SOME IMPROVEMENTS OF THE MONOTONICITY PROPERTY
FOR THE TRACE CLASS P-DETERMINANT OF POSITIVE
OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by

Ap (A) :=exptr(PlnA).

In this paper we show among others that, if 0 < m < B—-— A < M and
0<~v<AKLT, then

m M
1< (1+M> M ArB) (1+T) "
r Ap(4) 8l
for all P > 0 with P € By (H) and tr (P) = 1. We also show that, if B > A > 0,
then for all P > 0 with P € By (H) and tr (P) =1,
B — All) H(B—A)—11||HB—A\|
[lA]

<<1+ Ja-| )
N -7

1. INTRODUCTION

In 1952, in the paper [7], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 7T as an integral

T = / AE (X)),
Sp(T)

where E (\) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7o F becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) := exp (/ lntd,uT) .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [8], [9], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [13].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL 17 =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) 1Al = 3 e )
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l el
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and the definition does not depend on the choice of the orthonormal basis {e;},c;;
(i) We have the inequalities
(1.5) [All < [|All

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Ae By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = 14", and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {{(A, B), | B € Ba(H), |Bly <1};

(v) (Bi(H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A") = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;

(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since PY/2 € By (H), TP? € By (H),
hence PY/2TPY/? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr (Pl/QTPl/Q)

forall T € B(H).

If T > 0, then PY/2TP'Y2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 5 T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [5] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tA,(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [6] we obtained the following results:
Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1] we have the Ky Fan’s type inequality
(1.13) Ap((1—t)A+tB) > [Ap (A)]' "' [Ap (B)].
and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(1.14) aexp [l —atr (PA™")] < Ap(A) <aexp[a” " tr(PA) —1].

In particular

tr (PA) 1
(1.15) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
(1.16) 1< Br) - <exp [tr (PA™Y) tr (PA) —1].

- e (PATH]
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The first inequalities in (1.15) and 1.16) are best possible from (1.14).

Motivated by the above results, in this paper we show among others that, if
0<m<B-—A<Mand0<vy< AT, then

M

1< <1+AF/[>M < 21;((% < (1+7Z)m

for all P > 0 with P € B; (H) and tr (P) = 1. We also show that, if B > A > 0,
then for all P > 0 with P € By (H) and tr (P) =1,

B—A||>|<B—A>11|B—A Ap(B)
1< |1+ —FF— <
( 1A Ap(4)
RN L [
(y, 4
|i&—a7]

2. MAIN RESULTS
We can state the following representation result that is of interest in itself:
Lemma 1. For all A, B > 0 we have
(21) mB-InA

_ /OOO [+ = 0By

:/Ooo (/01()\+(1—t)A+tB)1(B—A)()\+(1—t)A+tB)1dt>d)\.

Proof. Observe that for ¢t > 0, t # 1, we have

/“ dX\ _ Int N 1 I u+t
o A+Ht)A+1) t—1 1-t u+1
for all u > 0.

By taking the limit over © — oo in this equality, we derive

Int _/OO dA
t—1 Jo A+t)(A+1)’

which gives the representation for the logarithm

e dA
2.2 Int=(t—-1 —_—
22) nt = >/0 A+ (A +1)
for all ¢ > 0.
If we use the continuous functional calculus for selfadjoint operators, we have
0o 1 1
2.3 InT = — (T -1 (A+T) "dX
(23) oT= [ @-D(+T)

for all operators T' > 0.
We have from (2.3) for A, B > 0 that

(2.4) 1nB—1nA=/m%r1[(B—l)(AJrB)*l—(A—l)(AJrAY1 dA.
0
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Since
(B—1)(A+B) ' —(A-1)(A+4)""
—BOA+B) AN+ AT - ((A+B)_1 - (A+A)_1)
and
BA+B) ' —AMN+A)!
—B+A-NA+B) ' —(A+r-NA+4)""
=1-AA+B) " —14+AQ0+A T =20+ AT A0+ B) T,
hence
(B—1)(A+B) ' —(A-1)(A+4)""
AN+ AT AN+ B) T - ((/\ BT (A A)_1>
= (A+1) {(H A7 - +B>*1}
and by (2.4) we get
(2.5) 1nB—lnA:/0 (D) — 0B an,

we proves the first equality in (2.1).

