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Abstract

Here we expose multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RY, N € N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We treat also the case of ap-
proximation by iterated operators of the last four types. These approx-
imations are derived by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are defined by using a multidimensional density function induced by the
arctangent function. The approximations are pointwise and uniform. The
related feed-forward neural network is with one hidden layer.
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliagnet-Euvrard and ” Squashing” types,
by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
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there both the univariate and multivariate cases. The defining these operators
"bell-shaped” and ”squashing” functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.

For this article the author is motivated by the article [13] of Z. Chen and F.
Cao, also by [4], [5], [6], [7], [8], [9], [10], [11], [14], [15].

The author here performs multivariate arctangent function based neural net-
work approximations to continuous functions over boxes or over the whole RY,
N € N. Also he does iterated approximation. All convergences here are with
rates expressed via the multivariate modulus of continuity of the involved func-
tion or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.

The author here comes up with the ”right” precisely defined multivariate
normalized, quasi-interpolation neural network operators related to boxes or
R, as well as Kantorovich type and quadrature type related operators on RV.
Our boxes are not necessarily symmetric to the origin. In preparation to prove
our results we establish important properties of the basic multivariate density
function induced by arctangent function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this chapter, are mathematically expressed as

Nn(x):cha(<aj~x>+bj), I'ERS, SGNa
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z, and
o is the activation function of the network. In many fundamental network mod-
els, the activation function is the arctangent function. About neural networks
read [16], [17], [18].

2 Auxiliary Notions

We consider the

T od
arctanx = / %, z € R. (1)
o 1+=z
We will be using
2 2 (% d
h(x):= - arctan (ggg) = ;/0 152 _’_ZZQ, z € R, (2)

which is a sigmoid type function and it is strictly increasing. We have that

h(0)=0, h(-z)=—h(z), h(+00) =1, h(—occ)=—1,



and

/ _
h (nc)—4+ﬂ_2z2 >0, allz € R. (3)
We consider the activation function
1
(x)::z(h(erl)—h(x—l)), r € R, (4)
and we notice that
(—z) = (2), (5)

it is an even function.
Sincex+1>x—1,then h(z+1) > h(x—1),and ¢ (z) >0, all z € R.
We see that

1 s
(0) = p arctan 5 = 18.31. (6)
Let = > 0, we have that
@)= 3 (0 (1)~ R (= 1) =
— 42
N < <0. (7)
(4+7T2(37+1) ) (4—1—772(:5—1) )
That is
"(z) <0, for z > 0. (8)

That is 1 is strictly decreasing on [0,00) and clearly is strictly increasing on
(—00,0], and ¥’ (0) = 0.
Observe that
dim () = (b (+00) — h (+0)) =0,
and (9)
Jlim (@) = § (b (=o) = (=o0)) = 0.
That is the z-axis is the horizontal asymptote on .
All in all, ¢ is a bell symmetric function with maximum « (0) 2 18.31.
We need

Theorem 1 ([11], p. 286) We have that

o0

Y (@—i)=1, VzeR (10)

i=—00

Theorem 2 ([11], p. 287) It holds

/00 (z)dx = 1. (11)

— 00



So that ¢ () is a density function on R.
We mention

Theorem 3 ([11], p. 288) Let 0 < a < 1, and n € N with n'=% > 2. It holds

> (nz — k) < m (12)
k=—o0
{: Inz — k| > nl=

Denote by || the integral part of the number and by [-] the ceiling of the
number.

We need

Theorem 4 ([11], p. 289) Let x € [a,b] C R and n € N so that [na] < [nb].
It holds

1 1
< =~ 0.0868, V z € [a,b]. (13)
St (n— k) (1)
Note 5 ([11], pp. 290-291)
i) We have that
[nb]
lim k; | (nz — k) # 1, (14)

for at least some x € [a,b] .

ii) For large enough n € N we always obtain [na)] < |nb|. Alsoa < & <b,
iff [na] <k < |nb|.

In general, by Theorem 1, it holds

[nb]
> (mw-k) <1 (15)
k=[na]
We introduce
N
Z(@y,mon)=2Z @) =] (@), 2= (21,..an) €eRY, NeN. (16)
i=1
It has the properties:
(i) Z(x) >0, VzeRY,
(i)
oo o0 o0 o0
Yo Z@—k)= > > . > Z(wr—kye,ay —ky) =1, (17)
k=—oc0 klz—oo kQ:—OO kN:—Oo



hence

(iii)

o0

Z Z(nx —k) =1, (18)

k=—o0

/ Z(x)dz =1, (19)
RN

that is Z is a multivariate density function.
Here denote ||z||_ = max {|z1], ..., |zn|}, 2 € RV, also set 0o := (00, ..., 00),
—00 := (=00, ..., —00) upon the multivariate context, and

[na] := ([nai], ..., [nan]),
(20)
[nb] := (|nb1], ..., [nbN]),

where a := (ay, ...,an), b:= (b1,...,bn) .
We obviously see that

Lnb] [nb] N
Z Z (nx —k) = Z <H (mcz—kl)> =

k=[na] k=[na] \i=1

[nb1 ] [nbn] N N [nb; |
ooy (H (nxiki)>—H S mi—k) . (21)

k1=|—na1] k‘NZI—TLG,N.l i=1 =1 klzl‘nal]
For 0 < B <1andn €N, a fixed z € RY, we have that
[nb]

