Abstract multivariate algebraic function

activated neural network approximations

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we exhibit multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RV, N € N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We study also the case of ap-
proximation by iterated operators of the last four types. These approx-
imations are achieved by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are defined by using a multidimensional density function induced by the
algebraic sigmoid function. The approximations are pointwise and uni-
form. The related feed-forward neural network is with one hidden layer.
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1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the first to establish
neural network approximations to continuous functions with rates by very specif-
ically defined neural network operators of Cardaliagnet-Euvrard and ”Squash-
ing” types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
He treats there both the univariate and multivariate cases. The defining these
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operators "bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.

Motivations for this work are the article [15] of Z. Chen and F. Cao, and [4],
(5], (6], [7], [8], 9], [10], [11], [12], [13], [16], [17].

Here we perform multivariate algebraic sigmoid function based neural net-
work approximations to continuous functions over boxes or over the whole RY,
N € N, and also iterated approximations. All convergences here are with rates
expressed via the multivariate modulus of continuity of the involved function
or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RV, as well
as Kantorovich type and quadrature type related operators on RY. Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by algebraic sigmoid function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

n
Nn(di):cho(<aj~x>+bj), zeR’, seN,
§=0
where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network

models, the activation function is the algebrai sigmoid function. About neural
networks see [18], [19], [20].

2 Basic

Here see also [12].
We consider the generator algebraic function

T

<p (x) = QW )

which is a sigmoid type of function and is a strictly increasing function.
We see that ¢ (—z) = —¢ (z) with ¢ (0) = 0. We get that

meN, z e R, (1)

1
SDl(x):—(lJr . )2m+1 >0, VzeR, (2)
xm m




proving ¢ as strictly increasing over R, ¢’ (z) = ¢’ (—x). We easily find that
lim p(x) =1, p(+o0)=1,and lim p(z)=-1, p(—o0) = —1.
T—400 r——00
We consider the activation function

1

()= lpl@+1)—p(@-1)]. 3)

Clearly it is ® (z) = ®(—z), V & € R, so that ® is an even function and
symmetric with respect to the y-axis. Clearly ® (z) >0,V z € R.

Also it is
1

®(0) = ——=. 4
0= 3375 (@
By [12], we have that ®' () < 0 for > 0. That is ® is strictly decreasing over
(0, +0) .
Clearly, ® is strictly increasing over (—oo,0) and ®’ (0) = 0.
Furthermore we obtain that
. 1
Jim @ (2) = 7 [p (+00) — ¢ (+00)] =0, ()
and 1
lim @ () = ¢ [ (~00) — o (—00)] = 0. (6)
Tr— — 00
That is the z-axis is the horizontal asymptote of ®.
Conclusion, @ is a bell shape symmetric function with maximum
B (0) = — €N (7)
= , m .
2 Y/2
We need
Theorem 1 (/12]) We have that
Z@(w—i):l,VweR. (8)

Theorem 2 (/12]) It holds

/Ooé(x)d:czl. )

— 00

Theorem 3 ([12]) Let 0 < a < 1, and n € N with n'=* > 2. It holds

- 1
> ® (nx — k) < , meN.  (10)
) Am (nl—o — 2)*™
= —00
{ tnx — k| > ntme



Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

‘We need

Theorem 4 (/12]) Let [a,b] C R and n € N so that [na] < |nb]. It holds
1

Lnb] <2(WIt4m), (11)
> D (nz—k)
k=[na]
Yz € la, b, meN.
Note 5 1) By [12] we have that
[nb]
lim > @(nz—k)#1, (12)

for at least some x € [a,b] .

2) Let [a,b] C R. For large n € N we always have [na] < |[nb|. Also
a <k <b, iff [na] <k < [nb).

In general it holds that

Lnb]

Y ona-k) <1 (13)

k=[na]

We introduce
Z (21, man) =2 () = [[® @), z=(21,...an) eRY, NeN. (14)

It has the properties:
(i) Z(x) >0, VzeRY,
(i)

Yo Z@-ky= > > . > Z@—k.,ay—ky)=1, (15)
k=—oc0 k1=—00 ko=—00 kn=—o0
where k := (k1,....,k,) € ZN,V 2 € RV,
hence

(iii)

o0

Z Z(nx —k) =1, (16)

k=—o00

VzeRN:neN,



(iv)
/ Z(@)ds =1, (17)

that is Z is a multivariate density function.
Here denote ||z||  := max {|z1], ..., |zn|}, 2 € RV, also set 0o := (00, ..., 00),
—00 := (—00, ..., —00) upon the multivariate context, and

[na] := ([na1], ..., [nan]),

(18)
[nb] := (|nb1], ..., [nbN]),
where a := (ay,...,an), b:= (b1,...,bn) .
We obviously see that
[nb] [nb] N
Z Z(nx —k) = Z (H‘P(nwz k‘z)) =
k=[na] k=[na] \i=1
[nb1] [nbw | N N [nb; |
ki=[na1] kn=[nan] \i=1 i=1 \k;=[na;]
For 0 < 8 < 1and n €N, a fixed 2 € RV, we have that
[nb]
Z Z (nx — k) =
k=[na
[nb] |nb]
Z Z (nx — k) + Z Z (nx — k). (20)
{ k= [na] { k = [na]
15 -2l <7 15 -2l >

In the last two sums the counting is over disjoint vector sets of k’s, because the

k 1
Be — | > o5,

condition H% — J:Hoo > n%; implies that there exists at least one
where r € {1,..., N}.
(v) As in [10], pp. 379-380, we derive that

et) (10) 1
> Z(nx—k) < s—, 0<pB<1, meN, (21)
4m (n'=8 — 2)
k = [na]
1% =2l > 75

withneN:n' % >2 ¢ vazl [a;, b;] .



