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Abstract

Here we exhibit multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN ; N 2 N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We study also the case of ap-
proximation by iterated operators of the last four types. These approx-
imations are achieved by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are de�ned by using a multidimensional density function induced by the
algebraic sigmoid function. The approximations are pointwise and uni-
form. The related feed-forward neural network is with one hidden layer.
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1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the �rst to establish
neural network approximations to continuous functions with rates by very specif-
ically de�ned neural network operators of Cardaliagnet-Euvrard and �Squash-
ing�types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
He treats there both the univariate and multivariate cases. The de�ning these
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operators �bell-shaped�and �squashing� functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.
Motivations for this work are the article [15] of Z. Chen and F. Cao, and [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13], [16], [17].
Here we perform multivariate algebraic sigmoid function based neural net-

work approximations to continuous functions over boxes or over the whole RN ,
N 2 N, and also iterated approximations. All convergences here are with rates
expressed via the multivariate modulus of continuity of the involved function
or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.
We come up with the �right� precisely de�ned multivariate normalized,

quasi-interpolation neural network operators related to boxes or RN , as well
as Kantorovich type and quadrature type related operators on RN . Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by algebraic sigmoid function and de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental network
models, the activation function is the algebrai sigmoid function. About neural
networks see [18], [19], [20].

2 Basic

Here see also [12].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (1)

which is a sigmoid type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
m

> 0, 8 x 2 R, (2)
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proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:

We consider the activation function

� (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (3)

Clearly it is � (x) = � (�x) ; 8 x 2 R, so that � is an even function and
symmetric with respect to the y-axis. Clearly � (x) > 0, 8 x 2 R:
Also it is

� (0) =
1

2 2m
p
2
: (4)

By [12], we have that �0 (x) < 0 for x > 0. That is � is strictly decreasing over
(0;+1) :
Clearly, � is strictly increasing over (�1; 0) and �0 (0) = 0.
Furthermore we obtain that

lim
x!+1

� (x) =
1

4
[' (+1)� ' (+1)] = 0; (5)

and
lim

x!�1
� (x) =

1

4
[' (�1)� ' (�1)] = 0: (6)

That is the x-axis is the horizontal asymptote of �.
Conclusion, � is a bell shape symmetric function with maximum

� (0) =
1

2 2m
p
2
; m 2 N: (7)

We need

Theorem 1 ([12]) We have that

1X
i=�1

� (x� i) = 1, 8 x 2 R: (8)

Theorem 2 ([12]) It holds Z 1

�1
� (x) dx = 1: (9)

Theorem 3 ([12]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

� (nx� k) < 1

4m (n1�� � 2)2m
; m 2 N: (10)
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Denote by b�c the integral part of the number and by d�e the ceiling of the
number.
We need

Theorem 4 ([12]) Let [a; b] � R and n 2 N so that dnae � bnbc. It holds

1
bnbcP

k=dnae
� (nx� k)

< 2
�
2m
p
1 + 4m

�
; (11)

8 x 2 [a; b], m 2 N:

Note 5 1) By [12] we have that

lim
n!1

bnbcX
k=dnae

� (nx� k) 6= 1; (12)

for at least some x 2 [a; b] :
2) Let [a; b] � R. For large n 2 N we always have dnae � bnbc. Also

a � k
n � b, i¤ dnae � k � bnbc.
In general it holds that

bnbcX
k=dnae

� (nx� k) � 1: (13)

We introduce

Z (x1; :::; xN ) := Z (x) :=

NY
i=1

� (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (14)

It has the properties:
(i) Z (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z (x1 � k1; :::; xN � kN ) = 1; (15)

where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z (nx� k) = 1; (16)

8 x 2 RN ; n 2 N,
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and
(iv) Z

RN
Z (x) dx = 1; (17)

that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(18)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Z (nx� k) =
bnbcX

k=dnae

 
NY
i=1

� (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

� (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

� (nxi � ki)

1A : (19)

For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z (nx� k) =

bnbcX
8<: k = dnae k

n � x

1 � 1

n�

Z (nx� k) +
bnbcX

8<: k = dnae k
n � x


1 > 1

n�

Z (nx� k) : (20)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition

 k
n � x


1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :
(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae k

n � x

1 > 1

n�

Z (nx� k)
(10)
<

1

4m (n1�� � 2)2m
, 0 < � < 1; m 2 N; (21)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :
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(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z (nx� k)
<

1

(� (1))
N
�=
�
2
�
2m
p
1 + 4m

��N
; (22)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1 k

n � x

1 > 1

n�

Z (nx� k) < 1

4m (n1�� � 2)2m
; (23)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z (nx� k) 6= 1; (24)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k

�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1 � (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie� (nxi � ki)

� : (25)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When g 2 C

�QN
i=1 [ai; bi]

�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
: (26)
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Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k �
Pbnbc

k=dnae
f � kn� Z (nx� k)Pbnbc

k=dnae Z (nx� k)
= eAn �kfk ; x� ; (27)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk 2 C
�QN

i=1 [ai; bi]
�
:

So, we have that

kAn (f; x)k � eAn �kfk ; x� ; (28)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (29)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (30)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

� (nxi � ki)
!
; (31)

8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z (nx� k)
; (32)
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8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z (nx� k)

�
Pbnbc

k=dnae Z (nx� k)
: (33)

Consequently we derive

kAn (f; x)� f (x)k
(22)
�
�
2
�
2m
p
1 + 4m

��N A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k)




;

(34)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (34).
For the last and others we need

De�nition 6 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k

�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k , 0 < � � diam (M) : (35)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (36)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 7 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),
where M is a convex compact subset of

�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (35). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Z (nx� k) :=

1X
k1=�1

1X
k2=�1

:::

1X
kN=�1

f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

� (nxi � ki)
!
; (37)
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n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

� (nxi � ki)
!
; (38)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=

�X
r=0

wrf

�
k

n
+
r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+
r1
n�1

;
k2
n
+
r2
n�2

; :::;
kN
n
+
rN
n�N

�
; (39)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z (nx� k) = (40)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

� (nxi � ki)
!
;

8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.
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3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, x 2

�QN
i=1 [ai; bi]

�
;

m;N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k �
�
2
�
2m
p
1 + 4m

��N 24!1�f; 1
n�

�
+

2
kfk1

4m (n1�� � 2)2m

35 =: �1 (n) ;
(41)

and
2) kAn (f)� fk1 � �1 (n) : (42)

We notice that lim
n!1

An (f)
k�k
= f , pointwise and uniformly.

Above !1 is with respect to p =1:

Proof. We observe that

�(x) := A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k) =

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k)�

bnbcX
k=dnae

f (x)Z (nx� k) =

bnbcX
k=dnae

�
f

�
k

n

�
� f (x)

�
Z (nx� k) : (43)

Thus

k�(x)k �
bnbcX

k=dnae

f �kn
�
� f (x)




Z (nx� k) =

bnbcX
8<: k = dnae k

n � x

1 � 1

n�

f �kn
�
� f (x)




Z (nx� k)+
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bnbcX
8<: k = dnae k

n � x

1 > 1

n�

f �kn
�
� f (x)




Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2

kfk1
bnbcX

8<: k = dnae k
n � x


1 > 1

n�

Z (nx� k)
(21)
�

!1

�
f;
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
: (44)

So that

k�(x)k � !1
�
f;
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
: (45)

Now using (34) we �nish the proof.
We make

Remark 9 ([11], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the Lp-

norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j
denotes the j-fold product

space RN�:::�RN endowed with the max-norm kxk(RN )j := max
1���j

kx�kp, where

x := (x1; :::; xj) 2
�
RN
�j
:

Let
�
X; k�k

�
be a general Banach space. Then the space Lj := Lj

��
RN
�j
;X
�

of all j-multilinear continuous maps g :
�
RN
�j ! X, j = 1; :::;m, is a Banach

space with norm

kgk := kgkLj := sup�
kxk

(RN )j
=1

� kg (x)k = sup kg (x)k
kx1kp ::: kxjkp

: (46)

Let M be a non-empty convex and compact subset of RN and x0 2 M is
�xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a continuous

function, whose Fréchet derivatives (see [21]) f (j) : O ! Lj = Lj

��
RN
�j
;X
�

exist and are continuous for 1 � j � m, m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2

�
RN
�j
, x 2M .

We will work with f jM :
Then, by Taylor�s formula ([14]), ([21], p. 124), we get

f (x) =
mX
j=0

f (j) (x0) (x� x0)j

j!
+Rm (x; x0) , all x 2M; (47)
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where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

�
f (m) (x0 + u (x� x0))� f (m) (x0)

�
(x� x0)m du;

(48)
here we set f (0) (x0) (x� x0)0 = f (x0) :
We consider

w := !1

�
f (m); h

�
:= sup

x;y2M :

kx�ykp�h

f (m) (x)� f (m) (y) ; (49)

h > 0:

We obtain�f (m) (x0 + u (x� x0))� f (m) (x0)� (x� x0)m

�f (m) (x0 + u (x� x0))� f (m) (x0) � kx� x0kmp �

w kx� x0kmp
�
u kx� x0kp

h

�
; (50)

by Lemma 7.1.1, [1], p. 208, where d�e is the ceiling.
Therefore for all x 2M (see [1], pp. 121-122):

kRm (x; x0)k � w kx� x0k
m
p

Z 1

0

�
u kx� x0kp

h

�
(1� u)m�1

(m� 1)! du

= w�m

�
kx� x0kp

�
(51)

by a change of variable, where

�m (t) :=

Z jtj

0

l s
h

m (jtj � s)m�1
(m� 1)! ds =

1

m!

