RGMIA

A SUB-MULTIPLICATIVE PROPERTY FOR THE TRACE CLASS P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \ge 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and tr(P) = 1, we define the *P*-determinant of the positive invertible operator A by

 $\Delta_P(A) := \exp \operatorname{tr}\left(P \ln A\right).$

In this paper we show among others that, if $AB + BA \ge 0$, then

$$\Delta_P \left(A + B + 1 \right) \le \Delta_P \left(A + 1 \right) \Delta_P \left(B + 1 \right)$$

for all $A, B \ge 0$, which is a sub-multiplicative property for the map $\Delta_P(\cdot + 1)$.

1. INTRODUCTION

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda) \,,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (*FK*-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_0^\infty \ln t d\mu_{|T|}\right).$$

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, A > 0means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \ge B$ means as usual that A - B is positive.

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Normalized determinants, Inequalities.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp\left\langle \ln Ax, x \right\rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [9].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

(1.1)
$$\sum_{i\in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i \in I}$ and $\{f_j\}_{j \in J}$ are orthonormal bases for H and $A \in \mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}(H)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}(H)$. For $A \in \mathcal{B}_{2}(H)$ we define

(1.3)
$$\|A\|_{2} := \left(\sum_{i \in I} \|Ae_{i}\|^{2}\right)^{1/2}$$

for $\{e_i\}_{i \in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A|||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_2(H), \|\cdot\|_2)$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$; (ii) We have the inequalities

(1.5)
$$||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_{2}(H)$ and, if $A \in \mathcal{B}_{2}(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_{2}(H)$ with

(1.6)
$$\|AT\|_2, \|TA\|_2 \le \|T\| \|A\|_2$$

(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H) \mathcal{B}_{2}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{2}(H)$$

If $\{e_i\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is trace class if

(1.7)
$$\|A\|_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$.

The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

(i)
$$A \in \mathcal{B}_1(H)$$
;
(ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(1.8)
$$||A||_1 = ||A^*||_1 \text{ and } ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(i) We have

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

 $\mathcal{B}(H)\mathcal{B}_{1}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{1}(H);$

(iii) We have

$$\mathcal{B}_{2}(H)\mathcal{B}_{2}(H) = \mathcal{B}_{1}(H);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle$$

where $\{e_i\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If $A \in \mathcal{B}_1(H)$ then $A^* \in \mathcal{B}_1(H)$ and

(1.10)
$$\operatorname{tr}(A^*) = \operatorname{tr}(A)$$

(*ii*) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11) $\operatorname{tr}(AT) = \operatorname{tr}(TA) \text{ and } |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$

(iii) tr (·) is a bounded linear functional on $\mathcal{B}_1(H)$ with ||tr|| = 1; (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and tr (AB) = tr (BA). S. S. DRAGOMIR

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \ge 0$, then $P^{1/2}TP^{1/2} \ge 0$, which implies that tr $(PT) \ge 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n\to\infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *P*-determinant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}(P^{1/2}(\ln A) P^{1/2}).$$

Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_x(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \leq B$ implies $\Delta_P(A) \leq \Delta_P(B)$.

In the recent paper [2] we obtained the following results:

Theorem 4. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all A, B > 0and $t \in [0, 1]$ we have the Ky Fan's type inequality

(1.13)
$$\Delta_P((1-t)A + tB) \ge [\Delta_P(A)]^{1-t} [\Delta_P(B)]^t.$$

and

Theorem 5. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr(P) = 1, then for all A > 0 and a > 0 we have the double inequality

(1.14)
$$a \exp\left[1 - a \operatorname{tr}\left(PA^{-1}\right)\right] \le \Delta_P(A) \le a \exp\left[a^{-1} \operatorname{tr}\left(PA\right) - 1\right].$$

In particular

(1.15)
$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

(1.16)
$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right].$$

The first inequalities in (1.15) and 1.16) are best possible from (1.14).

Motivated by the above results, in this paper we show among others that, if $AB + BA \ge 0$, then

$$\Delta_P \left(A + B + 1 \right) \le \Delta_P \left(A + 1 \right) \Delta_P \left(B + 1 \right)$$

for all $A, B \ge 0$, which is a sub-multiplicative property for the map $\Delta_P(\cdot + 1)$.