(vi) By Theorem 4 we get that

1 1 N
0< ~ =214, 22
Z}Enbrjna_‘ (n — k) < @) [2 (V14 4m)] (22)

Vze (Hf\il [Qi,bi]), n € N.
It is also clear that

(vii)

Z Z(nx—k) < ! (23)

dm (n1=F — 2)*™’

o0

0<f<l,neN:n'""P>2 zcRY, meN.
Furthermore it holds

[nd]

lim Y Z(nz—k)#1, (24)
k=[na]

for at least some x € (Hf\;l [a;, bz]) :

Here (X, ””’v) is a Banach space.

Let f e C (Hf\il [a;, b; ,X) , ¢ = (x1,...,xN) € Hfil [a;,b;], n € N such
that [na;] < |nb;],i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (z := (z1,...,ZN) € (Hi\]:l [@;, bz]))

Zl\;anna‘\ ( ) Z (7?,11,’ - k)
An (f, 21, xn) = Ap (f,2) = ~ =
1 " EIE ana] (nx - k)

nb nb nb
Zl\;llenaﬂ ZIE2:2|'Jnag‘\ ZIEN NHnaN-\ (%’ e TN) (Hz 1 @ (’I'LLEZ kl))
nb; :
H’L 1 ( ILc 7[Jna ] (’I’Ll‘i - kl))

For large enough n € N we always obtain [na;] < |nb;|, i = 1,...,N. Also
a; < B < by, iff [na;] <k < [nbi),i=1,...,N.
When geC (Hl 1 las, bz]) we define the companion operator

1 Zlganna] (k) Z (’I’L.’L‘ - k)

An (g7 .’L‘) =
S Z (nz = k)

(26)



Clearly ﬁn is a positive linear operator. We have that

gn(l,m):l, Vaoe <H a;, 1)

Notice that A, (f) € C (Hf\]:l [a;, by ,X) and A, (9) € C (Hz 1 lag, b; ]) .

Furthermore it holds

Sln) k
na f Z (nz — k) ~
4 (), < it 1 (], Z e — A (Ifly.2). @)

- b
Zl\;n |Jna‘\ (Tll’ - k)

Ve [T, i, bil.
N
Clearly |/, € C (T}, [as, bi)

So, we have that
14n (£, < A (1711, ) (28)

Vo ellY, [anbl], ¥neN, erc(nz 1[al,b1],X)

Let ce X and ge C (Hi:l [ai,bi]> then cg € C (]—L 1 laq, by ,X) .
Furthermore it holds

Ay, (cg, )—cA x,VwGHal, bi] . (29)

Since A, (1) = 1, we get that
Ap(c)=¢, VceX. (30)

We call A'n the companion operator of A,,.
For convinience we call

Lnb]

A (f,z) Zf() (ne — k) =

k=[na]

[nb ] |nb2 ] [nbn | N
>y LY f(kl kj) (H@(nmiki)>, (31)

ki=[nai| ka=[naz2] kn=[nan]

Vae (HiN:l [ai,bi]) :
That is

Ar (f,x)
Ay (fx) = = :
sk ”erﬂ (nz — k)




Ve (HiN:l [ai,bi]), n e N.

Hence

A (F,2) = £ (@) (SH ) Z (02— B))

A, (f,x) — = 33
(f,2)~ £ (@) S T (3
Consequently we derive
(22) N Lnb]
1A, (f,2) = f (@), < [2(¥T+4™)] AL (f2) = f(2) Y Z(na—k)| |
k=[na]
(34)

V T € (Hf\il [0,1', bz])
We will estimate the right hand side of (34).
For the last and others we need

Definition 6 (/11], p. 274) Let M be a convex and compact subset of (RN, ||Hp) ,
p € [1,00], and (X, H||7> be a Banach space. Let f € C (M, X). We define the

first modulus of continuity of f as

wi(f,0) = sup  [If(2) = FWI,, 0<d<diam(M). (35)
T, yeM:
= yll, <0

If 6 > diam (M), then
w1 (f,9) = w1 (f,diam (M)). (36)

Notice wy (f,0) is increasing in 6 > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,d) is defined similarly.

Lemma 7 ([11], p. 274) We have wy (f,0) — 0 asd | 0, iff f € C(M,X),

where M is a convex compact subset of (RN, H-||p), p € [l,00].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),
iff wy (f,6) — 0 as § | 0, where w; is defined similarly to (35). The space
Cp (RN , X ) denotes the continuous and bounded functions on RV .

