we use the identity (2.1) for A = m1; B = m2 we get the scalar identity

lnm2 � lnm1 =

Z 1

0

�Z 1

0

((1� t)m1 + tm2 + �)
�1
(m2 �m1)

� ((1� t)m1 + tm2 + �)
�1
dt
�
d�

and by (2.11) we obtain

(2.12) jhlnBx; xi � hlnAx; xij � lnm2 � lnm1

m2 �m1
kB �Ak

for x 2 H with kxk = 1:
The case m2 < m1 goes in a similar way.
Now, assume that A; B � m > 0: Let � > 0; then B + � � m + �: Put m2 =

m+ � > m = m1: If we write the inequality (2.12) for B + � and A; we get

jhln (B + �)x; xi � hlnAx; xij � ln (m+ �)� lnm
�

kB �Ak

for x 2 H with kxk = 1:
If we take the limit over �! 0+ and observe that

lim
�!0+

ln (m+ �)� lnm
�

=
1

m
;

then we get

jhlnBx; xi � hlnAx; xij � 1

m
kB �Ak

for x 2 H with kxk = 1:
Therefore

�� (m1;m2) kB �Ak � hlnBx; xi � hlnAx; xi � � (m1;m2) kB �Ak

for x 2 H with kxk = 1; which gives the desired result (2.10). �

Theorem 2. Assume that 0 < m � B �A �M and 0 < 
 � A � �; then

(2.13) 1 <

�
1 +

M

�

�m
M

� �x(B)

�x(A)
�
�
1 +

m




�M
m

for all x 2 H with kxk = 1:
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Proof. Sincem � B�A �M then by multiplying both sides by (�+ (1� t)A+ tB)�1 >
0 we derive

m (�+ (1� t)A+ tB)�2(2.14)

� (�+ (1� t)A+ tB)�1 (B �A) (�+ (1� t)A+ tB)�1

�M (�+ (1� t)A+ tB)�2

for all t 2 [0; 1] and � > 0:
Observe that

(1� t)A+ tB = A+ t (B �A) ;
and since 
 � A � �; hence

�+ 
 + tm � �+ (1� t)A+ tB � �+ � + tM;

namely,

(�+ � + tM)
�1 � (�+ (1� t)A+ tB)�1 � (�+ 
 + tm)�1 ;

which gives that

(2.15) (�+ � + tM)
�2 � (�+ (1� t)A+ tB)�2 � (�+ 
 + tm)�2

for all t 2 [0; 1] and � > 0:
By utilizing (2.14) and (2.15), we derive

m (�+ � + tM)
�2(2.16)

� (�+ (1� t)A+ tB)�1 (B �A) (�+ (1� t)A+ tB)�1

�M (�+ 
 + tm)
�2

for all t 2 [0; 1] and � > 0:
If we take the integrals in (2.16), then we get

m

Z 1

0

�Z 1

0

(�+ � + tM)
�2
dt

�
d�

�
Z 1

0

(�+ (1� t)A+ tB)�1 (B �A) (�+ (1� t)A+ tB)�1

�M
Z 1

0

�Z 1

0

(�+ 
 + tm)
�2
dt

�
d�;

namely, by (2.1)

m

Z 1

0

�Z 1

0

(�+ � + tM)
�2
dt

�
d� � lnB � lnA(2.17)

�M
Z 1

0

�Z 1

0

(�+ 
 + tm)
�2
dt

�
d�:

Observe thatZ 1

0

(�+ 
 + tm)
�2
dt = � 1

m
(�+ 
 +m)

�1
+
1

m
(�+ 
)

�1

=
1

m

�
(�+ 
)

�1 � (�+ 
 +m)�1
�
;
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which gives

M

Z 1

0

�Z 1

0

(�+ 
 + tm)
�2
dt

�
d� =

M

m

Z 1

0

�
(�+ 
)

�1 � (�+ 
 +m)�1
�
d�:

By the �rst identity in (2.1) in the scalar case, we have

ln (
 +m)� ln 
 =
Z 1

0

h
(�+ 
)

�1 � (�+ 
 +m)�1
i
d�

and then

M

Z 1

0

�Z 1

0

(�+ 
 + tm)
�2
dt

�
d� =M

ln (
 +m)� ln 

m

= ln

�
1 +

m




�M
m

:

Similarly,

m

Z 1

0

�Z 1

0

(�+ � + tM)
�2
dt

�
d� = m

ln (� +M)� ln �
M

= ln

�
1 +

M

�

�m
M

and by (2.17) we get

(2.18) ln

�
1 +

M

�

�m
M

� lnB � lnA �
�
1 +

m




�M
m

:

If x 2 H with kxk = 1; then by (2.18) we obtain

ln

�
1 +

M

�

�m
M

� hlnBx; xi � hlnAx; xi � ln
�
1 +

m




�M
m

and by taking the exponential, we derive

1 <

�
1 +

M

�

�m
M

� exp hlnBx; xi
exp hlnAx; xi �

�
1 +

m




�M
m

for x 2 H with kxk = 1 and the inequality (2.13) is obtained. �

3. Related Results

Let A and B be strictly positive operators on a Hilbert space H such that
B � A � m1H > 0: In 2015, [4], T. Furuta obtained the following result for any
non-constant operator monotone function f on [0;1)
(3.1) f (B)� f (A) � f (kAk+m)� f (kAk) � f (kBk)� f (kBk �m) > 0:
If B > A > 0; then

f (B)� f (A) � f

0@kAk+ 1


(B �A)�1



1A� f (kAk)(3.2)

� f (kBk)� f

0@kBk � 1


(B �A)�1



1A > 0:
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The inequality between the �rst and third term in (3.2) was obtained earlier by
H. Zuo and G. Duan in [10].
If we write the inequality (3.1) for f (t) = ln t; then we get for B �A � m > 0

lnB � lnA � ln
�
kAk+m
kAk

�
� ln

�
kBk

kBk �m

�
> 0:

By taking the inner product over x 2 H with kxk = 1; we get

hlnBx; xi � hlnAx; xi � ln
�
kAk+m
kAk

�
� ln

�
kBk

kBk �m

�
> 0:

If we take the exponential, we can state

exp hlnBx; xi
exp hlnAx; xi �

kAk+m
kAk � kBk

kBk �m > 1;

namely

(3.3)
�x(B)

�x(A)
� kAk+m

kAk � kBk
kBk �m > 1

provided that B �A � m > 0 and x 2 H with kxk = 1:
If B > A > 0; then by (3.2) written for for f (t) = ln t; we get that

lnB � lnA � ln

0@1 + 1

kAk



(B �A)�1




1A
� ln

0@ kBk



(B �A)�1




kBk



(B �A)�1


� 1

1A > 0:

By utilizing a similar argument as above, we get

(3.4)
�x(B)

�x(A)
� 1 + 1

kAk



(B �A)�1


 �

kBk



(B �A)�1




kBk



(B �A)�1


� 1 � 1

provided that B > A > 0 and x 2 H with kxk = 1:
Its is well known that, if P � 0; then

jhPx; yij2 � hPx; xi hPy; yi
for all x; y 2 H:
Therefore, if T > 0; then

0 � hx; xi2 =


T�1Tx; x

�2
=


Tx; T�1x

�2
� hTx; xi



TT�1x; T�1x

�
= hTx; xi



x; T�1x

�
for all x 2 H:
If x 2 H; kxk = 1; then

1 � hTx; xi


x; T�1x

�
� hTx; xi sup

kxk=1



x; T�1x

�
= hTx; xi



T�1

 ;
which implies the following operator inequality

(3.5)


T�1

�1 � T:



10 S. S. DRAGOMIR

Proposition 1. If B; A > 0; then for all x 2 H with kxk = 1;

exp
�
�	

�

A�1

 ;

B�1

� kB �Ak� � �x(B)

�x(A)
(3.6)

� exp
�
	
�

A�1

 ;

B�1

� kB �Ak� ;

where

	
�

A�1

 ;

B�1

�
:=

8><>:
lnkB�1k�lnkA�1k
kB�1k�kA�1k



A�1



B�1

 if 

A�1

 6= 

B�1

 ;

B�1

 if 

A�1

 = 

B�1

 :
Proof. Since A �



A�1

�1 and B � 

B�1

�1 ; then by (2.10) for m1 =


A�1

�1

and m2 =


B�1

�1 we get

exp
h
��

�

A�1

�1 ;

B�1

�1� kB �Aki(3.7)

� �x(B)

�x(A)

� exp
h
�
�

A�1

�1 ;

B�1

�1� kB �Aki ;

where

�
�

A�1

�1 ;

B�1

�1�
=

8><>:
lnkB�1k�1�lnkA�1k�1
kB�1k�1�kA�1k�1 if



A�1

 6= 

B�1

 ;

B�1

 if 

A�1

 = 

B�1

 :
= 	

�

A�1

 ;

B�1

�
and the inequality (3.6) is proved. �

Finally, we can also state:

Proposition 2. If B > A > 0; then for all x 2 H with kxk = 1;

1 <

�
1 +

kB �Ak
kAk

� 1

k(B�A)�1kkB�Ak
� �x(B)

�x(A)
(3.8)

�

0@1 + 

A�1




(B �A)�1



1AkB�Akk(B�A)�1k

:

Proof. We have



(B �A)�1


�1 � B � A � kB �Ak and



A�1

�1 � A � kAk :

By taking m =



(B �A)�1


�1 ; M = kB �Ak ; 
 =



A�1

�1 and � = kAk in
(2.13), we get (3.8) for all x 2 H with kxk = 1: �
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