0@ 1X
j=0

(jtj � jh)m+

1A , 8 t 2 R; (52)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

�m (t) �
 

jtjm+1

(m+ 1)!h
+
jtjm

2m!
+

h jtjm�1

8 (m� 1)!

!
; 8 t 2 R; (53)

with equality true only at t = 0.
Therefore it holds

kRm (x; x0)k � w
 
kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
; 8 x 2M:

(54)
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We have found that f (x)�
mX
j=0

f (j) (x0) (x� x0)j

j!




�

!1

�
f (m); h

� kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
<1; (55)

8 x; x0 2M:
Here 0 < !1

�
f (m); h

�
<1, by M being compact and f (m) being continuous

on M .
One can rewrite (55) as follows:f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!




�

!1

�
f (m); h

� k� � x0km+1p

(m+ 1)!h
+
k� � x0kmp
2m!

+
h k� � x0km�1p

8 (m� 1)!

!
; 8 x0 2M; (56)

a pointwise functional inequality on M .
Here (� � x0)j maps M into

�
RN
�j
and it is continuous, also f (j) (x0) maps�

RN
�j
into X and it is continuous. Hence their composition f (j) (x0) (� � x0)j

is continuous from M into X.

Clearly f (�)�
Pm

j=0
f(j)(x0)(��x0)j

j! 2 C (M;X), hence
f (�)�Pm

j=0
f(j)(x0)(��x0)j

j!



2

C (M).

Let
neLNo

N2N
be a sequence of positive linear operators mapping C (M) into

C (M) :

Therefore we obtain0@eLN
0@f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!




1A1A (x0) �

!1

�
f (m); h

�24
�eLN �k� � x0km+1p

��
(x0)

(m+ 1)!h
+

�eLN �k� � x0kmp �� (x0)
2m!

+
h
�eLN �k� � x0km�1p

��
(x0)

8 (m� 1)!

35 ; (57)

8 N 2 N, 8 x0 2M .
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Clearly (57) is valid when M =
NQ
i=1

[ai; bi] and eLn = eAn, see (26).
All the above is preparation for the following theorem, where we assume

Fréchet di¤erentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An; eAn ful�ll its assumptions, see (25), (26), (28), (29) and (30).
We present the following high order approximation results.

Theorem 10 Let O open subset of
�
RN ; k�kp

�
, p 2 [1;1], such that

NQ
i=1

[ai; bi] �

O � RN , and let
�
X; k�k

�
be a general Banach space. Let m 2 N and f 2

Cm (O;X), the space of m-times continuously Fréchet di¤erentiable functions

from O into X. We study the approximation of f j NQ
i=1

[ai;bi]
: Let x0 2

�
NQ
i=1

[ai; bi]

�
and r > 0. Then
1) (An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)




�

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (58)

2) additionally if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k �

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(59)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

3)

k(An (f)) (x0)� f (x0)k �
mX
j=1

1

j!

�An �f (j) (x0) (� � x0)j�� (x0)

+

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(60)

14



�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

and
4) kAn (f)� fk1;

NQ
i=1

[ai;bi]
�

mX
j=1

1

j!

�An �f (j) (x0) (� � x0)j�� (x0)

1;x02

NQ
i=1

[ai;bi]

+

!1

0@f (m); r � eAn �k� � x0km+1p

��
(x0)

 1
m+1

1;x02
NQ
i=1

[ai;bi]

1A
rm!� eAn �k� � x0km+1p

��
(x0)

( m
m+1 )

1;x02
NQ
i=1

[ai;bi]
(61)

�
1

(m+ 1)
+
r

2
+
mr2

8

�
:

We need

Lemma 11 The function
� eAn �k� � x0kmp �� (x0) is continuous in x0 2 � NQ

i=1

[ai; bi]

�
,

m 2 N.