Z (nx—k) =

k=[na]

[nd] Lnb]

> (nz — k) + > (nz—k). (22

k= [na| k = [na]
{Ilﬁ—xllw<£ﬁ {HZ—fHoo>,3ﬁ
In the last two sums the counting is over disjoint vector sets of k’s, because the
condition ||% — zzc||oo > ﬁ implies that there exists at least one % — xT’ > %,
where r € {1,...,N}.
(v) As in [10], pp. 379-380, we derive that
[nb]

(12) 2
Z Z(nl‘—kﬁ)<m,0</@<1, (23)




withn e N:nl=F >2 x ¢ vazl [a;, b;] .
(vi) By Theorem 4 we get that

1 1
0< < < 2 (0.0868)" (24)

St Z e —k) (@ (1)

Ve (HZ 1[al,b]), n € N.

It is also clear that
(vii)
= 2
k= —o00
1% =2l

0<B<l,neN:n'"#>2 2ecRVN.
Furthermore it holds

1
> nﬁ

8

[nb)
lim_ k; | Z (nx —k) #1, (26)

for at least some = € (Hf\il [a;, bz]) .

Here (X, ””’v) is a Banach space.

Let f € C(Hf\il [ai,bi]7X) , o = (21,...,xN) € vazl [a;,b;], n € N such
that [na;] < [nb;|,i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (z := (z1,...,xn) € (Hfil [ai,bi])):

ZIEanna] ( ) Z (mc - k)
An (faxla"'7‘rN) = An (f,.]?) = Z[Eanna_‘ (nsz) -

[nb1 | Lnbs ] Lnbw ] k k N
Zkl_]'nal] Zkg:?nag‘\ ZkN N[naN] (717 e TN) (H1:1 w (nxl - kl))
N nb; ’
L (S0 e (s = k)

For large enough n € N we always obtain [na;] < |nb;], i = 1,...,N. Also
a; < & < by, iff [na;] < ki < [nbi),i=1,..,N.

When geC (Hl 1 lag, bl]> we define the companion operator

(27)

nb
ﬁ(gmukaﬁﬂ 9 (%) Z (ne—k)
Zlganna] (nx — k)




Clearly ﬁn is a positive linear operator. We have that
B N
AJL@:l,Vxe(IU%mO.
i=1

Notice that A, (f) € C (vazl [a;, b;] ,X) and A, (g) € C (HZ 1 [al,bl]) .

Furthermore it holds

Sl
[na] ||f( )H Z(nx—k) ~
4 (o), < 25 = A, (Iflly-2),  (29)
'Y Zl\;anna_l ('I’ll’ 7 k') ( vy )
Ve[, [aibi].
Clearly |/, € C (T}, [as,bi)
So, we have that
1A (£,2)], < An (111, 2) (30)
Vo eI, fabl, ¥ n e N,V £ e C (T, [as,bi], X)
Let ce X andge C (Hi:l [ai,bi]> then cg € C (]—L 1 lai, by ,X) .
Furthermore it holds
Ay, (cg,x) = Ay ( x,VazEHal,l. (31)
Since A, (1) = 1, we get that
A, (c)=¢ VceX. (32)

We call Zn the companion operator of A,,.
For convinience we call

[nb]

= Y f(> (nz — k) =

k=[na

[nb1] [nbs2 ] [nbn | kl N N
DD D j’( " > <I1 (nxi—k0>, (33)

ki=[nai]| ka=[naz] kn=[nan]

Vxe(HﬁJ%mD.
That is

A*
Ao Ao lo0)

> kh—ina) £ (nz — k)




Ve (HiN:l [ai,bi]), n e N.

Hence

A5 (f,2) = £ (@) (S0 Z (2 = 1))

St Z (ne — k)
k=[na]
Consequently we derive
(24) [nb]
14n (f,2) = £ (@), < (0.0868)™ || A (f,2) = f(x) > Z(na—k)| ,
k=[na] ~
(36)

v e (T, o b))
We will estimate the right hand side of (36).
For the last and others we need

Definition 6 ([11], p. 274) Let M be a convex and compact subset of (RN, H~||p),
p € [1,00], and (X, H||,y) be a Banach space. Let f € C (M, X). We define the

first modulus of continuity of f as

wi (f,0):=  sup  [If ()= f(W,, 0<d<diam (M). (37)
T,y € M:
e —yll, <6

If § > diam (M), then
w1 (f,0) = w1 (f, diam (M)) . (38)

Notice wy (f, ) is increasing in § > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,d) is defined similarly.

Lemma 7 ([11], p. 274) We have wy (f,0) = 0 as 6 | 0, iff f € C(M,X),
where M is a convex compact subset of (RN, ||-||p>, p € [1,00].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),
iff wy (f,0) — 0 as § | 0, where wy is defined similarly to (37). The space
Cp (RN , X ) denotes the continuous and bounded functions on R¥.

