
Abstract multivariate Gudermannian function
activated neural network approximations

George A. Anastassiou
Department of Mathematical Sciences

University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we present multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RN ; N 2 N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We examine also the case of
approximation by iterated operators of the last four types. These ap-
proximations are achieved by establishing multidimensional Jackson type
inequalities involving the multivariate modulus of continuity of the en-
gaged function or its high order Fréchet derivatives. Our multivariate
operators are de�ned by using a multidimensional density function in-
duced by the Gudermannian sigmoid function. The approximations are
pointwise and uniform. The related feed-forward neural network is with
one hidden layer.
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1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the �rst to establish
neural network approximations to continuous functions with rates by very specif-
ically de�ned neural network operators of Cardaliaguet-Euvrard and �Squash-
ing�types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
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He treats there both the univariate and multivariate cases. The de�ning these
operators �bell-shaped�and �squashing� functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.
Motivations for this work are the article [17] of Z. Chen and F. Cao, and [4],

[5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [18], [19].
Here we perform multivariate Gudermannian sigmoid function based neural

network approximations to continuous functions over boxes or over the whole
RN , N 2 N, and also iterated approximations. All convergences here are with
rates expressed via the multivariate modulus of continuity of the involved func-
tion or its high order Fréchet derivative and given by very tight multidimensional
Jackson type inequalities.
We come up with the �right� precisely de�ned multivariate normalized,

quasi-interpolation neural network operators related to boxes or RN , as well
as Kantorovich type and quadrature type related operators on RN . Our boxes
are not necessarily symmetric to the origin. In preparation to prove our results
we establish important properties of the basic multivariate density function in-
duced by Gudermannian sigmoid function and de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =

nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x,
and � is the activation function of the network. In many fundamental network
models, the activation function is the Gudermannian sigmoid function. About
neural networks see [20], [21], [22].

2 Background

See also [13], [24].
Here we consider gd (x) the Gudermannian function [24], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (1)

Let the normalized generator sigmoid function

f (x) :=
4

�
� (x) =

4

�

Z x

0

dt

cosh t
=
8

�

Z x

0

1

et + e�t
dt; x 2 R: (2)
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Here
f 0 (x) =

4

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

W (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (3)

By [3], we get that
W (x) =W (�x) ; 8 x 2 R; (4)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (5)

an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain W (x) > 0, 8 x 2 R:
By [13], we have that

W (0) =
2

�
gd (1) �= 0:551: (6)

By [13] W is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and W 0 (0) = 0.
Also we have that

lim
x!+1

W (x) = lim
x!�1

W (x) = 0; (7)

that is the x-axis is the horizontal asymptote for W .
Conclusion, W is a bell shaped symmetric function with maximum  (0) �=

0:551.
We need

Theorem 1 ([13]) It holds that

1X
i=�1

W (x� i) = 1, 8 x 2 R: (8)

Theorem 2 ([13]) We have thatZ 1

�1
W (x) dx = 1: (9)

So W (x) is a density function.
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Theorem 3 ([13]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

W (nx� k) < 1

�e(n1���2)
=

4e2

�en1��
: (10)

Denote by b�c the integral part of the number and by d�e the ceiling of the
number.

Theorem 4 ([13]) Let [a; b] � R and n 2 N; so that dnae � bnbc. It holds

1
bnbcP

k=dnae
W (nx� k)

<
�

gd (2)
�= 2:412; (11)

8 x 2 [a; b] :

We make

Remark 5 ([13])
(i) We have that

lim
n!1

bnbcX
k=dnae

W (nx� k) 6= 1; (12)

for at least some x 2 [a; b] :
(ii) Let [a; b] � R. For large n we always have dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general it holds

bnbcX
k=dnae

W (nx� k) � 1: (13)

We introduce

Z (x1; :::; xN ) := Z (x) :=
NY
i=1

W (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (14)