2. Main Results

The following representation result holds:

Lemma 1. For all $A, B \ge 0$ and a > 0 we have

(2.1)
$$\ln (A+a) + \ln (B+a) - \ln (A+B+a) - \ln a$$
$$= \int_0^\infty (a+\lambda)^{-1} S(\lambda, a, A, B) d\lambda + \int_0^\infty (a+\lambda)^{-1} Q(\lambda, a, A, B) d\lambda,$$

where

$$S(\lambda, a, A, B) := (A + B + a + \lambda)^{-1} (AB + BA) (A + B + a + \lambda)^{-1}$$

and

$$Q(\lambda, a, A, B) := (A + B + a + \lambda)^{-1}$$
$$\times \left[B(A + a + \lambda)^{-1} AB + A(B + a + \lambda)^{-1} BA \right]$$
$$\times (A + B + a + \lambda)^{-1}$$

for $\lambda > 0$.

Proof. Observe that for $t > 0, t \neq 1$, we have

$$\int_{0}^{u} \frac{d\lambda}{\left(\lambda+t\right)\left(\lambda+1\right)} = \frac{\ln t}{t-1} + \frac{1}{1-t}\ln\left(\frac{u+t}{u+1}\right)$$

for all u > 0.

By taking the limit over $u \to \infty$ in this equality, we derive

$$\frac{\ln t}{t-1} = \int_{0}^{\infty} \frac{d\lambda}{\left(\lambda+t\right)\left(\lambda+1\right)},$$

which gives the representation for the logarithm

(2.2)
$$\ln t = (t-1) \int_0^\infty \frac{d\lambda}{(\lambda+1)(\lambda+t)}$$

for all t > 0.

If we use the continuous functional calculus for selfadjoint operators, we have

(2.3)
$$\ln T = \int_0^\infty \frac{1}{\lambda + 1} (T - 1) (\lambda + T)^{-1} d\lambda$$

for all operators T > 0.

Observe that

$$\int_0^\infty \frac{1}{\lambda+1} \left(T-1\right) \left(\lambda+T\right)^{-1} d\lambda = \int_0^\infty \frac{1}{\lambda+1} \left(T+\lambda-\lambda-1\right) \left(\lambda+T\right)^{-1} d\lambda$$
$$= \int_0^\infty \left[\left(\lambda+1\right)^{-1} - \left(\lambda+T\right)^{-1} \right] d\lambda$$

and then

$$\ln T = \int_0^\infty \left[(\lambda + 1)^{-1} - (\lambda + T)^{-1} \right] d\lambda.$$

Therefore

(2.4)
$$\ln (A+a) + \ln (B+a) - \ln (A+B+a) - \ln a = \int_0^\infty K_\lambda d\lambda$$

where

$$K_{\lambda} := (A + B + a + \lambda)^{-1} + (a + \lambda)^{-1} - (A + a + \lambda)^{-1} - (B + a + \lambda)^{-1}.$$

To simplify calculations, consider $\delta:=a+\lambda$ and set

$$L_{\delta} := (A + B + \delta)^{-1} + \delta^{-1} - (A + \delta)^{-1} - (B + \delta)^{-1}.$$

If we multiply both sides by $A + B + \delta$ we get

$$W_{\delta} := (A + B + \delta) L_{\delta} (A + B + \delta)$$

= $(A + B + \delta) + \delta^{-1} (A + B + \delta)^{2}$
- $(A + B + \delta) (A + \delta)^{-1} (A + B + \delta)$
- $(A + B + \delta) (B + \delta)^{-1} (A + B + \delta)$
= $(A + B + \delta) + \delta^{-1} (A + B + \delta)^{2}$
- $(A + B + \delta) - B (A + \delta)^{-1} (A + B + \delta)$
- $A (B + \delta)^{-1} (A + B + \delta) - (A + B + \delta)$
= $\delta^{-1} (A + B + \delta)^{2} - B (A + \delta)^{-1} B - B$
- $A (B + \delta)^{-1} A - A - (A + B + \delta)$