Proof. By Lemma 10.3, [11], p. 272.
We give

Corollary 12 (to Theorem 10, case of m = 1) Then
1)

k(An (f)) (x0)� f (x0)k �
�An �f (1) (x0) (� � x0)�� (x0)


+

1

2r
!1

�
f (1); r

�� eAn �k� � x0k2p�� (x0)� 1
2

��� eAn �k� � x0k2p�� (x0)� 1
2

(62)�
1 + r +

r2

4

�
;

and
2) k(An (f))� fk1;

NQ
i=1

[ai;bi]
�

15



�An �f (1) (x0) (� � x0)�� (x0)

1;x02

NQ
i=1

[ai;bi]

+

1

2r
!1

0@f (1); r � eAn �k� � x0k2p�� (x0) 1
2

1;x02
NQ
i=1

[ai;bi]

1A
� eAn �k� � x0k2p�� (x0) 1

2

1;x02
NQ
i=1

[ai;bi]

�
1 + r +

r2

4

�
; (63)

r > 0:

We make

Remark 13 We estimate 0 < � < 1, m;m; n 2 N : n1�� > 2,

eAn �k� � x0km+11

�
(x0) =

Pbnbc
k=dnae

 k
n � x0

m+1
1 Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
(22)
<

�
2
�
2m
p
1 + 4m

��N bnbcX
k=dnae

kn � x0
m+1
1

Z (nx0 � k) = (64)

�
2
�
2m
p
1 + 4m

��N
8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:
 k
n � x0


1 � 1

n�

kn � x0
m+1
1

Z (nx0 � k)+

bnbcX
8<: k = dnae
:
 k
n � x0


1 > 1

n�

kn � x0
m+1
1

Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
�

�
2
�
2m
p
1 + 4m

��N ( 1

n�(m+1)
+

kb� akm+11

4m (n1�� � 2)2m

)
; (65)

(where b� a = (b1 � a1; :::; bN � aN )).

We have proved that (8 x0 2
NQ
i=1

[ai; bi])

eAn �k� � x0km+11

�
(x0) <

�
2
�
2m
p
1 + 4m

��N ( 1

n�(m+1)
+

kb� akm+11

4m (n1�� � 2)2m

)
=: '1 (n)

(66)

16



(0 < � < 1, m;m; n 2 N : n1�� > 2).
And, consequently it holds eAn �k� � x0km+11

�
(x0)


1;x02

NQ
i=1

[ai;bi]
<

�
2
�
2m
p
1 + 4m

��N ( 1

n�(m+1)
+

kb� akm+11
4m (n1�� � 2)2m

)
= '1 (n)! 0; as n! +1:

(67)
So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1;1], from

Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2).

Next we estimate
� eAn �f (j) (x0) (� � x0)j�� (x0)


:

We have that

� eAn �f (j) (x0) (� � x0)j�� (x0) = Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
:

(68)
When p =1, j = 1; :::;m; we obtainf (j) (x0)

�
k

n
� x0

�j


�
f (j) (x0)kn � x0

j
1
: (69)

We further have that� eAn �f (j) (x0) (� � x0)j�� (x0)


(22)
<

�
2
�
2m
p
1 + 4m

��N 0@ bnbcX
k=dnae

f (j) (x0)
�
k

n
� x0

�j


Z (nx0 � k)

1A �

�
2
�
2m
p
1 + 4m

��N 0@ bnbcX
k=dnae

f (j) (x0)kn � x0
j
1
Z (nx0 � k)

1A = (70)

�
2
�
2m
p
1 + 4m

��N f (j) (x0)
0@ bnbcX
k=dnae

kn � x0
j
1
Z (nx0 � k)

1A =

�
2
�
2m
p
1 + 4m

��N f (j) (x0)
8>>>>>><>>>>>>:

bnbcX
8<: k = dnae
:
 k
n � x0


1 � 1

n�

kn � x0
j
1
Z (nx0 � k)

17



+

bnbcX
8<: k = dnae
:
 k
n � x0


1 > 1

n�

kn � x0
j
1
Z (nx0 � k)

9>>>>>>=>>>>>>;
(21)
� (71)

�
2
�
2m
p
1 + 4m

��N f (j) (x0)( 1

n�j
+

kb� akj1
4m (n1�� � 2)2m

)
! 0, as n!1:

That is � eAn �f (j) (x0) (� � x0)j�� (x0)

! 0, as n!1:

Therefore when p =1, for j = 1; :::;m, we have proved:� eAn �f (j) (x0) (� � x0)j�� (x0)

<

�
2
�
2m
p
1 + 4m

��N f (j) (x0)( 1

n�j
+

kb� akj1
4m (n1�� � 2)2m

)
� (72)

�
2
�
2m
p
1 + 4m

��N f (j)
1

(
1

n�j
+

kb� akj1
4m (n1�� � 2)2m

)
=: '2j (n) <1;

and converges to zero, as n!1:

We conclude:
In Theorem 10, the right hand sides of (60) and (61) converge to zero as

n!1, for any p 2 [1;1].
Also in Corollary 12, the right hand sides of (62) and (63) converge to zero

as n!1, for any p 2 [1;1] :

