A SUB-MULTIPLICATIVE PROPERTY FOR THE TRACE CLASS
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant of the positive invertible operator A by
Ap (A) :=exptr (PlnA).
In this paper we show among others that, if AB 4+ BA > 0, then
Ap(A+B+1)<Ap(A+1)Ap(B+1)
for all A, B > 0, which is a sub-multiplicative property for the map Ap (- +1).

1. INTRODUCTION

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (),
Sp(T)

where E (M) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp </ lntd,uT> .
0

Apk (T) := exp (1 (In([T7))),

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

If T is invertible, then
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In 1998, Fujii et al. [4], [5], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

AL (A) :=exp (ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [9].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

(1.2) > lAeill® =Y IALIF =D 114" f1

il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let Bo (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(1.3) 1A4]ly := <Z A6i|2>

icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in (2 (1), one checks that By (H) is a vector space
and that ||-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)'/?

Because |||A| z|| = ||Az]| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l,. From (1.2) we have that if A € By (H), then A* €
By (H) and [|All, = | A%],

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H), ||-l5) s a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y (B"Aei,e;)
i€l iel
and the definition does not depend on the choice of the orthonormal basis {e;}
(ii) We have the inequalities

(1.5) 1A < [l1All,

for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with

(1.6) ATy, (T Ally < 171 Al

iel’
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(iii) Ba (H) is an operator ideal in B (H), i.e.
B(H)B: (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =D (|4l eiye) < oo
iel
The definition of [|Al|; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H).
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [A[ly = 1A%, and [|A]l; < [[Ally
for any A€ By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B, (H)B(H) C By (H);
(i1i) We have
By (H) By (H) =B (H);
(iv) We have
|All, =sup{(A,B), | Be By (H), |B|y <1}
(v) (B1(H),||ly) s a Banach space.
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = (Ae;,e;),
il
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A") = tr (A);
(1)) If A€ By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, IT|;

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr (PI/QTP”Q)

forall T € B(H).

If T > 0, then PY/2TP'Y? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 3 T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .
Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have

the following elementary properties:
(i) continuity: the map A — Ap(A) is norm continuous;
(ii) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) =tA,(A) and Ap(t]) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
In the recent paper [2] we obtained the following results:

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and t € [0,1] we have the Ky Fan’s type inequality

(1.13) Ap((1—t)A+tB) > [Ap (A)]' " [Ap(B)]'.
and

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1, then for all A > 0 and
a > 0 we have the double inequality

(1.14) aexp [l —atr (PA™")] < Ap(A) <aexp [a” ' tr(PA) —1].
In particular
tr (PA) 1
(1.15) 1< Ap(A) < exp [tr (PA) tr (PA™") — 1]
and
Ap (A) —1 _
(1.16) 1< W < exp [tr (PA )tr (PA) 1] .

The first inequalities in (1.15) and 1.16) are best possible from (1.14).

Motivated by the above results, in this paper we show among others that, if
AB + BA > 0, then

Ap(A+B+1)<Ap(A+1)Ap(B+1)
for all A, B > 0, which is a sub-multiplicative property for the map Ap (- +1).
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2. MAIN RESULTS
The following representation result holds:
Lemma 1. For all A, B> 0 and a > 0 we have
(2.1) In(A4+a)+In(B+a)—In(A+B+a)—Ilna

:/ (a+>\)_15(/\,a,A,B)d/\+/ (a+2N)7"Q(\a, A, B)d\,
0 0

where
S(\a,A,B):=(A+B+a+)\) " (AB+BA) (A+B+a+\)""
and
Q(\a,AB):=(A+B+a+\)""
xpﬂA+a+ArRu%wuB+a+m*BA}
X (A+B+a+X""
for A > 0.

Proof. Observe that for t > 0, t # 1, we have

/“ d\ Int n 1 | u—+t
= n

o A+t)(A+1) t—-1 1-—t u—+1

for all w > 0.