When f € Cp (RN,X) we define,

) (nx — k) :=

By, (f, %) := By (f,21, ..., xN Z f(
i i i f(kl ke )(ﬂl n;vl—k> (39)

k=—o0
ki=—00 ko=—c kny=—00

S|



n €N,V z e RN, N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € C (RY, X) we define the multivariate Kantorovich type neural
network operator

oo

Cn(fax) ::O’IL(f)xla---;xN) = Z <nN/nf(t)dt>Z(an—k'):

k

k=—o0 n

k141 ko+1 ky+1

DI ( Lo f(tl,._.,tmdtl...dm)

ki=—o00 kg=—00 kn=—00 n n

N
: (H (nx; — kz)) ) (40)

i=1
neN, VzeRV,
Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D, (f,z), n € N, as follows.
Let 0 = (01,....0n) € NV, r = (r1,..,ry) € ZY, w, = Wy py,..rn > 0, such

0 01 [P On
that S wr.= Y > . > Wy en =1; k€ ZYN and
r=0 r1=07r2=0 rny=0

6
6nk (f) = 6n,k1,k2,~..,k1\7 (f) = Zwrf (f}, + 7:9) =
r=0

01 25 On

ki 1 ke m kn  rn
D D ST (LR - L IR ) B Y
Wrira,... Nf(n +n01 n +n92 n +n0N> (41)

7‘1:0 ’1"2:0 ’I”NZO

where § = (31,72, 5 ) .
We set
Dn (f,ZL') = Dn (faxla'“axN) = Z 5nk (f)Z(TLZL’— k) = (42)

k=—o0

0o 00 00 N
Z Z Z On ke kasin () (H (nx; — kﬂ) ,
k1=—oc0 ko=—oc0  ky=—o00 i=1
vV eRY,
In this article we study the approximation properties of A,, B,,C,, D,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.



3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f € C(Hf\;l [ai,bi],X>7 0<pB <l ze€ (va:l [ai,bi]),
N,n € N with n*=% > 2. Then

1)
4n () = £ @), < (0.0868)" [wl (o) + M] ().
d (13)
an 2)
140 () =71, <2 (44)

) . [l o .
We notice that lim A, (f) =" f, pointwise and uniformly.
n—oo

Above wy is with respect to p = oo.

Proof. We observe that

Lnb]

A(z):= A, (fow) = f(z) Y Z(nz—k)=

k=[na]

[nd] [nb]
Z f(ﬁ)Z(nx—k‘)— Z f(x)Z(nex—k) =

Fnel k=l
Lnb) By
k%ﬂ (f (n> - (m)> Z (nz — k) (45)
Thus - k
lA@)l, < k_%] ‘f <n) ~f @) Zne k)=
Lnb) W -
{S’fiidnlﬁ Hf(n> f(x) 7Z( k) +

10



[nd]
> (E)-re] zee-n'e
k= [na) K
{Hﬁ —ofl > 55
1 [nd] (23)
o (o) +2 st | Zine—k) <
k = [na]
1% ==l > 75

(46)

&
A~
=
Q‘H

n >+772(n15—2)'

So that

. afisn, .
8@l <1 (fm7) + e (47)
Now using (36) we finish the proof. ®

We make

Remark 9 ([11], pp. 263-266) Let (RN [ ) N € N; where ||-|, is the L,-

norm, 1 < p < co. RY is a Banach space, and (RN) denotes the j-fold product
space RN x ... x RN endowed with the max-norm [zl gnyi = max ||zl where

_ 1<A<j
x = (21,...,2;) € (RV).
Let (X, ||||A/) be a general Banach space. Then the space L; := L; ((RN)] ;X)

of all j-multilinear continuous maps g : (]RN)j — X, j7=1,...,m, is a Banach
space with norm

llg (@)l

_ 48
Y

gl ==1llgll., == suwp llg(@)ll, =sup

ol vy =1

Let M be a non-empty convex and compact subset of R¥ and xog € M is fized.

Let O be an open subset of RN : M C O. Let f: O — X be a continuous
function, whose Fréchet derivatives (see [19]) fU) : O — L; = L, ((RN)J ;X)
exist and are continuous for 1 <j <m, m € N._

Call (z — x0) = (& — xg, ..., x — x0) € (RVY, z € M.

We will work with f|ar.

Then, by Taylor’s formula ([12]), ([19], p. 124), we get

() _
Z f xo :E xO) + RnL (x,l‘o) ) all x € Ma (49)

11



where the remainder is the Riemann integral

Ry, (z,x0) == /0 (Gl N (f(m) (o +u(zx—x0)) — fm) (xo)) (x — 20)" du,

(m—1)! (50)
here we set fO) (x0) (x — 20)° = f (o).
We consider
wimw (F,0) = swp | f (@) = £ () (51)
z,yeM:
le—yll, <h
h > 0.
We obtain
| (7 @0+ u(@—w0)) = £ (@0)) (@ —20)"|| <
gl
£ (o + (@ = w0)) = £ (o) |- llz = o} <
m [ullz = ol
wlle = aally | 5 . (52)
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
o Tl =3l T (=
o o)l <l =zl [ [ ] C g,
=, (|l = o], (53)

by a change of variable, where

It g _smfl il
<I>m(t)::/0 [h](tgm_)l)' —1'(; |t| — jh) ),VteR, (54)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

[ hle™!
< = oy o,
<1>m(t)<(m+1)!h+2m,+8(m_1)! , VteR, (55)

with equality true only at t = 0.
Therefore it holds

+1 1
[l — ol lz = woll," Al — ol

(m+1)h 2m! 8(m —1)!

|Wm@wﬂhﬁw< >,Vx€M.