When f € Cp (RN,X) we define,

By (f,z) = Bn (f,21,....an) = i f <§) Z (nx — k) :=

k=—o0

f: i i f( L k2 ’ZV) (ﬂ@(nwi—ki)>, (37)

ki=—00 ka=—00 kn=—00 =1



n€N,VazeRN N €N, the multivariate quasi-interpolation neural network

operator.
Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neural

network operator

Cn (f;x) = Cn (f)xla-“ny) = Z <nN /CT f(t)dt) Z(nx—k) =

k=—o0 n

k1+1 k2+1 ky+1

i i i ( / / /kN f(tl,...,tN)dtl...dtN>

k1=—00 ko=—00 kny=—o00
N
(ch (na; — k;) ) 7 (38)

i=1

neN, VzeRV,
Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-

work operator of quadrature type D, (f,z), n € N, as follows.
Let 0 = (91, . HN) NN r = (ry,..,7n) € Zﬂ\r’, Wy = Wry ry,..rn > 0, such

0 0, 0>
that > w,. = > > . Z Wy g = 13 k € ZN and

r=0 r1=07r2=0 rN=0

0
6nk: (f) = 6n,k1,k2,...,k1\r (f) = Zwrf (:j + 7:0) =
r=0

01 02
k 1 k 1 k 7

> Z Wri oo f

r1=07r2=0 rn=0

n  nly’ 7 n nl N

r._ (rL T2 TN
where  := (91, R GN) .
We set

S (N Zme—k) = (40)

k=—o0

Dn (f,.’II) = Dn (faxla"'am

00 0o e’} N
Z Z Z 5n,k1,k2,.“,kN (f) <H (P (’I’L.’L‘z — kl)> 5
i=1

k1=—00 ko=—00 kny=—o00
vV zeRY,
In this article we study the approximation properties of A, B,,Cy, D
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator 1



3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f € C(Hil\il [ai,bi]7X>, 0<pB <l ze€ (va:l [ai,bi]),
m,N,n € N with n*=% > 2. Then

1)

1£1,
1A (fi2) — £ @), < [2(vTFa7)])" lwl (f, 7;) + 4m2(ﬂlﬁ H’;)zm] = (),

andg}
140 () = 71, <2 ). (42)

. . Il S .
We notice that lim A, (f) =" f, pointwise and uniformly.
n—oo

Above wq is with respect to p = oco.

Proof. We observe that

[nb]

Afa)= A5 (fo)— fa) 3. Z(ne—Fk)=

k=[na]

[nb]

[nb]
> f<z)Z(nxk) Y f@)Zma—k)

5 (7(%)-1@) 2zt -n, (13)

Thus

10



k= [na|
[ N
| 2151
! <f’ nﬁ) T (ﬂlﬁv_H;)zm' (4
So that
i 2 i1
1@, <o (£5) + et (15)

Now using (34) we finish the proof. m
We make

Remark 9 ([11], pp. 263-266) Let (RN, H-||p), N € N; where |||, is the Ly-

norm, 1 < p < oco. RY is a Banach space, and (RN)J denotes the j-fold product

space RN x ... x RN endowed with the max-norm [zl (gays == max |[2xl],, where
1<A<; p

z = (T1,...,z;) € (RN)j.

Let (X, ||||A/) be a general Banach space. Then the space L; := L; ((RN)J ;X)
of all j-multilinear continuous maps g : (RN)j — X, 7=1,...,m, is a Banach
space with norm

lg (@)l

1l - M,

lgll == llgllz, == sup g (@)ll, = sup (46)

||4UH(]RN).7‘:1

Let M be a non-empty convex and compact subset of RY and zo € M is
fixzed.

Let O be an open subset of RN : M C O. Let f: O — X be a continuous
function, whose Fréchet derivatives (see [21]) f9) : O — L; = L, ((RN)J ;X)
exist and are continuous for 1 < j <m, m € N. '

Call (z — x0) = (x — 20, ..., w — T) € (RN)J, x e M.

We will work with f|p.

Then, by Taylor’s formula ([14]), ([21], p. 124), we get

f(z)= i 1o (“)j(,‘r — o)’ + R (x,20), allz € M, (47)
Jj=0 )

11



where the remainder is the Riemann integral

Ly, B
R (z,20) := /0 (177) (f(m) (o +u(x —xmp)) — SR (xo)) (x — 20)" du,

(m—1)!
(48)
here we set f© (z0) (x — 20)° = f (x0).
We consider
wimwr (f70) = sup £ (@) - 1 ()], (49)
r,ycM:
lz—yll,<h
h > 0.
We obtain
| (£ (o + u (@ = 20)) = 17 (@0)) (mffco)mHV =
|7 @0+ (@ = 20)) = £ (20)| - 2 = woll}} <
[ ullz — ol
wlke = aalff | 5 . (50
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
m [*[ullz = zoll 1—w)™ !
| B (2, 20)]1, < wllz — o] /0 { - pl ((m_)l)! du
— @ (|l — o]l (51)

by a change of variable, where
sy =" -
D (t) := - (It] — h , VteR, 2
o= [ % ;OH T, VieRr (52)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

i

) 7+|ﬂm+Lm1 VteR (53)
= m+ 1) 2m! o 8(m—1)! )’ ’

with equality true only at t = 0.
Therefore it holds

m+1

T— r—zol™ Az — x|t
||Rm(m,z0)||vgw<” olly, e = molly, Al = ol . VazeM.