Consider the continuous function g defined on an interval I for which the cor-
responding operator function is Gateaux differentiable on the segment [C, D] :
{1=t)C+1tD, t €]0,1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

fon (t) = F(L—1)C+1D), te[o.1].
Then we have, by the properties of the integral, that

FD)=1(©) = [ G len@it= [ Vi peun D=0yt

If we write this equality for the function f(t) = —t~! and C, D > 0, then we get
the representation

(2.6) cl'-D = /1 (1—t)C+tD)" " (D-C)((1—1t)C +tD) " dt.
0

Now, if we take in (2.6) C = A+ A, D = A+ B, then
(2.7) A+A T —A+B)!

:/1((1—t)(A+A)+t(A+B))1(B—A)

0

x (1—t)(A+A)+t(A+B)) " dt

:/1(A+(1—t)A—|—tB)_1(B—A)()\—|—(1—t)A+tB)_1dt.
0

By employing (2.7) and (2.5) we derive the desired result (2.1). O
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Theorem 6. Assume that A, B > 0 and P > 0 with P € By (H) and tr (P) = 1,
then

(2.8) tr [P (InB)] — tr [P (In A)]
= /OOO (tr [P(/\ + A)‘l} —tr {P(A + B)‘1D d\
:/000 (/Oltr(P()\+(1—t)A+tB)_1 (B — A)

XA+ (1—t) A+ tB)_l) dt) X,

or, equivalently

—ew | [ (w[Por a7 —a[por )@

e} 1
= exp U (/ tr(P(H(l—t)AHB)*l(B—A)
0 0
A+ (1—t)A+ tB)_l) dt) dA} .
Proof. If we multiply both sides of (2.1) by P'/2, we get
PY2(In B) PY/? — PY/2 (In A) P'/?

_ / (P12 (A ) P2 P (g B) PR
0

:/oo (/1p1/2()\+(1—t)A+tB)1 <B_A)()\+(1—t)A+tB)1P1/2dt> mn
0 0

If we take the trace and use its properties, we obtain

tr [P (InB)] — tr [P (In A)]
/OOO [P+ A —a [Pt 3| ax

:/Ooo </01tr(P1/2(A+(1—t)A+tB)_1(B—A)

x(A+(1—t)A+tB)"" P1/2> dt) d\

which gives the representation (2.8). O

Corollary 1. Assume that A > mq >0, B> my >0 and P > 0 with P € By (H)
and tr (P) =1, then

210)  exp[=® mi,ma) B - Al < 3 Ef;’; < exp [® (ma, ms) | B — A,
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where 1 1
nmo—Inmy
e if ma # ma,

® (my,ma) = {

% if mo = mq =m.
Proof. If we take the modulus in (2.8), then we get
[tr [P (In B)] — tr [P (In A)]]

g/ooo (/1 ’tr(P()\+(1—t)A+tB)71(B—A)

X (A+(1—t)A+tB)” )‘dt)

<ie [ ([ Jora-nasm s

x x(/\+(17t)A+tB)_1H‘dt) X

<|IB- 4] /OOO (/01 lo+a —t)A+tB)1H2dt> dx.

Assume that mo > my. Then
(1-t)A+tB+A>(1—t)mi +tma+ A,
which implies that
(L=t) A+tB+ X" < (A —=t)my+tma+ )",
and )
H(u ) A+tB+ /\)_1H < (1= t)my +tma + )2
for all ¢ € [0,1] and A > 0.

Therefore
(2.11) [tr [P (In B)] — tr [P (In A)]|
< HB AH/ / 1—t m1 +tTTL2+)\) dt) dX
0
1
”B AH (/ 1—t m1+tm2+)\)
m2 —ma 0

% (ms — ml) (1= t)my + tmy + A) ™" dt) dx,

for P> 0 with P € By (H) and tr (P) = 1.
If we use the identity (2.1) for A = mq, B = mg we get the scalar identity

S] 1
lnmg—lnmlz/ (/ (1 =t)my + tmg + A) " (mg —my)
0 0

(L= t)ym +tmy + A~ dt) X
and by (2.11) we obtain

Inms — Inmy

(2.12) itr [P (In B)] — tr [P (In A)]| < 1B — A

mo — My
for P > 0 with P € By (H) and tr (P) = 1.
The case my < m; goes in a similar way.
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Now, assume that A, B > m > 0. Let ¢ > 0, then B+ ¢ > m + ¢e. Put mg =
m+ e > m = my. If we write the inequality (2.12) for B + ¢ and A, we get