By taking the limit over u — oo in this equality, we derive

Int 7/°° d\
t—1  Jo A+t)(A+1)’

which gives the representation for the logarithm

e dX
2.2 Int=(t-1 —_
(2:2) ( )/0 A+ (A+1)
for all £ > 0.
If we use the continuous functional calculus for selfadjoint operators, we have
[e ) 1 _1
2.3 InT = —— (T -1 (A+T) " dX
(23) oT= [ @D+

for all operators T > 0.
Observe that

o 9 . B
A T DO+ M_A

/ { —(A+T)” ]dA

InT = /OOO [()\ T O T)*l] d).

7 T+ A—1)(A+T) " dx

and then

Therefore

(2.4) 1n(A+a)+ln(B+a)—1n(A+B+a)—1na:/ K dA
0
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where
Kyi=(A+B4a+AN) 4@+ —(A+a+AN) ' —=B+a+N".
To simplify calculations, consider § := a + A and set
Ls:=(A+B+68) " 46 1 —(A+8) ' —(B+6".
If we multiply both sides by A + B + § we get
Ws:=(A+B+8)Ls(A+ B+9)

= (A+B+0)+6(A+ B+0)
—(A+B+0)(A+0) " (A+ B+9)
—(A+B+6)(B+6) " (A+B+9)
=(A+B+6)+0"(A+B+6)
—(A+B+68) —B(A+68) " (A+B+9)
—~AB+6) " (A+B+6) - (A+B+9)
=0 Y (A+B+6°’-B(A+6) 'B-B
—A(B+6)"A-—A—(A+B+9)

— 07 (A2 4 AB+ 6A+ BA+ B®+ 6B + 6A + 0B +6°)

~B(A+08) "B-2B-A(B+6) 'A-24-9

=0"'(A*+ AB+ BA+ B?) +2B +2A+6

~B(A+0) 'B-A(B+48) "A-24-2B-¢

— 07 (A2 4+ AB+ BA+ B ~B(A+06) 'B—A(B+6) ' A

— 5t {A2+AB+BA+Bz—5B(A+5)713—5A(B+5)71A}

51 {A2+AB+BA+B273(5_1A+1)713*A(5_IB+1)71‘4]'

Observe that

B2 —B(5*1A+1)_1B
=B('A+1) " (6TA+ 1) B-B(5'A+1) B
=B('A+1) (5A+1-1)B
=6'B(6'A+1) 'AB=B(A+6) ' 4B

and

A= A(5'B+1) A

—A(§'B4+1) (5B 1)A—A(5'B+1) 4
—A(F'B+1) " (57'B+1-1)A4
—6'A(67'B+1)" BA= A(B+4)"" BA.
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Therefore
Ws=05"" [AB +BA+B(A+68) "AB+A(B+46)"" BA]
which gives that
Ls:=(A+B+6) " '"Ws(A+B+6"".

We obtain then the following representation

(25) Ky=(a+X "(A+B+a+)\) " (AB+BA)(A+B+a+))""
+@a+N " A+B+a+ N
X |B(A+a+N) "AB+A(B+a+)) "BA| (A+B+a+ )"
= (a+N)""S\a, A B)+(a+ N ""P(\a, A B)

for a, A > 0.
By utilizing (2.4) and (2.5) we derive the representation (2.1). O

Corollary 1. For all A, B > 0 we have
(2.6) In(A+1)+In(B+1)-In(A+B+1)

:/oo (1+/\)_1S(/\,A,B)d>\+/oo (1+2)7"Q(\ A, B)d,
0

0

where
SAAB) :=(A+B+14+)\) " (AB+BA) (A+B+1+X)""
and
Q(\a,A,B):=(A+B+1+)\)""
X [B(A+1+A)’1AB+A(B+1+/\)’1BA]
X (A+B+1+N)""
for A > 0.