It has the properties:
(i) Z (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z (x1 � k1; :::; xN � kN ) = 1; (15)
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where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z (nx� k) = 1; (16)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z (x) dx = 1; (17)

that is Z is a multivariate density function.
Here denote kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set1 := (1; :::;1),

�1 := (�1; :::;�1) upon the multivariate context, and

dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;
(18)

where a := (a1; :::; aN ), b := (b1; :::; bN ) :
We obviously see that

bnbcX
k=dnae

Z (nx� k) =
bnbcX

k=dnae

 
NY
i=1

W (nxi � ki)
!
=

bnb1cX
k1=dna1e

:::

bnbNcX
kN=dnaNe

 
NY
i=1

W (nxi � ki)
!
=

NY
i=1

0@ bnbicX
ki=dnaie

W (nxi � ki)

1A : (19)

For 0 < � < 1 and n 2 N, a �xed x 2 RN , we have that

bnbcX
k=dnae

Z (nx� k) =

bnbcX
8<: k = dnae

 k

n � x



1 � 1

n�

Z (nx� k) +
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n�

Z (nx� k) : (20)

In the last two sums the counting is over disjoint vector sets of k�s, because the
condition



 k
n � x




1 > 1

n�
implies that there exists at least one

��kr
n � xr

�� > 1
n�
,

where r 2 f1; :::; Ng :
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(v) As in [10], pp. 379-380, we derive that

bnbcX
8<: k = dnae

 k

n � x



1 > 1

n�

Z (nx� k)
(10)
<

4e2

�en1��
, 0 < � < 1; m 2 N; (21)

with n 2 N : n1�� > 2, x 2
QN
i=1 [ai; bi] :

(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z (nx� k)
<

�
�

gd (2)

�N
�= (2:412)N ; (22)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

It is also clear that
(vii)

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z (nx� k) < 4e2

�en1��
; (23)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:
Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z (nx� k) 6= 1; (24)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Here
�
X; k�k


�
is a Banach space.

Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; x = (x1; :::; xN ) 2

QN
i=1 [ai; bi] ; n 2 N such

that dnaie � bnbic, i = 1; :::; N:
We introduce and de�ne the following multivariate linear normalized neural

network operator (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
):

An (f; x1; :::; xN ) := An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1W (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaieW (nxi � ki)

� : (25)

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
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When g 2 C
�QN

i=1 [ai; bi]
�
we de�ne the companion operator

eAn (g; x) := Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)Pbnbc

k=dnae Z (nx� k)
: (26)

Clearly eAn is a positive linear operator. We have that
eAn (1; x) = 1, 8 x 2  NY

i=1

[ai; bi]

!
:

Notice that An (f) 2 C
�QN

i=1 [ai; bi] ; X
�
and eAn (g) 2 C �QN

i=1 [ai; bi]
�
:

Furthermore it holds

kAn (f; x)k
 �
Pbnbc

k=dnae


f � kn�


 Z (nx� k)Pbnbc

k=dnae Z (nx� k)
= eAn �kfk
 ; x� ; (27)

8 x 2
QN
i=1 [ai; bi] :

Clearly kfk
 2 C
�QN

i=1 [ai; bi]
�
:

So, we have that

kAn (f; x)k
 � eAn �kfk
 ; x� ; (28)

8 x 2
QN
i=1 [ai; bi], 8 n 2 N, 8 f 2 C

�QN
i=1 [ai; bi] ; X

�
:

Let c 2 X and g 2 C
�QN

i=1 [ai; bi]
�
, then cg 2 C

�QN
i=1 [ai; bi] ; X

�
:

Furthermore it holds

An (cg; x) = c eAn (g; x) , 8 x 2 NY
i=1

[ai; bi] : (29)

Since eAn (1) = 1, we get that
An (c) = c, 8 c 2 X. (30)