$$= \delta^{-1} \left(A^2 + AB + \delta A + BA + B^2 + \delta B + \delta A + \delta B + \delta^2 \right) - B \left(A + \delta \right)^{-1} B - 2B - A \left(B + \delta \right)^{-1} A - 2A - \delta = \delta^{-1} \left(A^2 + AB + BA + B^2 \right) + 2B + 2A + \delta - B \left(A + \delta \right)^{-1} B - A \left(B + \delta \right)^{-1} A - 2A - 2B - \delta = \delta^{-1} \left(A^2 + AB + BA + B^2 \right) - B \left(A + \delta \right)^{-1} B - A \left(B + \delta \right)^{-1} A = \delta^{-1} \left[A^2 + AB + BA + B^2 - \delta B \left(A + \delta \right)^{-1} B - \delta A \left(B + \delta \right)^{-1} A \right] = \delta^{-1} \left[A^2 + AB + BA + B^2 - B \left(\delta^{-1} A + 1 \right)^{-1} B - A \left(\delta^{-1} B + 1 \right)^{-1} A \right].$$

Observe that

$$B^{2} - B (\delta^{-1}A + 1)^{-1} B$$

= $B (\delta^{-1}A + 1)^{-1} (\delta^{-1}A + 1) B - B (\delta^{-1}A + 1)^{-1} B$
= $B (\delta^{-1}A + 1)^{-1} (\delta^{-1}A + 1 - 1) B$
= $\delta^{-1}B (\delta^{-1}A + 1)^{-1} AB = B (A + \delta)^{-1} AB$

 and

$$A^{2} - A (\delta^{-1}B + 1)^{-1} A$$

= $A (\delta^{-1}B + 1)^{-1} (\delta^{-1}B + 1) A - A (\delta^{-1}B + 1)^{-1} A$
= $A (\delta^{-1}B + 1)^{-1} (\delta^{-1}B + 1 - 1) A$
= $\delta^{-1}A (\delta^{-1}B + 1)^{-1} BA = A (B + \delta)^{-1} BA.$

6

A SUB-MULTIPLICATIVE PROPERTY

Therefore

$$W_{\delta} = \delta^{-1} \left[AB + BA + B (A + \delta)^{-1} AB + A (B + \delta)^{-1} BA \right]$$

which gives that

$$L_{\delta} := (A + B + \delta)^{-1} W_{\delta} (A + B + \delta)^{-1}$$

We obtain then the following representation

(2.5)
$$K_{\lambda} = (a+\lambda)^{-1} (A+B+a+\lambda)^{-1} (AB+BA) (A+B+a+\lambda)^{-1} + (a+\lambda)^{-1} (A+B+a+\lambda)^{-1} \times \left[B (A+a+\lambda)^{-1} AB + A (B+a+\lambda)^{-1} BA \right] (A+B+a+\lambda)^{-1} = (a+\lambda)^{-1} S (\lambda, a, A, B) + (a+\lambda)^{-1} P (\lambda, a, A, B)$$

for $a, \lambda > 0$.

By utilizing (2.4) and (2.5) we derive the representation (2.1).

7

Corollary 1. For all $A, B \ge 0$ we have

(2.6)
$$\ln (A+1) + \ln (B+1) - \ln (A+B+1) = \int_0^\infty (1+\lambda)^{-1} S(\lambda, A, B) d\lambda + \int_0^\infty (1+\lambda)^{-1} Q(\lambda, A, B) d\lambda,$$

where

$$S(\lambda, A, B) := (A + B + 1 + \lambda)^{-1} (AB + BA) (A + B + 1 + \lambda)^{-1}$$

and

$$Q(\lambda, a, A, B) := (A + B + 1 + \lambda)^{-1}$$
$$\times \left[B (A + 1 + \lambda)^{-1} AB + A (B + 1 + \lambda)^{-1} BA \right]$$
$$\times (A + B + 1 + \lambda)^{-1}$$

for $\lambda > 0$.