(m+ 1)l 2] 8 (m —1)!

12



We have found that

U @) Zo l‘—xoj
Flay-y L nl o

]
im0 J: ,
m+1 m m—1
_ — — h|lz — xo|
(m) h, H.’I,' $0||p ||ZC xollp P
“1 (f ’ )( (m+1)!h TTom YT Rmony ) 5 (55)

VYV x,zg € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f™ being continuous
on M.

One can rewrite (55) as follows:

@) (20) (- — 20

Jj=0 -
m+1 m m—1
N - - = ol
o o (=l ol Y v
an (47, )( Groh o oml s ) €M (50

a pointwise functional inequality on M.

Here (- — z0)? maps M into (RN)] and it is continuous, also fU) (xzg) maps
(RN)] into X and it is continuous. Hence their composition fO () (- — xq)’
18 continuous from M into X.

T D (w0)(—m0)? T D (w0) (o)

Clearly f (')_ij:O W € C (M, X), hence Hf () - ijzo W
C(M).

Let {EN}N . be a sequence of positive linear operators mapping C (M) into

€

C(M).

Therefore we obtain

S
y

~ G (20) (- — 20)?
i Hf(_)_zf OSSR P
=0 :

L —— T L . T
o (70 (Zx (I (m+o||1p) : )) ) (I (l %;n,, )) (o)
RS o

8 (m —1)! ’

VNeN Vzyge M.

13



N - ~
Clearly (57) is valid when M = [] [a;, b;] and L,, = A,,, see (26).
i=1

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,, A, fulfill its assumptions, see (25), (26), (28), (29) and (30).

We present the following high order approximation results.

N
Theorem 10 Let O open subset of (RN, ||-||p), p € [1,00], such that ] [a;,b;] C
i=1

O C RV, and let (X, ||H7> be a general Banach space. Let m € N and f €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

. Letxg € (1]_\][ [ai7bi]>

from O into X. We study the approximation of f| x
i=1

i, 04
i=

andr > 0. Then
1)

~

e (A () )

2) additionally if fO) (z) =

1(An (£)) (zo) = f (o)l <

o (0 (B (12 )) ) ™)

- (A

’ . _— ()
= (A (1 =ol7)) )

14



(m+1) 8
and
4)
e =70
j' HH fm (o) _xo)a‘))(gco)Hv .
00,Z0 :Iai, i
. (M(zn (- Nl )
rm! -
B (1=l o 2 o)
1 r WTQ )
st
We need

~ _ N
Lemma 11 The function (An (|| - 330”21)) (zo0) is continuous in xy € <H (@i, bd),
i=1
m € N.

Proof. By Lemma 10.3, [11], p. 272. =
We give

Corollary 12 (to Theorem 10, case of o = 1) Then
1)

(A () @o) = (@)l < || (4n (1O o) (- = 20)) ) (o) +

Lo (1 (3 (1) ) ) (G (12 ) 2

r2
1 —
[ +7r+ 4},

and
2)
A () - flvHoo,ﬁl[ai,bi] =

15



_|_

(a0 (7 ) €= 20) ) ) .
Y OO,Ioe.l:Il[ai,bi]

%wl (f(l)vr (Zn (H — xo“i)) (z0) i,zoeiﬁl[%biJ)

[ (=) ol g [ ]

r > 0.
We make

Remark 13 We estimate 0 < o < 1, m,m,n € N: nl=® > 2,

Lan

~ _ k)
Ao (1 = 2o ) () = 20 I —= ol 2007 8) 2
2 h=Tna) 2 (nwo — k)
N [nb] i 41
[2 ( QWH Z H ) 7 (nxo — k) = (64)
k=[na] 0
N Lnb) k m+1
[2(2W)] Z ano Z (nxo — k) +
{ k = [na] >
1% —=oll, < 7%
[nb] 1 (23)
Z S — o Z (nxog—k) p <
k= [na] o
{1 15 = zolle > 7
pp—— b= o™
[2 (/1 +4m)] {na(mﬂ) + I (ni=a 2P [ (65)

(where b—a = (by — a1,...,by —an)).
N
We have proved that (¥ x¢ € H [ai,b;i])

—a m+1
A, (”' - IOHZH) (o) < [2 (V1 +4m)]N{ L o= all, } =: ¢ (n)

e 4y (pima — 2)"
(66)