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B >0
and a > 0 we have the representation
Ap(A+a)Ap(B+a)

27) aAp(A+B+a)

= exp (/OOO (a+X)""tr[PS () a, A, B)| dA)
X exp </O°° (a4 2t [PQ (A a, A, B)] d>\> .

Proof. If we multiply both sides of (2.1) by P'/2, then we get
PY2In(A+a) P2 + PY21In (B + a) PV/?
— P2In(A+ B+a)PY? - (Ina) P

:/ (a+X)""PY2S (A, a, A, B) PY/2d\
0

+/ (a+X)""PY2P () a, A, B) P2d).
0
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If we take the trace and use its properties, we get

(2.8) tr[Pln(A+a)]+tr[Pln(B+a)]—tr[Pln(A4+ B+a)]—Ina

- /Oo (a+X) "t [PS (A a, 4, B)] dA
0

+/ (a+N)""tr[PQ (X a, A, B)]dA.
0
Further, if we take the exponential in (2.8), then we get the desired result (2.7). O

Corollary 2. Let P > 0 with P € By (H) and tr (P) = 1, then for all A, B > 0
and a > 0 we have the bounds

(2.9) exp (/OOO (a+N)""tr[PS (\ a, A, B)] d)\)

- Ap(A+a)Ap (B+a)
aAp(A+B+a)

< oxp (/Om (a+ ) tr[PR() a, A, B)] d>\> ,

where
R\ a,AB)=(A+B+a+)\) " (A+B*A+B+a+ )"
fora, A > 0.
In particular,
(2.10) exp ( / (14+X) "t [PS (A A, B)] dA)
0
Ap(A+1)Ap(B+1)
<
Ap(A+B+1)
< exp (/ 1+ )\)_1 tr [PR (N, A, B)] d)\) ,
0
where

RMAB) =(A+B+14+)N) " (A+B?*A+B+1+))""
for A > 0.
Proof. Assume thatA, B > 0. Observe that for a, A > 0
A+a+N"A=A+a+N " (A+a+r—a—N)
=1—(a+N(A+a+N"",
which shows that
0<(A+a+N 'A<l
If we multiply this inequality both sides by B, then we get
0<B(A4a+)\ "AB< B

Similarly,
0<A(B+a+)\ "BA<A%
Therefore

0<B(A+a+ ) "AB+A(B+a+)\) "'BA< A%+ B?
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and by multiplying both sides by (A+ B + 1+ A)"" we deduce
0<Q\a,A,B) <(A+B+a+A) " (A2+B)(A+B+a+)"'

for a, A > 0.
Now, if to this inequality we add S (A, a, A, B), then we obtain

(2.11) S\ a,A,B) <Q(\a,A,B)+ S (\a,A,B)
<S(A+B+a+ N (A2+B)(A+B+at+ )
+(A+B+a+))""(AB+BA) (A+B+a+ )"
—(A+B+a+)N) " (A+B?*(A+B+a+)N)""
= R(\a, A, B)

for a, A > 0.

Further if we multiply both sides of (2.11) by P*/? and take the trace, then we
get
tr [PS (A a, A, B)] < tr[PQ (N a, A, B)] +tr[PS () a, A, B)]
<tr[PR(\a,A,B).

If we multiply these inequality by (a + X) ™', integrate over A and employ the rep-
resentation (2.7) for the middle term, then we obtain the desired result (2.9). O

Corollary 3. Let P > 0 with P € By (H) and tr (P) =1, and A, B> 0, a > 0.
(i) If AB+ BA > 0, then

Ap(A+a)Ap(B+a)

. <
(2.12) LS AL (AT Bra)

In particular,
(2.13) Ap(A+B+1)<Ap(A+1)Ap(B+1),

which is a sub-multiplicative property for the map Ap (-+1).
(ii) If A+ B < K, with K a positive constant, then

Ap(A+a)Ap (B+a) K? 1
. < — .
(2.14) whp (AT B+a) <exp | — tr{P(A—i—B—I—a) }
In particular,
Ap(A+1)Ap(B+1) 5 1
. < .
(2.15) A AT B+ _exp(K tr[P(A+B+1) D