(56)

12



We have found that

@ ( — z0)
R
:

" (f<m> h) ”x_%HmH + ”w_x‘)”;ﬁh”x_%”;nil <oo, (57)
! ’ (m+ 1)k 2m! 8(m—1)! ’

VYV x,xg € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f™) being continuous
on M.

One can rewrite (57) as follows:

™) () (- — o)

; J!
=0
J il

+1 —1
o - =aoll,” Rl — a0l

|- = zoll,
(m)
e (f ’h)<(m+1)!h T T s 1) )’\”()gM’ (58)

a pointwise functjonal inequality on M.
Here (- — z9)’ maps M into (RN)’ and it is continuous, also f9) (xo) maps

(RN)j into X and it is continuous. Hence their composition @) (x) (- — xo)
s continuous from M into X.
Clearly f ()= L2@)C=20) o o (A1, X)), hence Hf(.) _ym o) (—w)!
Y j=0 Fi » )y j=0 gl
C(M).
Let {EN} be a sequence of positive linear operators mapping C (M) into
NeN
C(M).
Therefore we obtain

S
5

H ) f”@%?my (20) <
I = aolly ™)) (o) (L (II- = olly") ) (o)
w1 (f(m)’h) 2 (m+1)!h>) : +< d 2773! )

+h@m(tmﬁkﬂ))uw | )

VNeN,Vaxye M.

13



Clearly (59) is valid when M = H [a;,b;] and L,, = A,,, see (28).

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,, A, fulfill its assumptions, see (27), (28), (30), (31) and (32).

We present the following high order approximation results.

N
Theorem 10 Let O open subset of (RN7 ||'Hp), p € [1,00], such that T] [as,b;] C
i=1

O C RY, and let (X, ||H7) be a general Banach space. Let m € N and [ €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

N
from O into X. We study the approximation of f| . Letxg € (H [ai, bl]>
1T [as,b4] i=1

andr > 0. Then
1)

S| -

(4, i (40 (£9 (@) (- = 20 ) a0)| <

wn (7, (A (I = 2ol)) () ™ §
Sl (rm! D) (5 i)

1 r o mr?
Lm+n+2+g3} (60)
2) additionally if ) (x¢) =0, j = 1,...,m, we have

[[(An (f)) (z0) = f (zo)l, <

or (£ (A (1= 0l ™)) ) ™
( (< ( _ )) ) )((gﬂ (H._%HZ@H»(xo))(mﬂ)

(61)
1 r - mr?
Lm+n+2+gg}
3)
mﬂu»uw—fumusffiMm4ﬂﬂmwc—mﬂnumm+

wn (10 (Ao (I — 2ol )) (20)) ™7 .
< (G — ) ) ) ((Zn(w-—xwm”*))<x@)(”*”

(62)

14



and
4)
[EEYCI RN .
H[a1 i]
1 )
( (fm 20) (- _;UO)J))(xO) +
] ooxoel:[[a77 i]
1
m m+T
X (f(m)7TH( (I = woll; +1))(xo)Hoomeﬁ[wb;])
rm!
m (7%1)
[ (1= anl™)) 75 ©
( ( )) oo,mOGil;Il[anbi]
1 +i+m7’2
(m+1) 2 8 |’
We need

=

Lemma 11 The function (A',L (H — x0||;n)> (o) is continuous in Ty € <
m € N.

' [a, bi]) )

2

Proof. By Lemma 10.3, [11], p. 272. =
We make

Remark 12 By Remark 10.4, [11], p. 278, we get that

H( (| — ol )) (xO)Hoo,woeiﬁl[ai»bi] =
[ (A L i )

forallk=1,....m
We give

Corollary 13 (to Theorem 10, case of m = 1) Then

1)
(A (D) (o) = 1 @)l < || (4n (/O 0 (- = 20)) ) o)+

15



gren (£ (B (1 =w018)) @) ) (B (1)) ) 9
[1 +r+ Cﬂ
and
2)
[ncan e - nyHoo,ﬁ .
HH f(1 (x0) (- — xo))) (zo) , Oo,xoeﬁl[%bi] +
Lo (fm,r (& (1 = 0l2)) (@Him x H)
(& (1 = 2012)) (20) mm] e )
r > 0.
‘We make

Remark 14 We estimate 0 < o <1, m,n € N:nl=® > 2

n m—+1
A (I = 2ol (a0) = E s nan [ — woll5e” Z (o k) 29
> ]Enb anﬂ (nxo — k)

[nb]

m—+1
(0.0868)" > |I= — a0 Z (nxo — k) = (67)
k=[na] S
N [nb] L m+1
(0.0868) > Hn — )| Z (nwo — k) +
{ . k = [na]
i = ol < 5w
L"bj m—+1
Z H: — 1z Z (nxg — k) (2§5)
{ k = [na] >
= ol > 7w

16



N 1 2|1 —af 2"
(0.0868) {na<m+1> T e g) [ (68)

(where b—a = (by — ay,...,by —an)).
N
We have proved that (V xo € [] [ai, bi])
=1

7

Ay (11 = 2ol ™) (o) < (0.0868)" L 20b—ali™ | (n)
n 0llco 0 . na('rn-l—l) 7.[.2 (nlfa — 2) =Pl
(69)

O<a<l, mneN:nl7>2)
And, consequently it holds

|40 (I = 2ol (o)

N
00,z0€ [] [ai,bi]
=1

0.0868)" 1 2(b—ale™ | _ . .
(0. ) no(m+1) + 72 (nl—o —2) =¢1(n) >0, asn— +oo. ( )

So, we have that ¢1 (n) — 0, as n — +oo. Thus, when p € [1,00], from
Theorem 10 we have the convergence to zero in the right hand sides of parts (1),

Next we estimate H (gn (f(j) (zo) (- — xo)j)> (ZEO)H
We have that

Y

S 19 (@0) (& = 20)’ Z (g — B)
ZW)J Z (nxg — k) .