16



O<a<l, mmneN:nl=*>2)
And, consequently it holds

[ CEE SR IED]

m+1
[2(2W)]N{n 5 Prel

<

N
00,z0€ [] [ai,bi]
=1

amH) " g (pl-o — 2)*™ } =¢1(n) =0, asn — oo.
(67
So, we have that i, (n) = 0, as n = +oc. Thus, when p € [1,0], from

Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2). N 4
Next we estimate H (An (f(j) (o) (- — mo)j)) (7o)
We have that

Y

S £9 (o) (& = w0)’ Z (no — K)

Z,Einm] Z (nxg — k)

(4 (£9 @o) (- = 20)") ) (0) =

(68)
When p =00, j =1,...,m, we obtain

J
| 19 (o) (5~
i

We further have that

J

, k
<[5~

(22)

(2 (5 - 207)) ],

[nb] J
[2 ( ZW)]N ( Z f(j) (z0) <: — x(]) Z (nxo — k)) <
k=[na] ol

2 (vira)” ( S 70 ) % -z

k=[na]

’ Z (nxg — k:)) = (70)

2 (/T am)] " Hf(j) (aso)H ( Lib:] Hk — 2 j Z(n:cok)> -
k=[nal o0
N . L] k d
2 (VT3] 49 (o) ) || zwa-n)
{ k= [na) *
% =l < e



[nb]

- > Hi:co
TS

— ol , > 7=

J (21)
Z(nxg— k) p < (71)

oo

Nl s 1 16— all’
2 (/1 +4m H () H — o0 —0 — 00.
[ ( + )] f ('TO) nod 4m (nl_a _ 2)27n ; a8 M
That is

H (ﬁn (f(j) (xo) (- — xo)j)) (xo)H — 0, as n — o0.

gl
Therefore when p = oo, for j =1,...,m, we have proved:

| (A (59 @0) (- = 20)') ) (@0)

<
ol

[2 ( Q'W)]N Hf(j) (mO)H {nij + o b — a“io } < (72)

(nl_a _ 2>2m

1 16— all’,

nY - 4m (nt—o — 2)2m

2 ()" | mem{ } oy () <

and converges to Z€ETro, as n — Q.

We conclude:

In Theorem 10, the right hand sides of (60) and (61) converge to zero as
n — oo, for any p € [1, o0].

Also in Corollary 12, the right hand sides of (62) and (63) converge to zero
as n — oo, for any p € [1, 0] .

Conclusion 14 We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (63) converge to zero as n — oo, for p € [1,00]. Consequently
A, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We further give

Corollary 15 (to Theorem 10) Let O open subset of (RN ,[-||.), such that
N
I1 lai,b;) € O CRY, and let (X, H||7> be a general Banach space. Let m € N
i=1
and f € C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let xp €

. [ai,b;
i=

18



i=1
neN:nl=*>2 0<a<1,j=1,..m. Then

N
(H [ai,bi]> and v > 0. Here 1 (n) as in (66) and py; (n) as in (72), where

By
(n (1) 20) = 32 & (40 (79 0) (= 20Y)) )| <
Jj=0 ~
w ™) n T - r
i o) )<w1<n>><m+l>[(m1+1)+2+ . m

We continue with

Theorem 16 Let f € Cp (IR{N,X), 0<pB <1, zeRN mN,necN wih
n'=P > 2, wy is for p=oco. Then

1)

2Jia],

I () = @l 1 (455 ) + e = e, (70

J
18w (1) = 11,

Given that f € (CU (RN,X) NCg (RN,X)), we obtain lim B, (f) = f, uni-

n

< A2 (n). (77)

formly.
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Proof. We have that

Rdﬁ@—fWVQLEZf(i)me—m—f@hizZﬁw—kﬁ=U&
> (1(5)-r@) zma—n.
Hence k__OO( ( > >
H&Aﬂ@—f@Nhékﬁsz(z>—f@)Wme—H=
> Hf(:)-f(x)wZ(nx—k)—&—
Tt
> () -re] zee-n
Tt
o (£25) +2 s kffm Zno—t) 2

k _ H 1
Hn 'Too>n5

wi (f,jg) + 2|, (79)

dm (nt=8 — 2)°™’

proving the claim. m
We give

Theorem 17 Let f € Cp (RN,X), 0<pB<1,zeRY mN,necN wih
n' =8 > 2, wy is for p=oo. Then

1y
IWMﬁ@—ﬂ@7<m<ﬁi+$>+miuiw;m=ﬂdmv@m
2

liCa =11, _ < 2s ). (81)

Given that f € (CU (RN,X) NCg (]RN,X)) , we obtain lim C, (f) = f, uni-
formly.