Conclusion 14 We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (63) converge to zero as n ! 1, for p 2 [1;1]. Consequently
An ! I (unit operator) pointwise and uniformly, as n ! 1, where p 2 [1;1].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We further give

Corollary 15 (to Theorem 10) Let O open subset of
�
RN ; k�k1

�
, such that

NQ
i=1

[ai; bi] � O � RN , and let
�
X; k�k

�
be a general Banach space. Let m 2 N

and f 2 Cm (O;X), the space of m-times continuously Fréchet di¤erentiable
functions from O into X. We study the approximation of f j NQ

i=1
[ai;bi]

: Let x0 2

18



�
NQ
i=1

[ai; bi]

�
and r > 0. Here '1 (n) as in (66) and '2j (n) as in (72), where

n 2 N : n1�� > 2, 0 < � < 1, j = 1; :::;m: Then
1) (An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)




�

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (73)

2) additionally, if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k �

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (74)

3) kAn (f)� fk1;
NQ
i=1

[ai;bi]
�

mX
j=1

'2j (n)

j!
+

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 ) (75)�

1

(m+ 1)
+
r

2
+
mr2

8

�
=: '3 (n)! 0, as n!1:

We continue with

Theorem 16 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k � !1
�
f;
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
=: �2 (n) ; (76)

2) kBn (f)� fk1 � �2 (n) : (77)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly.
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Proof. We have that

Bn (f; x)� f (x)
(16)
=

1X
k=�1

f

�
k

n

�
Z (nx� k)� f (x)

1X
k=�1

Z (nx� k) = (78)

1X
k=�1

�
f

�
k

n

�
� f (x)

�
Z (nx� k) :

Hence

kBn (f; x)� f (x)k �
1X

k=�1

f �kn
�
� f (x)




Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

f �kn
�
� f (x)




Z (nx� k)+

1X
8<: k = �1 k

n � x

1 > 1

n�

f �kn
�
� f (x)




Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2

kfk1
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (nx� k)
(23)
�

!1

�
f;
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
; (79)

proving the claim.
We give

Theorem 17 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k � !1
�
f;
1

n
+
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
=: �3 (n) ; (80)

2) kCn (f)� fk1 � �3 (n) : (81)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.
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Proof. We notice thatZ k+1
n

k
n

f (t) dt =

Z k1+1
n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; t2; :::; tN ) dt1dt2:::dtN =

Z 1
n

0

Z 1
n

0

:::

Z 1
n

0

f

�
t1 +

k1
n
; t2 +

k2
n
; :::; tN +

kN
n

�
dt1:::dtN =

Z 1
n

0

f

�
t+

k

n

�
dt:

(82)
Thus it holds (by (38))

Cn (f; x) =
1X

k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k) : (83)

We observe that
kCn (f; x)� f (x)k =

1X
k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k)�

1X
k=�1

f (x)Z (nx� k)



=


1X

k=�1

  
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
� f (x)

!
Z (nx� k)




=


1X

k=�1

 
nN
Z 1

n

0

�
f

�
t+

k

n

�
� f (x)

�
dt

!
Z (nx� k)




� (84)

1X
k=�1

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k)+

1X
8<: k = �1 k

n � x

1 > 1

n�

 
nN
Z 1

n

0

f �t+ k

n

�
� f (x)




dt

!
Z (nx� k) �

1X
8<: k = �1 k

n � x

1 � 1

n�

 
nN
Z 1

n

0

!1

�
f; ktk1 +

kn � x

1

�
dt

!
Z (nx� k)+
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2
kfk1

0BBBBBB@
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (jnx� kj)

1CCCCCCA �

!1

�
f;
1

n
+
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
; (85)

proving the claim.
We also present

Theorem 18 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k � !1
�
f;
1

n
+
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
= �4 (n) ; (86)

2) kDn (f)� fk1 � �4 (n) : (87)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. We have that (by (40))

kDn (f; x)� f (x)k =


1X
k=�1

�nk (f)Z (nx� k)�
1X

k=�1
f (x)Z (nx� k)




=

(88)
1X

k=�1
(�nk (f)� f (x))Z (nx� k)




=


1X

k=�1

 
�X
r=0

wr

�
f

�
k

n
+
r

n�

�
� f (x)

�!
Z (nx� k)




�

1X
k=�1

 
�X
r=0

wr

f �kn + r

n�

�
� f (x)




!
Z (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

 
�X
r=0

wr

f �kn + r

n�

�
� f (x)




!
Z (nx� k)+
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1X
8<: k = �1 k

n � x

1 > 1

n�

 
�X
r=0

wr

f �kn + r

n�

�
� f (x)




!
Z (nx� k) �

1X
8<: k = �1 k

n � x

1 � 1

n�

 
�X
r=0

wr!1

�
f;

kn � x

1
+
 r
n�


1

�!
Z (nx� k)+

2
kfk1

0BBBBBB@
1X

8<: k = �1 k
n � x


1 > 1

n�

Z (nx� k)

1CCCCCCA �

!1

�
f;
1

n
+
1

n�

�
+

2
kfk1

4m (n1�� � 2)2m
; (89)

proving the claim.
We make

De�nition 19 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k

�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(90)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k �kfk1 :
Hence Fn (f) is a bounded linear operator with

kFn (f)k1 �
kfk1.