In(m+¢€)—Ilnm

[tr [P (In (B + €))] — tr [P (In A)]| < 1B — Al

for P> 0 with P € By (H) and tr (P) = 1.
If we take the limit over € — 0+ and observe that
n(m+e)—lnm 1

)

lim
e—0+ € m

then we get
jtr [P (I B)] — tr [P (I A)]| < — | B — A
m

for P > 0 with P € By (H) and tr (P) = 1.
Therefore

~® (m1,m2) | B — A|| < tr[P(In B)] — tr [P (In A)] < @ (ma, ms) || B - A
for P > 0 with P € B; (H) and tr (P) = 1, which gives the desired result (2.10). O
Theorem 7. Assume that 0 <m < B— A<M and0 <~y < A<LT, then

M\ Ap(B) ( m>%
2.13 1< |14+ = < < (14—
( ) ( F) Ap(4) v
for all P> 0 with P € By (H) and tr (P) = 1.

Proof. Since m < B—A < M then by multiplying both sides by (A + (1 —t) A + tB)f1 >
0 we derive

(2.14) mA+(1—t)A+tB)~>

<A+Q—-t)A+tB) " (B=A)A+(1—t)A+tB)"

<M+ (1—t)A+tB)?
for all t € [0,1] and A > 0.

Observe that
(1-t)A+tB=A+t(B—A),
and since v < A < T, hence
Ay+tm <A+ (1—t)A+tB < A+T +tM,
namely,
A+T+tM) ' <A+ (1 - A+tB) ' < A+ +tm) ",

which gives that
(2.15) A+T+tM) 2 <A+(1—t) A+tB) > < A+~ +tm)">

for all t € [0,1] and A > 0.
By utilizing (2.14) and (2.15), we derive

(2.16) mA+T +tM) >
<A+(1=t)A+tB) ' (B-A) A+ (1 —t)A+tB)""
<M+ +tm)”?

for all t € [0,1] and A > 0.
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If we multiply both sides by P'/? we get
mPY2 (A +T +tM) "> p/?
<PYVA+(1—-t)A+tB) " (B—A) A+ (1 —t)A+tB)"' P'/?
< MPY2 (X4~ +tm) > PV/?
and by taking the trace, we derive
(2.17) mtr [P (A+T+ tM)*Q]
< tr [p(x+(1 ) A+tB) (B — A) (A + (1_t)A+tB)—1}
< Mtr [P A+~ +tm)*2}

for all t € [0,1] and A > 0.
This is equivalent to

(2.18) m(A+T +tM)>
< tr [p(A+(1 — ) A+tB) (B - A) (A + (1 —t)A+tB)*1]
<M A4y +tm) >

for all t € [0,1] and A > 0.
If we take the integrals in (2.18), then we get

m/oo<> </01(>\+F+tM)2dt> dX

</1 [P()\—s—(l—t)fH—tB)’l (B—A)(A\+(1—t)A+tB)"

<M/ (/ )\+’y+tm)_2dt)d)\,

namely, by (2.8)

(2.19) m/ (/ /\+F+tM)_2dt>d/\gtr[P(lnB)]—tr[P(lnA)]

gM/OOO </01()\+7+tm)_2dt>d)\.

1
_ 1 41 _
/ A+y+tm) 2dt=——N+y+m) "+ =N+ "
0 m m

(0T = by rm Y,

Observe that

which gives

M/OOo (/01(A+7+tm)2dt)d>\:]\nf/ooo ((A+w)*1—(x+7+m)*1)dx.