20



Proof. We notice that

/ F0) dtz/ / / F (bt s t) dbrdt.diy —
k k1 kg

En
n

/0; /0 /0 ! (m + %,m + %,...,t]\; + ]ZV) dty...dty = /0 s (H 7’2) "
Thus it holds (by (38)) (82)
Cn (f,2) = kioo (nN /031 f (t + D dt) Z (nz — k). (83)
‘We observe that
1Cn (f; ) = f (@), =
ki)o (mv/oif <t+s> dt) Z(nm—k)—kﬁ:oof(x)Z(nm—kz) 7 _
S r(ertya) o) 2] -
k:ioo (nN/O’ll (f (t—l—i) —f(x)) dt)Z(nm—k) < (84)
k_ioo (mv/oi f (H—z) ~f (@) 7dt) 7 (na — k) =

SN

{ k= —o0
s ==l < 75

dt) Z (nx — k) +

dt) Z (nx —k) <

1

% k
> (”N/O w1 (f, £l oo + Hn -
2 <

OO) dt) Z (nx —k)+

21



2 i1, Sz | <

k=—00

1% =2l > 5

1 1 il
f,—+— )+ 85
W1< 7n ng) (nl 8 )zma ( )

proving the claim. m
We also present

Theorem 18 Let f € Cp (RN,X), 0<pB<1,zeRY mN,necN wih
n'=8 > 2, wy is for p=oo. Then

1)
IDa () = F @I <o (£3 47 ) + 4miﬂ|1|fﬁ”_H§)2m = \i(n), (36)
J

[1Dn ()= 11| < 2. (87)
Given that [ € (CU (RN,X) NCg (]RN,X)) , we obtain nlLH;oDn =1,

uniformly.

Proof. We have that (by (40))

S (N Zme—k) = Y f(@) 7 (na— )

1Dw (f.2) — £ (@)]], =

k=—o0 P .
(88)
k_fjoo (Gut () — f (@) Z (nz — k)|| =
k_im (Z:w (r(5+5) f($)>>Z(nxk) -
k_ioo <Zi:ow f<z+7;> — f(2) 7)Z(mgk)_
i (iw f(k+r;)>—f(a:) >Z(nx—]<;)+

22



(T
I =l >

00 6
k
Z <Zwrw1 (f, S + % >)Z(n:ck:)+
k__ r=0 >
=—00
{ 15 =2l < 5
21, _ S Zia-b|<
k=—o0
15 2l > 75
2711,
1 1 ¥
=t — |+ - 89
“1 <f n nﬁ) dm (n1=F — 2)°™ (59
proving the claim. m
We make

Definition 19 Let f € Cp (RY,X), N € N, where (X, ||||7) is a Banach

space. We define the general neural network operator

Fo(fix)= > b (f)Z(ne—k) =

k=—oc0
Cu(fr@), if L (f) = 0™ [ f (8)dt, (90)

Clearly l,,x, (f) is an X-valued bounded linear functional such that ||l (f)]., <

v
|-

Hence F,, (f) is a bounded linear operator with H I ( f)\|7H < H|| fl,
‘We need

oo

Theorem 20 Let f € Cp (RY,X), N > 1. Then F, (f) € Cp (RY,X).

Proof. Clearly F), (f) is a bounded function.

Next we prove the continuity of F, (f). Notice for N =1, Z = ® by (14).

We will use the generalized Weierstrass M test: If a sequence of positive
constants My, Ms, M3, ..., can be found such that in some interval
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(@) [[un (@), < Mp, n=1,2,3,...

(b) >° M, converges,

then > w, (z) is uniformly and absolutely convergent in the interval.

Also we will use:

If {up ()}, n =1,2,3,... are continuous in [a,b] and if Y u, () converges
uniformly to the sum S (z) in [a,b], then S (z) is continuous in [a,b]. Le. a
uniformly convergent series of continuous functions is a continuous function.
First we prove claim for NV = 1.

We will prove that Y 72 Lok (f) ® (nz — k) is continuous in z € R.

There always exists A € N such that nz € [-A, A].

Since nx < A, then —nmx > —XAand k —nx > k— X > 0, when k& > A
Therefore

Y bnz—k)=) d(k-n2)<Y ©k-N)=) ®*K)<1  (91)
k=X k=X k= k'=0
So for k > \ we get

ok (I, @ (nz = k) < [[I1£11,]| @ k=),

and -
([N I ICESVE [N I
k=X

Hence by the generalized Weierstrass M test we obtain that Y ;- \ Ik (f) @ (nx — k)

is uniformly and absolutely convergent on [—2, 2]
Since Ly (f) @ (nz — k) is continuous in z, then Y ;2\ ok (f) @ (nz — k) is
continuous on [—%, %] .

Because nx > —\, then —nx < X\, and k —nx < k+ X <0, when k£ < —\.
Therefore

- - - 0

Yo @nz—k)= > @k-nx)< Y Pk+N= > H)<L

k=—o00 k=—o0 k=—o0 k'=—o0

So for k < —)\ we get
e (DI, @ (n = k) < [I1711,]|_ @G+ N, (92)

and

| S ey < s -
k=—o0

Hence by Weierstrass M test we obtain that E,:i‘foo Lok (f) @ (nz — k) is uni-

formly and absolutely convergent on [f%, %] .
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Since I,k (f) ® (nx — k) is continuous in z, then Z;:)‘ioo Lok () @ (nx — k)
is continuous on [—2, %} .