We call eAn the companion operator of An.
For convinience we call

A�n (f; x) :=

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k) =

bnb1cX
k1=dna1e

bnb2cX
k2=dna2e

:::

bnbNcX
kN=dnaNe

f

�
k1
n
; :::;

kN
n

� NY
i=1

W (nxi � ki)
!
; (31)
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8 x 2
�QN

i=1 [ai; bi]
�
:

That is

An (f; x) :=
A�n (f; x)Pbnbc

k=dnae Z (nx� k)
; (32)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N:

Hence

An (f; x)� f (x) =
A�n (f; x)� f (x)

�Pbnbc
k=dnae Z (nx� k)

�
Pbnbc

k=dnae Z (nx� k)
: (33)

Consequently we derive

kAn (f; x)� f (x)k

(22)
� (2:412)

N







A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k)











; (34)

8 x 2
�QN

i=1 [ai; bi]
�
:

We will estimate the right hand side of (34).
For the last and others we need

De�nition 6 ([11], p. 274) LetM be a convex and compact subset of
�
RN ; k�kp

�
,

p 2 [1;1], and
�
X; k�k


�
be a Banach space. Let f 2 C (M;X) : We de�ne the

�rst modulus of continuity of f as

!1 (f; �) := sup

x; y 2M :

kx� ykp � �

kf (x)� f (y)k
 , 0 < � � diam (M) : (35)

If � > diam (M), then

!1 (f; �) = !1 (f; diam (M)) : (36)

Notice !1 (f; �) is increasing in � > 0. For f 2 CB (M;X) (continuous and
bounded functions) !1 (f; �) is de�ned similarly.

Lemma 7 ([11], p. 274) We have !1 (f; �) ! 0 as � # 0, i¤ f 2 C (M;X),

where M is a convex compact subset of
�
RN ; k�kp

�
, p 2 [1;1] :

Clearly we have also: f 2 CU
�
RN ; X

�
(uniformly continuous functions),

i¤ !1 (f; �) ! 0 as � # 0, where !1 is de�ned similarly to (35). The space
CB
�
RN ; X

�
denotes the continuous and bounded functions on RN :

8



When f 2 CB
�
RN ; X

�
we de�ne,

Bn (f; x) := Bn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Z (nx� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

W (nxi � ki)
!
; (37)

n 2 N, 8 x 2 RN ; N 2 N, the multivariate quasi-interpolation neural network
operator.
Also for f 2 CB

�
RN ; X

�
we de�ne the multivariate Kantorovich type neural

network operator

Cn (f; x) := Cn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Z (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

W (nxi � ki)
!
; (38)

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN ; X

�
; N 2 N; we de�ne the multivariate neural net-

work operator of quadrature type Dn (f; x), n 2 N; as follows.
Let � = (�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such

that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=
�X
r=0

wrf

�
k

n
+

r

n�

�
=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+

r1
n�1

;
k2
n
+

r2
n�2

; :::;
kN
n
+

rN
n�N

�
; (39)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
:

We set

Dn (f; x) := Dn (f; x1; :::; xN ) :=
1X

k=�1
�nk (f)Z (nx� k) = (40)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

W (nxi � ki)
!
;
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8 x 2 RN :
In this article we study the approximation properties of An; Bn; Cn; Dn

neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate general Neural Network Approx-
imations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 8 Let f 2 C
�QN

i=1 [ai; bi] ; X
�
; 0 < � < 1, x 2

�QN
i=1 [ai; bi]

�
;

m;N; n 2 N with n1�� > 2. Then
1)

kAn (f; x)� f (x)k
 � (2:412)
N

24!1�f; 1
n�

�
+
8e2



kfk



1
�en1��

35 =: �1 (n) ;
(41)

and
2) 


kAn (f)� fk



1 � �1 (n) : (42)

We notice that lim
n!1

An (f)
k�k

= f , pointwise and uniformly.