(4n (£9 @o) (- = 20)") ) (o) =

k=[na]
(71)
When p =00, j =1,...,m, we obtain
, I j _ 1 j
| F9 (o) (n - Io) < Hf(]) (IO)H H” — o N (72)
v
We further have that
1 () j (24
| (Au (59 @o) (- = 0)")) (o) <
-
[nb] . k j
0.0868)™ | > ||fY9 (x0) <n - m0> Z(nxo—k) | <
k=[na] Y
N [7b] k J
©) Z — =
(0.0868)" [ 3" Hf (xO)H Hn wo|| 2 (w0 —H) (73)

k=[na]
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[nb] j
(0.0868)~ Hf(j) (mO)H 3 Hk —wol| Z(nwo—k) | =
k=[na] o0
(0.0868)™ Hfm (xo)H > Hn — || Z(nzo — k)
k = [na] OO
% =0l < 5
[nb] j (25)
+ Z Hz —zo|| Z(nzo—k), < (74)
k= [na) OO
1% = 2ol > 7=
2||b—al,
N eG) H
(0.0868)" || 19 (@ { P g oy [ 70 s oo

That is ‘
H( (f(y) (o) (- — :vo)J)) (xo)Hy — 0, as n — oo.

Therefore when p = oo, for j =1,...,m, we have proved:

(3 (59 oy =aor) ) o) <

(0.0868)" Hf (o H {na] + M} < (75)

72 (nl-o — 2)

(0.0868)~ Hf(j)Hoo {1. + W} = s (n) < 00,

noJ T2 (nl—a
and converges to zero, as n — oQ.

We conclude:

In Theorem 10, the right hand sides of (62) and (63) converge to zero as
n — oo, for any p € [1, co].

Also in Corollary 13, the right hand sides of (65) and (66) converge to zero
as n — oo, for any p € [1,00].

Conclusion 15 We have proved that the left hand sides of (60), (61), (62),
(63) and (65), (66) converge to zero as n — oo, for p € [1,00]. Consequently
A, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (61). Higher speed of convergence happens also to the left hand side of (60).
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We give

Corollary 16 (to Theorem 10) Let O open subset of (RN,|-||.), such that
N

H [a;,b;] € O CRY, and let (X Il ) be a general Banach space. Let m € N
and f e Cc™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let 2y €

[ai; i

i=

N
<H [ai,bi]) and r > 0. Here @1 (n) as in (69) and @95 (n) as in (75), where
i=1
neN:nl ™ *>2 0<a<l,j=1,..,m. Then

1)

(An i%( (79 (o) (- = 20)') ) (w0)|| <
O

1

wi (F0) r (o1 (n))™ T m roomr?
(s T(;;()) ><¢1<n>>(m+”{<ml+1>+z+ 8}’ (76)

2) additionally, if f9) (x¢) =0, j = 1,...,m, we have

1(An () (xo) = f (o)l <

w (m) n))mtt m r mr?
1 (f Ti;pll( ) ) (o1 (n))(m+1) |:(mirl) + 3 + 3 :| , (77)
3)
. 25 (n)

HHA" — H H[al ] : j!

wi (F0) (o1 (n T
(f T(T:! (n)) ) (o1 (n))(m“) (78)

{(mi_l)—'—;_‘_mgrz} =:p3(n) =0, as n — oco.

We continue with

Theorem 17 Let f € Cp (RN,X), 0< B <1, z2zeRY, NneN with
n'=8 > 2, wy is for p=oo. Then

1)

1B (1.0) = £ @, <1 (Fi5) + M = da(n),  (79)
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J
[1B2 (= 11| < 2= ().

(80)

Given that f € (CU (RN,X) NCg (RN,X)), we obtain Um B, (f) = f, uni-
n— oo

formly.

Proof. We have that
B~ f0) Y 1 (E) 2050 3zt

)=

)

2 =3
> (7 (E) = @)z 1.
> ((5)-rm)
.10 =5 @l < 3 1 () 1) Zow =
> p(E)-re) zee-ns
T
> ()@ 20
s 20
o (1) +2 k ioo Zina—F) <

E _ H 1
Hn xoo>n/3

1y, sl
YL\ e w2 (nt=F —2)’
proving the claim. m
We give

(81)

Theorem 18 Let f € Cp (RN,X), 0 < B <1 2¢cRNV, Nnec N wih

n'=P > 2, wy is for p=oo. Then
1)

411
||Cn(f,37)_f(33)||.y <wp (f’;—i_nlﬁ) +7r2’(‘nl;HOO2)::