By the first identity in (2.1) in the scalar case, we have

ln(’y-l—m)—ln'y:/ooo [(A+7)*1—(A+v+m)*1] dX
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and then
[e’e) 1 B 1 _1
M/ (/ (A + 7+ tm) 2dt>dA:Mn(7+m) al
0 0 m
M
:ln<1+m> .
Y
Similarly,

ot _ In(T'+ M) —InT
m/ (/ (A+T + ¢tM) 2dt>d)\:mn( +M)—In
0 0 M

M\ M
=In(l14+ —
(0 7)

M

M\ M m
(2.20) In (Hr) <InB-InA< <1+m> .
0

If P >0 with P € By (H) and tr (P) = 1, then by (2.20) we obtain

m M
m

In <1 + Ag) Yot [P(InB)] —tr[P(InA)] <In <1 + 7:)

and by (2.19) we get

and by taking the exponential, we derive

for all P > 0 with P € By (H) and tr (P) = 1 and the inequality (2.13) is obtained.
O

3. RELATED RESULTS

Let A and B be strictly positive operators on a Hilbert space H such that
B — A > mlg > 0. In 2015, [10], T. Furuta obtained the following result for any
non-constant operator monotone function f on [0, 00)

3.1)  f(B)=f(A) = fUAll +m) = fAll) = £ (IBI) — £ (B[ —m) > 0.
If B> A>0, then

32 r® -7 = f(1Al+—— | - £ Al
-7

1

[o-a7]) "

> fAUBIN = f{IBI -

The inequality between the first and third term in (3.2) was obtained earlier by
H. Zuo and G. Duan in [14].
If we write the inequality (3.1) for f(t) = Int, then we get for B— A >m >0

nB—InAd>1n <M+m) >In (B”) > 0.
Bl —m



12 S.S. DRAGOMIR

By multiplying both sides with P'/? and taking the trace, we get
||A||+m) ( 1Bl )
tr[P(InB)] —tr[P(In A >1n< >In|{ —— | >0.
If we take the exponential, we can state that
w[PWB)] _ Al +m _ |B|
tr[P(InA)] — [A]  ~ [|IB[|-m

> 1,

namely
Ap(B) _ Al +m _ _|B]
Ap(A) = Al T IBll=m

provided that B— A >m > 0 and P > 0 with P € By (H) and tr (P) = 1.
If B> A > 0, then by (3.2) written for for f (t) = Int, we get that

>1

(3.3)

InB—-InA>In|1+ ! -
Jal|jB - a7
—1
181|827
> In — > 0.
18I | (B - 47| -1
By utilizing a similar argument as above, we obtain
Ap(B) 1 I R

Mm@ 2 e e a7

provided that B > A > 0 and P > 0 with P € By (H) and tr (P) = 1.
Its is well known that, if P > 0, then

[(Pz,y)|* < (Pz,z) (Py,y)

for all z, y € H.
Therefore, if T > 0, then

0< (z,z)° = <T71Tx,x>2 = <Ta:,T*1z>2
<(Tz,z)(TT 'z, T 'z) = (Tz,z) (x, T ')

for all x € H.
If z € H, ||z|| =1, then

1< (Tz,x) <z,T71m> <(Tz,z) sup <:1:,T71z> = (Tx,z) ||T71|| ,
llzll=1

which implies the following operator inequality

(3.5) 7Y <.

Proposition 2. If B, A > 0, then for all P > 0 with P € By (H) and tr (P) =1,
1 1 AP(B>

(3.6) exp [~ (A7 BB - Al < T8

< exp [ ([A7H]L [ B7H) 1B - All]
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where
w (A, B)
In||B~||=In||A—" _ _ X _ _
Bl LA ) i A B

1B=H] o A=t = 1B -

Proof. Since A > ||A’1||71 and B > ||B’1||71 , then by (2.10) for m; = ||A*1H71

and my = HB_lH_1 we get

(3.7) exp [~ ([, 1B ) 1B - Al
_ Ap(B)
~ Ap(A)
< exp [@ (||A*1H‘1 | B*1]|‘1) 1B — A||] ,
where
o (|l 57 )
n||B~4|| " At . _ B
_ e it ) # 1)
1B~ i [lA=t] = [[B="].
= (a7 [[B)
and the inequality (3.6) is proved. (]

Finally, we can also state:

Proposition 3. If B> A > 0, then for all P > 0 with P € By (H) and tr (P) =1,

|B—A||>|<B—A>—11|B—A Ap(B)
3.8 1< |1+ —F— <
9 o+ Ar(A)
B IB=All|(B—a)"
Sy, la7
(R

Proof. We have H(BfA)*H_l <B-A<|B-Aland|[A7| " <A< |4

-1
By taking m = H(B —A)_lH M = |B=A|,v=[A"Y " and T = 4] in
(2.13) we get (3.8) for all P > 0 with P € By (H) and tr (P) = 1. O
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