We need

Theorem 20 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Clearly Fn (f) is a bounded function.
Next we prove the continuity of Fn (f). Notice for N = 1, Z = � by (14).
We will use the generalized Weierstrass M test: If a sequence of positive

constants M1;M2;M3; :::; can be found such that in some interval
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(a) kun (x)k �Mn, n = 1; 2; 3; :::
(b)

P
Mn converges,

then
P
un (x) is uniformly and absolutely convergent in the interval.

Also we will use:
If fun (x)g, n = 1; 2; 3; ::: are continuous in [a; b] and if

P
un (x) converges

uniformly to the sum S (x) in [a; b], then S (x) is continuous in [a; b]. I.e. a
uniformly convergent series of continuous functions is a continuous function.
First we prove claim for N = 1.
We will prove that

P1
k=�1 lnk (f)� (nx� k) is continuous in x 2 R.

There always exists � 2 N such that nx 2 [��; �] :
Since nx � �, then �nx � �� and k � nx � k � � � 0, when k � �.

Therefore

1X
k=�

� (nx� k) =
1X
k=�

� (k � nx) �
1X
k=�

� (k � �) =
1X
k0=0

� (k0) � 1: (91)

So for k � � we get

klnk (f)k � (nx� k) �
kfk1� (k � �) ;

and kfk1
1X
k=�

� (k � �) �
kfk1 :

Hence by the generalizedWeierstrassM test we obtain that
P1

k=� lnk (f) � (nx� k)
is uniformly and absolutely convergent on

�
��
n ;

�
n

�
:

Since lnk (f) � (nx� k) is continuous in x, then
P1

k=� lnk (f) � (nx� k) is
continuous on

�
��
n ;

�
n

�
:

Because nx � ��, then �nx � �, and k � nx � k + � � 0, when k � ��.
Therefore

��X
k=�1

� (nx� k) =
��X

k=�1
� (k � nx) �

��X
k=�1

� (k + �) =
0X

k0=�1
� (k0) � 1:

So for k � �� we get

klnk (f)k � (nx� k) �
kfk1� (k + �) ; (92)

and kfk1
��X

k=�1
� (k + �) �

kfk1 :
Hence by Weierstrass M test we obtain that

P��
k=�1 lnk (f) � (nx� k) is uni-

formly and absolutely convergent on
�
��
n ;

�
n

�
:
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Since lnk (f) � (nx� k) is continuous in x, then
P��

k=�1 lnk (f) � (nx� k)
is continuous on

�
��
n ;

�
n

�
:

So we proved that
P1

k=� lnk (f) � (nx� k) and
P��

k=�1 lnk (f) � (nx� k)
are continuous on R. Since

P��1
k=��+1 lnk (f) � (nx� k) is a �nite sum of con-

tinuous functions on R, it is also a continuous function on R.
Writing

1X
k=�1

lnk (f) � (nx� k) =
��X

k=�1
lnk (f) � (nx� k)+

��1X
k=��+1

lnk (f) � (nx� k) +
1X
k=�

lnk (f) � (nx� k) (93)

we have it as a continuous function on R. Therefore Fn (f), when N = 1, is a
continuous function on R.
When N = 2 we have

Fn (f; x1; x2) =
1X

k1=�1

1X
k2=�1

lnk (f)� (nx1 � k1) � (nx2 � k2) =

1X
k1=�1

� (nx1 � k1)
 1X
k2=�1

lnk (f) � (nx2 � k2)
!