Theorem 6. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all $A, B \ge 0$ and a > 0 we have the representation

(2.7)
$$\frac{\Delta_P (A+a) \Delta_P (B+a)}{a \Delta_P (A+B+a)} = \exp\left(\int_0^\infty (a+\lambda)^{-1} \operatorname{tr}\left[PS(\lambda, a, A, B)\right] d\lambda\right) \times \exp\left(\int_0^\infty (a+\lambda)^{-1} \operatorname{tr}\left[PQ(\lambda, a, A, B)\right] d\lambda\right).$$

Proof. If we multiply both sides of (2.1) by $P^{1/2}$, then we get

$$P^{1/2} \ln (A + a) P^{1/2} + P^{1/2} \ln (B + a) P^{1/2}$$
$$- P^{1/2} \ln (A + B + a) P^{1/2} - (\ln a) P$$
$$= \int_0^\infty (a + \lambda)^{-1} P^{1/2} S(\lambda, a, A, B) P^{1/2} d\lambda$$
$$+ \int_0^\infty (a + \lambda)^{-1} P^{1/2} P(\lambda, a, A, B) P^{1/2} d\lambda.$$

If we take the trace and use its properties, we get

(2.8)
$$\operatorname{tr} \left[P \ln \left(A + a \right) \right] + \operatorname{tr} \left[P \ln \left(B + a \right) \right] - \operatorname{tr} \left[P \ln \left(A + B + a \right) \right] - \ln a$$
$$= \int_0^\infty \left(a + \lambda \right)^{-1} \operatorname{tr} \left[PS \left(\lambda, a, A, B \right) \right] d\lambda$$
$$+ \int_0^\infty \left(a + \lambda \right)^{-1} \operatorname{tr} \left[PQ \left(\lambda, a, A, B \right) \right] d\lambda.$$

Further, if we take the exponential in (2.8), then we get the desired result (2.7). \Box

Corollary 2. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, then for all $A, B \ge 0$ and a > 0 we have the bounds

(2.9)
$$\exp\left(\int_{0}^{\infty} (a+\lambda)^{-1} \operatorname{tr}\left[PS\left(\lambda,a,A,B\right)\right] d\lambda\right)$$
$$\leq \frac{\Delta_{P}\left(A+a\right) \Delta_{P}\left(B+a\right)}{a \Delta_{P}\left(A+B+a\right)}$$
$$\leq \exp\left(\int_{0}^{\infty} (a+\lambda)^{-1} \operatorname{tr}\left[PR\left(\lambda,a,A,B\right)\right] d\lambda\right),$$

where

$$R(\lambda, a, A, B) = (A + B + a + \lambda)^{-1} (A + B)^{2} (A + B + a + \lambda)^{-1}$$

for $a, \lambda > 0$.

In particular,

(2.10)
$$\exp\left(\int_{0}^{\infty} (1+\lambda)^{-1} \operatorname{tr}\left[PS\left(\lambda,A,B\right)\right] d\lambda\right)$$
$$\leq \frac{\Delta_{P}\left(A+1\right) \Delta_{P}\left(B+1\right)}{\Delta_{P}\left(A+B+1\right)}$$
$$\leq \exp\left(\int_{0}^{\infty} (1+\lambda)^{-1} \operatorname{tr}\left[PR\left(\lambda,A,B\right)\right] d\lambda\right),$$

where

$$R(\lambda, A, B) = (A + B + 1 + \lambda)^{-1} (A + B)^{2} (A + B + 1 + \lambda)^{-1}$$

for $\lambda > 0$.

Proof. Assume that $A, B \ge 0$. Observe that for $a, \lambda > 0$

$$(A + a + \lambda)^{-1} A = (A + a + \lambda)^{-1} (A + a + \lambda - a - \lambda)$$
$$= 1 - (a + \lambda) (A + a + \lambda)^{-1},$$

which shows that

$$0 \le \left(A + a + \lambda\right)^{-1} A \le 1$$

If we multiply this inequality both sides by B, then we get

$$0 \le B \left(A + a + \lambda\right)^{-1} AB \le B^2.$$

Similarly,

$$0 \le A \left(B + a + \lambda \right)^{-1} BA \le A^2.$$

Therefore

$$0 \le B (A + a + \lambda)^{-1} AB + A (B + a + \lambda)^{-1} BA \le A^{2} + B^{2}$$

and by multiplying both sides by $(A + B + 1 + \lambda)^{-1}$ we deduce

$$0 \le Q(\lambda, a, A, B) \le (A + B + a + \lambda)^{-1} (A^2 + B^2) (A + B + a + \lambda)^{-1}$$

for $a, \lambda > 0$.