20
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2)

i€ =11, _ = 2s ). (84)
Given that f € (CU (RN,X) NCg (RN,X)) , we obtain nli_)n;oCn (f) = f, uni-
formly.
Proof. We notice that
LT F(t)dt = /LlT LZT . L" F(ty, toy o t) dtrdts...dty =
/ / / (t1+ tg-i-@ ,tN-i-kN) dtl...dtNZ/nf(t-f—k) dt.
n 0 n
(85)
Thus it holds (by (40))
C, (f,x):k;m <nN/O f<t+n> dt)Z(nx—k). (86)
We observe that
1o (f,2) = f @), =
i (nN/nf<t+k>dt>Z(nac—kz)— i f@)Znx-k)| =
k=—oc0 0 n k=—oc0 ’Y
kzz_:oo <<nN/O f (t—i— n) dt) —f(a;)) Z (nx — k) ’Y:
éjoo (nN/O (f (H 7’2) - f@;)) dt) Zme—k)| < @7
k_z_:oo<nN/0 f(t—l—n)—f(x) 7dﬁ)Z(m:—k):
i (nN/n f(t—i—k)—f(x) dt)Z(n:L'—k:)—i-
k= ’ ! ’
{ 1% - xHoo < 75
n (tJrfL)f(x) dt)Z(mck)g

>
k= —00

{Hk— loe > 75
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.

Z <nN/0"w1<f7||t||m+Hfl—x )dt)Z(nx—k)+
k=—-00 *

“ﬁ—ﬂm<é

2(|usi | >z <
k=—00

1% =2l > 5

A1
1 1 ¥
el ) —L 1o 88
wi (f,n+n5>+ﬂz(n15_2), (88)
proving the claim. m
We also present

Theorem 19 Let f € Cp (RN,X), 0<B <1 2 ¢cRN Nn e N wih
n'=P > 2, wy is for p=oo. Then

1)
D () = F @, < (£ 2] + % =), (59

J
[1D (1) = 11| < 2. (90)

Given that f € (Cy (RY,X)NCp (RN, X)), we obtain lim D, (f) = f,
n—oo

uniformly.

Proof. We have that (by (42))

1D (f2) = F @), = || Y. (N Z(mz—k) = > f(z)Z(na—k)| =
k=—o00 k=—o0 ~
(91)
Y Gun(f) = f (@) Z (na— k)| =
k=—oc0

~

ki@(iwr(f(ﬁﬂ;)—f@)))zmx_m .
kioo (iow f(SJFnTg)—f(x) 7)Z(n:c—k):
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i (iw f(kﬂ;) f (@) >Z(nx—k)+
efazs v
i (Z:w f(iﬂ‘,;,)—f(a:) 7)Z(m:—k)<

{ k=—00
1% =2l >7m

0
k r
Z (Zwrwl (f,H—x + 7 ))Z(nm—k)—!—
- —0 n 00 no lleo
= —00
{ 1% =2l < 55
271, _ > Zme-n|<
k= —o0
1% =2l > 5
i)
1 1 Moo
w1 (f7n+7lﬁ)+7r2(71152)7 (92)
proving the claim. m
We make

Definition 20 Let f € Cp (RY,X), N € N, where (X, ||||7) is a Banach
space. We define the general neural network operator

v)i= > b (f)Z (nz—k) =

k=—oc0
By (f,2), if luk (f) =f(%),
Co (f,2), iflux (f) =nl (93)

Clearly l,,x, (f) is an X-valued bounded linear functional such that ||l,x (f)]], <

4 <
s
Hence F,, (f) is a bounded linear operator with HHFn (O, N < HHfHVHOO
We need

Theorem 21 Let f € Cp (RY,X), N > 1. Then F, (f) € Cp (RY, X).
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Proof. Clearly F, (f) is a bounded function.

Next we prove the continuity of F, (f). Notice for N =1, Z = ¢ by (16).

We will use the generalized Weierstrass M test: If a sequence of positive
constants My, Ms, M3, ..., can be found such that in some interval

(a) |lun (@)[, < Mn, n=1,2,3,...

(b) > M, converges,

then > w, (z) is uniformly and absolutely convergent in the interval.

Also we will use:

If {un ()}, n = 1,2,3,... are continuous in [a,b] and if Y u, () converges
uniformly to the sum S (z) in [a,b], then S (z) is continuous in [a,d]. Le. a
uniformly convergent series of continuous functions is a continuous function.
First we prove claim for NV = 1.

We will prove that Y 7o Ik (f) ¢ (nz — k) is continuous in z € R.

There always exists A € N such that nz € [-A, \].

Since nx < A, then —nx > —Aand k —nx > k— X > 0, when & > .
Therefore

Yz —k) =Y vk-nz) <Y v(k-N)=Y ¢FE)<1L  (9)
k=X k=X k=X k'=0
So for k > X we get

It (£)1, (= ) < (A1 ]| o 0= ),
and

[0 S0 < st
k=X

Hence by the generalized Weierstrass M test we obtain that Y ;-\ L, (f) ¢ (nz — k)

is uniformly and absolutely convergent on [—%, %] .
Since lni (f) ¢ (nz — k) is continuous in x, then Y po | Ly (f) ¢ (nx — k) is
continuous on [f%, %] .