So we proved that Y232\ Lk (f) @ (nz — k) and 332 Lok (f) @ (na — k)
are continuous on R. Since Zz;i/\ﬂ lnk (f) @ (nz — k) is a finite sum of con-
tinuous functions on R, it is also a continuous function on R.

Writing

00 -
S bn(HOmz—k) = Y L (f)®(nz—k)+

k=—o0 k=—o00
A—1
> bk (f)®(nz—k *Zlnk ® (nx — k) (93)
k=—X+1

we have it as a continuous function on R. Therefore F,, (f), when N =1, is a
continuous function on R.
When N = 2 we have

n(fir1,22) = Z Z Lok () ® (na1 — k1) @ (nxo — ko) =

kl_—oo kg——OO

Z <I>(nx1—k1)< Z lnk(f)@(nxg—k2)>

’{71:700 kngoo

(there always exist A1, A2 € N such that nx; € [-A1, A\1] and nzy € [—A2, A2])

o — A2
Z ‘I’(ﬂxl—kl)l Z Lk () @ (nzy — ko) +

k1:—()0 kZz:—OO
)\271
Z Lk (f) @ (nazg — Z Ik (f) @ (nag — k‘z)] =
ko=—X>+1 kao=M\2
A2
Z Z nk ’flel 7k1)®(n$2 7]432)4’
klzfoo kQ—*OO
/\2 1

Z Z Lok (f) ® (nz1 — k1) @ (nwa — ko) +

ki=—o0 ko=—X2+1

Z Z Lok () @ (nz1 — k1) @ (nwg — ko) =: ().

ki=—o00 ko=

(For convenience call

F (kl, k‘g,l‘l, .732) = lnk (f) [} (7?,$1 — /ﬂl) o (nmg — kg) . )
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Thus

-1 — A2 A—1 —A2
Z Z (k1, k2, x1,22) + Z Z (k1, k2,1, 22) +
k1=—00 ko=—00 ki=—XA+1ko=—0c0
— A2 —A1 Aa—1
Z > Flkyka,wn,ma)+ Y > F(ky ko, ar,m) +
kl )\1 kz——OO klz—oo kzZ—A2+1
A1—1 Ao—1 Ao—1
> > F(kr kg, wr,m0) + Z > F(ki ka1, m0) +
ki=—=X1+1ka=—X2+1 k1=X1 ka=—X2+1
-1 e} A1—1
Z Z (K1, ko, 1, 2) + Z Z (K1, k2,21, 22) + (94)
k1=—00ka=MA2 ki=—X1+1ka=X2
o0 o0
Z Z F(klakan17x2) .
ki=X1 ka=Xa
Notice that the finite sum of continuous functions F' (k1, ke, z1, z2),
A—1 Aa—1 . . .
D ki— a4l 2hom—xgt1 P (F1, k2, 1, 2) is a continuous function.

The rest of the summands of F,, (f,z1,x2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.

We will prove that Y "\ Zkz__oo nk (f) @ (nzq — k1) © (nze — ko) is con-
tinuous in (x1,z2) € R2.

The continuous function

ok (), @ (nzy = k) @ (ns = k) < [[IF1] | @ k1 = M) @ (ko + ),

and

(ERD> S o @ (ks + Xo) =

k1=XA1 ka=—o00
’ ¥ (i ‘b(k1—/\1)>< ’i‘f <I>(k2+,\2)>§
% k=M ko= — o0
s (S o) (X 2w <]

So by the Weierstrass M test we get that
D e Z,Q__OO k()@ (nzy — k1) ® (nwg — ko) is uniformly and absolutely
convergent. Therefore it is continuous on R2.

Next we prove continuity on R? of

S T it S o bk (F) @ (a1 — k) @ (naa — ko).
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Notice here that

IMmﬁmvémm—kﬂ¢mm—kﬁ§HWLMXQWm—%ﬂ¢%m+M)

1
<[] 2 @@kt x0) = 10 @ (k4.

>\1 1 X
R HwM\( )(Zj@%+&0:
ki=—X1+1 ko=—00

-ex =il

(95)
So the double series under consideration is uniformly convergent and continuous.
Clearly F,, (f,x1,x2) is proved to be continuous on RZ.
Similarly reasoning one can prove easily now, but with more tedious work,
that F, (f,21,...,2x) is continuous on RY, for any N > 1. We choose to omit
this similar extra work. m

and

1
—_— 20 —1 (k)| <
R LS MG RIIE

2:700

1
22%/2

Remark 21 By (25) it is obvious that H||An (f)

< st < oo and

N
A, (f)eC H [a;, b ],X), given that f € C(H [a;, l],X)
i=1
Call L, any of the operators A, By, Cy, D,,.

Clearly then

Iz ol = [z @] < iz o] < i

o}

=

—~

96)

etc.
Therefore we get

Nz ol | < s veen, (o7)

the contraction property.
Also we see that

Ikl | < ek ol < - < e < i) - os)

Here Lk are bounded linear operators.