Now, if to this inequality we add $S(\lambda, a, A, B)$, then we obtain

(2.11)
$$S(\lambda, a, A, B) \leq Q(\lambda, a, A, B) + S(\lambda, a, A, B)$$
$$\leq (A + B + a + \lambda)^{-1} (A^{2} + B^{2}) (A + B + a + \lambda)^{-1}$$
$$+ (A + B + a + \lambda)^{-1} (AB + BA) (A + B + a + \lambda)^{-1}$$
$$= (A + B + a + \lambda)^{-1} (A + B)^{2} (A + B + a + \lambda)^{-1}$$
$$= R(\lambda, a, A, B)$$

for $a, \lambda > 0$.

Further if we multiply both sides of (2.11) by $P^{1/2}$ and take the trace, then we get

$$\operatorname{tr}\left[PS\left(\lambda, a, A, B\right)\right] \leq \operatorname{tr}\left[PQ\left(\lambda, a, A, B\right)\right] + \operatorname{tr}\left[PS\left(\lambda, a, A, B\right)\right]$$
$$\leq \operatorname{tr}\left[PR\left(\lambda, a, A, B\right)\right].$$

If we multiply these inequality by $(a + \lambda)^{-1}$, integrate over λ and employ the representation (2.7) for the middle term, then we obtain the desired result (2.9). \Box

Corollary 3. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr (P) = 1, and $A, B \ge 0, a > 0$. (i) If $AB + BA \ge 0$, then

(2.12)
$$1 \le \frac{\Delta_P (A+a) \Delta_P (B+a)}{a \Delta_P (A+B+a)}$$

In particular,

(2.13)
$$\Delta_P \left(A + B + 1 \right) \le \Delta_P \left(A + 1 \right) \Delta_P \left(B + 1 \right),$$

which is a sub-multiplicative property for the map $\Delta_P(\cdot + 1)$. (ii) If $A + B \leq K$, with K a positive constant, then

(2.14)
$$\frac{\Delta_P \left(A+a\right) \Delta_P \left(B+a\right)}{a \Delta_P \left(A+B+a\right)} \le \exp\left(\frac{K^2}{a} \operatorname{tr}\left[P \left(A+B+a\right)^{-1}\right]\right).$$

In particular,

(2.15)
$$\frac{\Delta_P (A+1) \Delta_P (B+1)}{\Delta_P (A+B+1)} \le \exp\left(K^2 \operatorname{tr}\left[P (A+B+1)^{-1}\right]\right).$$

Proof. (i). If $AB + BA \ge 0$, then by multiplying both sides by $(A + B + a + \lambda)^{-1}$ we get

$$(A + B + a + \lambda)^{-1} (AB + BA) (A + B + a + \lambda)^{-1} \ge 0$$

for $a, \lambda > 0$, which implies that tr $[PS(\lambda, a, A, B)] \ge 0$ giving that

$$\int_{0}^{\infty} (1+\lambda)^{-1} \operatorname{tr} \left[PS(\lambda, A, B) \right] d\lambda \ge 0$$

and the inequality (2.12) is proved.

(ii). If $A + B \leq K$, then

$$(A + B + a + \lambda)^{-1} (A + B)^2 (A + B + a + \lambda)^{-1}$$

 $\leq K^2 (A + B + a + \lambda)^{-2}$

for $a, \lambda > 0$. This implies that

(2.16)
$$\int_0^\infty (a+\lambda)^{-1} (A+B+a+\lambda)^{-1} (A+B)^2 (A+B+a+\lambda)^{-1} d\lambda$$
$$\leq K^2 \int_0^\infty (a+\lambda)^{-1} (A+B+a+\lambda)^{-2} d\lambda$$
$$\leq \frac{K^2}{a} \int_0^\infty (A+B+a+\lambda)^{-2} d\lambda.$$

Now, if we take the derivative over t in (2.2), then we get

$$t^{-1} = \int_0^\infty (\lambda+1)^{-1} \left(\frac{t-1}{\lambda+t}\right)' d\lambda$$
$$= \int_0^\infty (\lambda+1)^{-1} \frac{\lambda+1}{(\lambda+t)^2} d\lambda = \int_0^\infty (\lambda+t)^{-2} d\lambda.$$

This gives that

$$\int_{0}^{\infty} (A + B + a + \lambda)^{-2} d\lambda = (A + B + a)^{-1}$$

and by (2.16) we obtain by taking the trace that

$$\int_0^\infty (a+\lambda)^{-1} \operatorname{tr} \left[PR\left(\lambda, a, A, B\right) \right] d\lambda \le \frac{K^2}{a} \operatorname{tr} \left[P\left(A + B + a\right)^{-1} \right].$$

Utilizing the second inequality in (2.9) we derive the desired result (2.14).