(there always exist �1; �2 2 N such that nx1 2 [��1; �1] and nx2 2 [��2; �2])

=

1X
k1=�1

� (nx1 � k1)
" ��2X
k2=�1

lnk (f) � (nx2 � k2)+

�2�1X
k2=��2+1

lnk (f)� (nx2 � k2) +
1X

k2=�2

lnk (f) � (nx2 � k2)
#
=

=
1X

k1=�1

��2X
k2=�1

lnk (f)� (nx1 � k1) � (nx2 � k2)+

1X
k1=�1

�2�1X
k2=��2+1

lnk (f) � (nx1 � k1) � (nx2 � k2)+

1X
k1=�1

1X
k2=�2

lnk (f) � (nx1 � k1) � (nx2 � k2) =: (�) :

(For convenience call

F (k1; k2; x1; x2) := lnk (f) � (nx1 � k1) � (nx2 � k2) : )
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Thus

(�) =
��1X

k1=�1

��2X
k2=�1

F (k1; k2; x1; x2) +

�1�1X
k1=��1+1

��2X
k2=�1

F (k1; k2; x1; x2)+

1X
k1=�1

��2X
k2=�1

F (k1; k2; x1; x2) +

��1X
k1=�1

�2�1X
k2=��2+1

F (k1; k2; x1; x2)+

�1�1X
k1=��1+1

�2�1X
k2=��2+1

F (k1; k2; x1; x2) +
1X

k1=�1

�2�1X
k2=��2+1

F (k1; k2; x1; x2)+

��1X
k1=�1

1X
k2=�2

F (k1; k2; x1; x2) +

�1�1X
k1=��1+1

1X
k2=�2

F (k1; k2; x1; x2)+ (94)

1X
k1=�1

1X
k2=�2

F (k1; k2; x1; x2) :

Notice that the �nite sum of continuous functions F (k1; k2; x1; x2),P�1�1
k1=��1+1

P�2�1
k2=��2+1 F (k1; k2; x1; x2) is a continuous function.

The rest of the summands of Fn (f; x1; x2) are treated all the same way and
similarly to the case of N = 1. The method is demonstrated as follows.
We will prove that

P1
k1=�1

P��2
k2=�1 lnk (f)� (nx1 � k1) � (nx2 � k2) is con-

tinuous in (x1; x2) 2 R2.
The continuous function

klnk (f)k � (nx1 � k1) � (nx2 � k2) �
kfk1� (k1 � �1)� (k2 + �2) ;

and kfk1
1X

k1=�1

��2X
k2=�1

� (k1 � �1) � (k2 + �2) =

kfk1
 1X
k1=�1

� (k1 � �1)
! ��2X

k2=�1
� (k2 + �2)

!
�

kfk1
0@ 1X
k01=0

� (k01)

1A0@ 0X
k02=�1

� (k02)

1A �
kfk1 :

So by the Weierstrass M test we get thatP1
k1=�1

P��2
k2=�1 lnk (f)� (nx1 � k1) � (nx2 � k2) is uniformly and absolutely

convergent. Therefore it is continuous on R2:
Next we prove continuity on R2 ofP�1�1
k1=��1+1

P��2
k2=�1 lnk (f) � (nx1 � k1) � (nx2 � k2).
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Notice here that

klnk (f)k � (nx1 � k1)� (nx2 � k2) �
kfk1� (nx1 � k1) � (k2 + �2)

�
kfk1� (0)� (k2 + �2) = 1

2 2m
p
2
�
kfk1� (k2 + �2) ;

and
1

2 2m
p
2
�
kfk1

 
�1�1X

k1=��1+1
1

! ��2X
k2=�1

� (k2 + �2)

!
=

1

2 2m
p
2
�
kfk1 (2�1 � 1)

0@ 0X
k02=�1

� (k02)

1A � 1

2 2m
p
2
� (2�1 � 1)

kfk1 :
(95)

So the double series under consideration is uniformly convergent and continuous.
Clearly Fn (f; x1; x2) is proved to be continuous on R2:
Similarly reasoning one can prove easily now, but with more tedious work,

that Fn (f; x1; :::; xN ) is continuous on RN , for any N � 1. We choose to omit
this similar extra work.

Remark 21 By (25) it is obvious that
kAn (f)k1 �

kfk1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:
Clearly thenL2n (f)1 =

kLn (Ln (f))k1 �
kLn (f)k1 �

kfk1 ; (96)

etc.
Therefore we getLkn (f)1 �

kfk1 , 8 k 2 N, (97)

the contraction property.
Also we see thatLkn (f)1 �

Lk�1n (f)




1
� ::: �

kLn (f)k1 �
kfk1 : (98)

Here Lkn are bounded linear operators.

Notation 22 Here N 2 N, 0 < � < 1: Denote by

cN :=

(�
2
�
2m
p
1 + 4m

��N
, if Ln = An;

1, if Ln = Bn; Cn; Dn;
(99)
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' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(100)


 :=

8<:C
�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(101)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:
(102)

We give the condensed

Theorem 23 Let f 2 
, 0 < � < 1, x 2 Y ; n; m; N 2 N with n1�� > 2. Then
(i)

kLn (f; x)� f (x)k � cN

24!1 (f; ' (n)) + 2
kfk1

4m (n1�� � 2)2m

35 =: � (n) ; (103)
where !1 is for p =1;
and
(ii) kLn (f)� fk1 � � (n)! 0, as n!1: (104)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.