Notation 22 Here N € N, 0 < 8 < 1. Denote by

2m m N ; _
o :_{[2(‘\/1+4 )Y, if L = Ay, (99)
1, Zan = BnacnaDnu
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(100)
N .
0= C (zl;ll aiabi] ,X> , if Ly = Ay, (101)
Cg ( N,X) ’ Zan = B7L>Cn7Dna
and
N .
Y — 7;];[1 [al7 b?,] ) Zf L’rL - A‘rL7 (102)
RN7 ifLTL = Bnaaran-
We give the condensed

Theorem 23 Let f€Q,0< <1, z€Y;n, m, N €N withn'=? >2. Then
(i)

2711,

L,(f,x)— f(x)]., <en |w1 (f,o(n Soe | =17 (n), (103

1L (fs2) = f (@)l < en |wi (f e dm (n1= — 2)? (n), (103)
where wy 1s for p = oo,

and

(1)

1Ee () =11| <70 =0, asn - 0. (104)

For f uniformly continuous and in £ we obtain

lim Ly (f) = f,

pointwise and uniformly.

Proof. By Theorems 8, 16, 17, 18. =

Next we do iterated neural network approximation (see also [9]).
We make
Remark 24 Letr € N and L,, as above. We observe that
Lof—f=Lnf =Ly )+ (L f = L2 f) +

(L2 = L3 f) ot (B2 = Laf) + (Enf = ).
Then

Inzes =< s = il |+ et = zamll)|+
lze2s = i1l

et ||l22 s = | 12ar - 10| =
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llzet @af = DI+ [I1E572 @t = DI,

ot HuLn (Laf — D,
That is

_+|lEE@ar -l

o0

o |1zar =11

_<r|izar =g aos)

(106)

[

[Lnf = [l

8

We give
Theorem 25 All here as in Theorem 23 and r € N, 7 (n) as in (104). Then
zns = 1| < rr o). (107)

So that the speed of convergence to the unit operator of L) is not worse than of
L,.

Proof. By (106) and (104). m
We make

Remark 26 Let m,mq,....m EN:m; <my < ..<m,, 0< <1, feq.
Then ¢ (m1) > ¢ (m2) > ... > v (m,.), ¢ as in (100).

Therefore
w1 (fy(m1)) 2 w1 (f,0(m2) = ... 2 w1 (f, ¢ (my)). (108)
Assume further that mi_ﬁ >2,i=1,..,7. Then
1 1 1

2m Z 2m Z Z 2m° (109)
4m (m%fﬁ - 2) 4m (méfﬁ - 2) 4m (m}fﬁ - 2)

Let L,,, as above, i =1,...,7, all of the same kind.
We write

Lin, (L, s (Liny (Lony ) = f =
Lun, (L, (--Lony (Liny £))) = Lin, (Lny_y (- Liny f)) +
Lon, (Lony s Ly ) = Lony (T s (oo Loy ) +
Lon, (Liny s (oo Ling 1)) = Liny. (L, (oo Ly ) + oot (110)
Lin, (Lo, o f) = Lin, f + Lin, [ = f =
Lon, (L, (L)) (Lany f = £) 4 Lon, (L, (- Ling)) (L f = ) +
Lo, (L, —y (o-Liny)) (L f — f) 4+ oo+ Lo, (Liny o f = f) + Lo, f — [

Hence by the triangle inequality property of H”HVH we get
o0

HHLmr (Lmr—l (~-~LM2 (LM1f))) - f“7

IN

oo
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12, (B L)) B = DI,

HHLmr (Lm,,.,l (LM3)) (L, f — f)H'VHoo +

+
o0

12, (s CEn) (B f = D[+t
120 (s = 1|+ [0 = 11|
(repeatedly applying (96))

< Wt = £+ 12maf = 71|+ [12maf = 21+

Wt = £ 0t = 20 = 2 1t 1, an)
i=1

That is, we proved

l12m, (Lo, CoLans (L £0) = 11| < g Emef =11, 12

We give

Theorem 27 Let f € Q; m, N, my,ma,...m EN:mg3 <mo < ...<m,, 0<
6 <1 m%fﬁ >2,i=1,.,m,x €Y, and let (L, ,..., L) as (Amysery Am,)
or (Bimys oy Bm,) or (Ciyy ety Crn) 07 (Dipnyy ooy D), p = 00. Then

L, (L, (Ling (Liny ) (@) = f (@), <

v =

[z, Lon s o i) = 11| <
S| 1ws = 11| <
i=1

i

4m (m%f’g — 2) o

CNZ wi (f, o (m;)) +

2Jin,
4m (m}fﬁ — 2) o

Clearly, we notice that the speed of convergence to the unit operator of the mul-

ren |wi (fye (ma)) + (113)

tiply iterated operator is not worse than the speed of Ly, .

Proof. Using (112), (108), (109) and (103), (104). =m
We continue with
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Theorem 28 Let all as in Corollary 15, and r € N. Here 5 (n) is as in (75).
Then

4zr = 1| < v|ianr = 11,

< rps(n). (114)
Proof. By (106) and (75). m

Application 29 A typical application of all of our results is when (X, ””'v) =

(C,|-]), where C are the complex numbers.
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