Proof. (i). If AB+ BA > 0, then by multiplying both sides by (A + B+ a+ A)~"
we get
(A+B+a+A) " (AB+BA)(A+B+a+X\)""'>0

for a, A > 0, which implies that tr [PS (), a, A, B)] > 0 giving that
/ (14+X)""tr[PS (A, A, B)dA>0
0

and the inequality (2.12) is proved.
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(ii). If A+ B < K, then
(A+B+a+N) " (A+B?(A+B+a+ )"
<K)(A+B+a+)\"?
for a, A > 0. This implies that

(2.16) /Ooo(a—k)\)1(A+B+a+)\)1(A+B)2(A+B+a+)\)1d>\

§K2/ @+ N (A+B+a+r)2dr
0

K? [ L
<— | (A+B+atnVdx
0

Now, if we take the derivative over ¢ in (2.2), then we get

> S (t=1Y
= A+ 1)) dA
[ o (55)

Y 1 A1 [ —2
_/0 A+ 1) ()\+t)2d)\—/0 (A+1)2dA.

This gives that
/ (A+B+a+ X\ "d\=(A+B+a)""
0
and by (2.16) we obtain by taking the trace that
= ~1 K? ~1
(@a+ )" tr[PR(\a, A, B)]d\ < ~— tr [P(A+B+a) ] :
0 a
Utilizing the second inequality in (2.9) we derive the desired result (2.14). O

3. RELATED RESULTS
We also have the following integral inequalities:

Theorem 7. Let P > 0 with P € By (H) and tr(P) = 1, and A, B > 0 with
AB+ BA >0, then

(3.1) AP(A+B+1)g/OlAP((l—t)A+tB+1)AP((1—t)B+tA+1)
§/1A§3((1—t)A+tB+1)dt
and, if A+ B < K, where Kois a constant, then also
(3.2) /OIAP((l—t)A—HB—i—l)AP((l—t)B+tA+1)
SAP(A+B+1)exp(K2tr {P(A+B+1)’1D.
Proof. We have

(1 —t) A+tB)((1 —t) B+tA)
=(1—-1)’AB+t(1—t)B*+t(1—t) A> +>BA
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and
(1—t)B+1tA)((1—t) A+1tB)
= (1—t)°’BA+t(1—t) A%+ (1 —t)tB* 4+ t?AB.
Therefore, since AB + BA > 0, then
(1—t) A+tB)((1—t)B+tA)
+((1=t)B+tA)((1—t) A+tB)
—(1-t)’AB+t(1—t)B>+t(1—t) A>+>BA
+(1—t)*BA+t(1—1t)A? + (1 —1)tB*> +t>AB
=2t (1—t)A2+2t(1—t) B>+ [(1 —t)* + 1| (AB + BA)
>0
for all t € [0,1].
From (2.13) we get
Ap(1—t)A+tB+(1—t)B+tA+1)
<Ap(1-t)A+tB+1)Ap((1—t)B+tA+1),
namely
Ap(A+B+1)<Ap(1-t)A+tB+1)Ap((1—t)B+tA+1),

for all t € [0,1].
If we integrate over ¢ € [0, 1], then we get

Ap(A+B+1)

§/IAP((l—t)A+tB—|—1)Ap((1—t)B+tA—|—1)dt
0

1/2 1/2

< </1A§3((1t)A+tB+1)dt>

0

(/OlA%;((lt)B+tA+1)dt>

1
:/ AL(1—t)A+tB+1)dt,
0

which proves (3.1).
From (2.15) we get

Ap(1—t)A+tB+1)Ap (1 —t)B+tA+1)
SAP(A+B+1)eXp(K2tr [P(A—&—B—i—l)_lD

for all t € [0,1].
If we take the integral over ¢ € [0,1], then we get (3.2). O
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