Proof. By Theorems 8, 16, 17, 18.
Next we do iterated neural network approximation (see also [9]).
We make

Remark 24 Let r 2 N and Ln as above. We observe that

Lrnf � f =
�
Lrnf � Lr�1n f

�
+
�
Lr�1n f � Lr�2n f

�
+�

Lr�2n f � Lr�3n f
�
+ :::+

�
L2nf � Lnf

�
+ (Lnf � f) :

ThenkLrnf � fk1 �
Lrnf � Lr�1n f





1
+
Lr�1n f � Lr�2n f





1
+Lr�2n f � Lr�3n f





1
+ :::+

L2nf � Lnf1 +
kLnf � fk1 =
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Lr�1n (Lnf � f)




1
+
Lr�2n (Lnf � f)





1
+
Lr�3n (Lnf � f)





1

+:::+
kLn (Lnf � f)k1 +

kLnf � fk1 � r
kLnf � fk1 : (105)

That is kLrnf � fk1 � r
kLnf � fk1 : (106)

We give

Theorem 25 All here as in Theorem 23 and r 2 N, � (n) as in (104). ThenkLrnf � fk1 � r� (n) : (107)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. By (106) and (104).
We make

Remark 26 Let m;m1; :::;mr 2 N : m1 � m2 � ::: � mr, 0 < � < 1, f 2 
.
Then ' (m1) � ' (m2) � ::: � ' (mr), ' as in (100).
Therefore

!1 (f; ' (m1)) � !1 (f; ' (m2)) � ::: � !1 (f; ' (mr)) : (108)

Assume further that m1��
i > 2, i = 1; :::; r. Then

1

4m
�
m1��
1 � 2

�2m � 1

4m
�
m1��
2 � 2

�2m � ::: � 1

4m
�
m1��
r � 2

�2m : (109)

Let Lmi
as above, i = 1; :::; r; all of the same kind.

We write
Lmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
� f =

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� Lmr

�
Lmr�1 (:::Lm2

f)
�
+

Lmr

�
Lmr�1 (:::Lm2f)

�
� Lmr

�
Lmr�1 (:::Lm3f)

�
+

Lmr

�
Lmr�1 (:::Lm3

f)
�
� Lmr

�
Lmr�1 (:::Lm4

f)
�
+ :::+ (110)

Lmr

�
Lmr�1f

�
� Lmrf + Lmrf � f =

Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f) + Lmr

�
Lmr�1 (:::Lm3

)
�
(Lm2

f � f)+

Lmr

�
Lmr�1 (:::Lm4)

�
(Lm3f � f) + :::+ Lmr

�
Lmr�1f � f

�
+ Lmrf � f:

Hence by the triangle inequality property of
k�k1 we getLmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�
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Lmr

�
Lmr�1 (:::Lm2

)
�
(Lm1

f � f)




1
+Lmr

�
Lmr�1 (:::Lm3)

�
(Lm2f � f)





1
+Lmr

�
Lmr�1 (:::Lm4

)
�
(Lm3

f � f)




1
+ :::+Lmr

�
Lmr�1f � f

�



1
+
kLmr

f � fk

1

(repeatedly applying (96))

�
kLm1

f � fk

1
+
kLm2

f � fk

1
+
kLm3

f � fk

1
+ :::+

Lmr�1f � f




1
+
kLmr

f � fk

1
=

rX
i=1

kLmi
f � fk


1
: (111)

That is, we provedLmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�

rX
i=1

kLmi
f � fk


1
: (112)

We give

Theorem 27 Let f 2 
; m; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1

; :::; Lmr
) as (Am1

; :::; Amr
)

or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p =1: ThenLmr

�
Lmr�1 (:::Lm2 (Lm1f))

�
(x)� f (x)



�Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f





1
�

rX
i=1

kLmif � fk

1
�

cN

rX
i=1

264!1 (f; ' (mi)) +
2
kfk1

4m
�
m1��
i � 2

�2m
375 �

rcN

264!1 (f; ' (m1)) +
2
kfk1

4m
�
m1��
1 � 2

�2m
375 : (113)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1

:

Proof. Using (112), (108), (109) and (103), (104).
We continue with
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Theorem 28 Let all as in Corollary 15, and r 2 N. Here '3 (n) is as in (75).
Then kArnf � fk1 � r

kAnf � fk1 � r'3 (n) : (114)

Proof. By (106) and (75).

Application 29 A typical application of all of our results is when
�
X; k�k

�
=

(C; j�j), where C are the complex numbers.
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