Because nx > —A, then —nz < A\, and k —nx < k+ X <0, when k£ < —\.
Therefore

Y - - 0
dovw—k)= Y dk-nr)< Y pk+N= Y ¢F)<L

k=—o0 k=—o0 k=—o0 k/'=—00

So for k < —)\ we get

o (£, (na = ) < (11| o G+ ), (95)
and

s RIS Jnsn)|_ -
k=—o00

24



Hence by Weierstrass M test we obtain that Z,;:)‘foo Lk (f) ¥ (nx — k) is uni-
formly and absolutely convergent on [—f f} .

So we proved that Y po Ik (f) ¢ (nz — k) and Z,;:)‘_oo Lk (f) ¥ (nx — k)
are continuous on R. Since Zz;;\“ lnk (f) ¢ (nx — k) is a finite sum of con-
tinuous functions on R, it is also a continuous function on R.

Writing

oo -

k=—o0 k=—oc0
A—1
S b () (nz —k +Zlnk Y (nx — k) (96)
k=—X+1

we have it as a continuous function on R. Therefore F,, (f), when N =1, is a
continuous function on R.
When N = 2 we have

w (f,z1,20) = Z Z Lok (f) ¥ (nx1 — k1) ¢ (nwg — ko) =

ki1=—00 ko=—00

> w(nxl—k1)< > lnk<f)w(nx2—k2)>

klzfoo kzzfoo

(there always exist A1, A2 € N such that na; € [—A1, \1] and nxa € [—A2, X))

oo — A2
> w(mclkl)[ S bk ()¢ (nay — ko) +

klzfoo k2:700
Ao—1
S Lk () ¥ (nay — Z Ini (f nwz—kz)] =
ka=—Aat1 ka=Aa

— A2

Z Z Lok (f) ¥ (nxy — k1) (nxe — ko) +

k1=—OO kQ——OO

A2—1

Z Z Ink (f) ¥ (nxy — k1) 9 (nag — k2) +

ki=—00 ka=—MX2+1

Z Z Lk (f) ¥ (nxy — k1) ¥ (nae — ko) =: (%).

klz—oo k2:>\2
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(For convenience call
F (k1 kg, w1, @2) o= b (f) ¥ (nay — k1) ¥ (n@z — k2) . )

Thus

-1 —A2 A1—1 =2

Z Z F(lﬁ,kz,l‘hl‘g)—l— Z Z F(/ﬁ,k‘z,l’l,l’g)—f'

ki=—o00 kag=—o00 ki=—X+1ky=—0c0

-2 -1 Ax—1

Z Z F kl,kg,xl,xg Z Z F(khkg,xl,fﬂg)-i-

k1=MX1 koa=—00 ki=—o00 ka=—MXo+1
A—1 Aa—1 Az—1

Z Z F(k17k2,$1,$2 Z Z F(kl,kanlv‘r2)

ki=—X1+1ka=—X2+1 =X1 ko=—X2+1
—)\1 o0 )\1 1

Z Z F (ky, ko, x1,22) + Z Z F (ky, ko, 1, m2) + (97)

ki1=—00 ka=A2 ki=—X1+1ka=MX2

Z Z F(kl,kg,xl,ﬁz).

k1=MX1 ka=M\2
Notice that the finite sum of continuous functions F (k1, ko, 21, 22),

A1—1 Ag—1 . . .
Y ki— a4l 2ohom—xgp1 F (1, k2, 1, 2) is a continuous function.

The rest of the summands of F,, (f,x1,x2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.
We will prove that Y ", Zszfoo nk ()Y (nxy — k1) ¢ (nxg — ko) is con-

tinuous in (71, 72) € R2.
The continuous function

ok (£)1, % (ny = k1) (na = ko) < [I1£11, |9 Gk = M) (ka4 Aa),

and

(ERD> S b )6 O+ ha) —

1 )\1 k27foo

s ( S i) ) ( > v mm) <

k1:)\1 2—700

oo 0
e (S wen ) 32w ) <
 \ k=0 kb =— 00 o
So by the Weierstrass M test we get that

D ke 2,22)2700 Lk (f) % (nx1 — k1) % (nxo — k2) is uniformly and absolutely
convergent. Therefore it is continuous on R2.
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Next we prove continuity on R? of

SN T it S bk (F) ¥ (g — k1) @ (nas — ko).
Notice here that

ok (£)1, % (nars = k1) (na = ko) < 1711, 9 (ns = k) (ks + Do)

<[] e 00 (e o) = 1831 1L || e (ke + ),

A—1 —A2
7m< > 1)(2 ¢(k2+>\2)>—
ki=—X1+1 ko=—o00

1831 [If1, | _ 2y —1) S v <1831 (20 — 1) |I£1L,]|_- (98
kh=—o00

and

mmw

So the double series under consideration is uniformly convergent and continuous.
Clearly F}, (f,x1,22) is proved to be continuous on R2.

Similarly reasoning one can prove easily now, but with more tedious work,
that F, (f,x1,...,2n) is continuous on RY . for any N > 1. We choose to omit
this similar extra work. m

Remark 22 By (27) it is obvious that H||An (f)”VH < H||fH7H < 0o, and

o0

A, (f)eC(]N[[az, Z],X) given thatfeC(H[a“ 1],X>

=2

i=1
Call L,, any of the operators A,, By, Cy, Dy,.