3. Related Results

We also have the following integral inequalities:

Theorem 7. Let $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, and $A, B \ge 0$ with $AB + BA \ge 0$, then

(3.1)
$$\Delta_P (A + B + 1) \leq \int_0^1 \Delta_P ((1 - t) A + tB + 1) \Delta_P ((1 - t) B + tA + 1)$$
$$\leq \int_0^1 \Delta_P^2 ((1 - t) A + tB + 1) dt$$

and, if $A + B \leq K$, where K is a constant, then also

(3.2)
$$\int_{0}^{1} \Delta_{P} \left((1-t) A + tB + 1 \right) \Delta_{P} \left((1-t) B + tA + 1 \right) \\ \leq \Delta_{P} \left(A + B + 1 \right) \exp \left(K^{2} \operatorname{tr} \left[P \left(A + B + 1 \right)^{-1} \right] \right).$$

Proof. We have

$$((1-t) A + tB) ((1-t) B + tA)$$

= $(1-t)^2 AB + t (1-t) B^2 + t (1-t) A^2 + t^2 BA$

10

and

$$((1-t) B + tA) ((1-t) A + tB)$$

= $(1-t)^2 BA + t (1-t) A^2 + (1-t) tB^2 + t^2 AB.$

Therefore, since $AB + BA \ge 0$, then

$$\begin{aligned} &((1-t) A + tB) ((1-t) B + tA) \\ &+ ((1-t) B + tA) ((1-t) A + tB) \\ &= (1-t)^2 AB + t (1-t) B^2 + t (1-t) A^2 + t^2 BA \\ &+ (1-t)^2 BA + t (1-t) A^2 + (1-t) tB^2 + t^2 AB \\ &= 2t (1-t) A^2 + 2t (1-t) B^2 + \left[(1-t)^2 + t^2 \right] (AB + BA) \\ &> 0 \end{aligned}$$

for all $t \in [0, 1]$.

From (2.13) we get

$$\Delta_P ((1-t) A + tB + (1-t) B + tA + 1) \leq \Delta_P ((1-t) A + tB + 1) \Delta_P ((1-t) B + tA + 1)$$

namely

$$\Delta_P (A + B + 1) \le \Delta_P ((1 - t) A + tB + 1) \Delta_P ((1 - t) B + tA + 1),$$

for all $t \in [0, 1]$.

If we integrate over $t \in [0, 1]$, then we get

$$\begin{split} &\Delta_P \left(A+B+1\right) \\ &\leq \int_0^1 \Delta_P \left((1-t) A+tB+1\right) \Delta_P \left((1-t) B+tA+1\right) dt \\ &\leq \left(\int_0^1 \Delta_P^2 \left((1-t) A+tB+1\right) dt\right)^{1/2} \left(\int_0^1 \Delta_P^2 \left((1-t) B+tA+1\right) dt\right)^{1/2} \\ &= \int_0^1 \Delta_P^2 \left((1-t) A+tB+1\right) dt, \end{split}$$

which proves (3.1).

From (2.15) we get

$$\Delta_P ((1-t)A + tB + 1) \Delta_P ((1-t)B + tA + 1) \\ \leq \Delta_P (A + B + 1) \exp \left(K^2 \operatorname{tr} \left[P (A + B + 1)^{-1} \right] \right)$$

for all $t \in [0, 1]$.

If we take the integral over $t \in [0, 1]$, then we get (3.2).

References

- [1] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [2] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art.
- [3] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530.

S. S. DRAGOMIR

- [4] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [5] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [6] T. Furuta, Precise lower bound of f(A) f(B) for A > B > 0 and non-constant operator monotone function f on $[0, \infty)$. J. Math. Inequal. 9 (2015), no. 1, 47–52.
- [7] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
- [8] T. Furuta, J. Mičić-Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Croatia.
- S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645.
- [10] H. Zuo, G. Duan, Some inequalities of operator monotone functions. J. Math. Inequal. 8 (2014), no. 4, 777–781.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

 $^2\mathrm{DST}\text{-}\mathrm{NRF}$ Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

12