Clearly then

lz2 ol = [z @a || < 1z o] < i), o9

etc.
Therefore we get

iz ol = 1] wrew, (100)

the contraction property.
Also we see that

lizs ol s izt ol s - < iz < (101
Here Lk are bounded linear operators.
Notation 23 Here N € N, 0 < 8 < 1. Denote by
(0.0868)" , if L, = A,,
= 102
o {17 Zf L, = Bnacnana ( )
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1 .
— B’ Zan = An7 B'ru
N .
Q:= ¢ <zl;[1 i ,X> P = A (104)
CB( NaX)7 ian:ancn7Dnv
and
N .
Y — 11_[ [aiabi] ) Zf Ln - An7 (105)

=1
N: Zan = Bn;CnaDn-
We give the condensed

Theorem 24 Let f€Q,0<B<1, 2€Y;n, NeN withn'=% > 2. Then

(i)
i,
Lo (f,2) = f (@), < en |wi (f,e(n))+ ngz) =:7(n), (106)
where wy 18 for p = oo,
and
(ii)
H||Ln(f)—f||wHoo§T(7L)—>0, as m — oo. (107)

For f uniformly continuous and in  we obtain

lim L, (f) = f,

n—00

pointwise and uniformly.

Proof. By Theorems 8, 17, 18, 19. =
Next we do iterated neural network approximation (see also [9]).
We make

Remark 25 Let r € N and L,, as above. We observe that
Lof—f=Lof =Ly )+ (L =Ly 2 ) +
(L 2f =Ly f) 4 oo+ (L f = Lo f) + (Lnf = f).
Then

Inzer = s <|zas -z,

i |+

lze2s = i1l

et ||l22 s = | 12ar = 10| =
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et @ar = ||+ {12572 @t = L]+ {12678 @t = 2,

o0

oot 120 Lt = DIL|| 4 [0t = £1L)| < |12as =21, 08)

That is

lnzss =g < |izas - 11, (109)

8

We give

Theorem 26 All here as in Theorem 24 and r € N, 7(n) as in (106). Then
zns = £lL|| < e ). (110)

So that the speed of convergence to the unit operator of L) is not worse than of
L,.

Proof. By (109) and (107). =
We make

Remark 27 Let mq,....m, E N:my <my < ... <m,, 0< <1, feq.
Then ¢ (m1) > @ (m2) > ... > @ (m,.), ¢ as in (103).

Therefore
wi (f, 0 (m1)) 2w (f,9(m2)) 2 ... Zwi (f, 0 (my)). (111)
Assume further that mg_ﬁ >2,i=1,...,7. Then
2 2 2

> >.>—0 (112)
w2 (m%fﬁ — 2) 2 (méfﬁ — 2) T2 (mifﬁ — 2)

Let L,,, as above, i = 1,...;7, all of the same kind.
We write

L, (Liny_y (-Liny (Lin, ) — f =
L, (L, (--Lny (Lony ))) = Liny (L, (Lo f)) +
Lon, (L, (o Loy ) = Loy (L, (- Lins £)) +
L, (L, (.Ling £)) = L, (L, (.Liny f)) + ot (113)
L, (L, o f) = Lo, f + Lo, f — f =
Lin, (L, s (wLiny)) (Lony f = f) =+ Lon, (L s (- Ling)) (Lo f = f) +
Lon, (L, (Liny)) (Ling f = f) + oo 4+ Lin, (Liny_ o f = f) + L, f — f-

Hence by the triangle inequality property of H||H7H we get
o0

<

o0

HHLmr (Lmr—l (~~Lm2 (Lm1f))) - f”v
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HHLmT (Lmr_1 (Lm2)) (L, f — f)HwHoo +
[, Ean s o)) = D+
HHLW (Limy—y (Liny)) (Ling f — f)HvHoo -

[z, Eonsd = DI+ 1 = 11,

(repeatedly applying (99))

1t = 11

< |12, £ - 111, o

|12t = 11,

(oo}

2wt = 0|+ [0t = 10 = S s =11 1)
=1

That is, we proved

]MLmru4%4<mLm2u4uf»)fHAL3322HHLmJ’ﬂuHm. (115)

We give

Theorem 28 Let f € Q; N, my,ma,....mr, E N:m3 <mg < ... <m,, 0<
8 <1 mg_ﬁ >2,i=1,..,r,z €Y, and let (L, ..., Lim,.) as (Apmyy .oy Am,.)
or (Bmys ey Bm,) or (Crmyy ooty Cn) 07 (Dipnyy ooy D), p = 00. Then

[ L, (Lin,—y (-Limy (Liny ))) (2) = f (@), <

s
12, (s oo B ) = £ <
S 1wr =11 <
=1
4 AN
CN; wl(f#ﬂ(mz‘))*'M <
ren |wr (f, o (m ))—|—4‘f”’yHOO (116)
A ﬂg(ml_B—Q) .

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of L, .

Proof. Using (115), (111), (112) and (106), (107). =
We continue with
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Theorem 29 Let all as in Corollary 16, and r € N. Here pg (n) is as in (78).
Then

ans = sL)| < v f1ans = 11| < res o). (117)

Proof. By (109) and (78). m

Application 30 A typical application of all of our results is when (X, ||||ﬂ{) =

(C,|-]), where C are the complex numbers.
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