Above !1 is with respect to p =1:

Proof. We observe that

�(x) := A�n (f; x)� f (x)
bnbcX

k=dnae

Z (nx� k) =

bnbcX
k=dnae

f

�
k

n

�
Z (nx� k)�

bnbcX
k=dnae

f (x)Z (nx� k) =

bnbcX
k=dnae

�
f

�
k

n

�
� f (x)

�
Z (nx� k) : (43)

Thus

k�(x)k
 �
bnbcX

k=dnae





f �kn
�
� f (x)









Z (nx� k) =

10



bnbcX
8<: k = dnae

 k

n � x



1 � 1

n�





f �kn
�
� f (x)









Z (nx� k)+

bnbcX
8<: k = dnae

 k

n � x



1 > 1

n�





f �kn
�
� f (x)









Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2




kfk



1
bnbcX

8<: k = dnae

 k
n � x




1 > 1

n�

Z (nx� k)
(21)
�

!1

�
f;
1

n�

�
+
8e2



kfk



1
�en1��

: (44)

So that

k�(x)k
 � !1

�
f;
1

n�

�
+
8e2



kfk



1
�en1��

: (45)

Now using (34) we �nish the proof.
We make

Remark 9 ([11], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the Lp-

norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j
denotes the j-fold product

space RN�:::�RN endowed with the max-norm kxk(RN )j := max
1���j

kx�kp, where

x := (x1; :::; xj) 2
�
RN
�j
:

Let
�
X; k�k


�
be a general Banach space. Then the space Lj := Lj

��
RN
�j
;X
�

of all j-multilinear continuous maps g :
�
RN
�j ! X, j = 1; :::;m, is a Banach

space with norm

kgk := kgkLj := sup�
kxk

(RN )j
=1

� kg (x)k
 = sup kg (x)k

kx1kp ::: kxjkp

: (46)

Let M be a non-empty convex and compact subset of RN and x0 2 M is
�xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a continuous

function, whose Fréchet derivatives (see [23]) f (j) : O ! Lj = Lj

��
RN
�j
;X
�

exist and are continuous for 1 � j � m, m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2

�
RN
�j
, x 2M .
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We will work with f jM :
Then, by Taylor�s formula ([16]), ([23], p. 124), we get

f (x) =
mX
j=0

f (j) (x0) (x� x0)j

j!
+Rm (x; x0) , all x 2M; (47)

where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

�
f (m) (x0 + u (x� x0))� f (m) (x0)

�
(x� x0)m du;

(48)
here we set f (0) (x0) (x� x0)0 = f (x0) :

We consider

w := !1

�
f (m); h

�
:= sup

x;y2M :

kx�ykp�h




f (m) (x)� f (m) (y)


 ; (49)

h > 0:

We obtain


�f (m) (x0 + u (x� x0))� f (m) (x0)� (x� x0)m





�




f (m) (x0 + u (x� x0))� f (m) (x0)


 � kx� x0kmp �
w kx� x0kmp

�
u kx� x0kp

h

�
; (50)

by Lemma 7.1.1, [1], p. 208, where d�e is the ceiling.
Therefore for all x 2M (see [1], pp. 121-122):

kRm (x; x0)k
 � w kx� x0kmp
Z 1

0

�
u kx� x0kp

h

�
(1� u)m�1

(m� 1)! du

= w�m

�
kx� x0kp

�
(51)

by a change of variable, where

�m (t) :=

Z jtj

0

l s
h

m (jtj � s)m�1
(m� 1)! ds =

1

m!

0@ 1X
j=0

(jtj � jh)m+

1A , 8 t 2 R; (52)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

�m (t) �
 

jtjm+1

(m+ 1)!h
+
jtjm

2m!
+

h jtjm�1

8 (m� 1)!

!
; 8 t 2 R; (53)

12



with equality true only at t = 0.
Therefore it holds

kRm (x; x0)k
 � w

 
kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
; 8 x 2M:

(54)
We have found that 





f (x)�

mX
j=0

f (j) (x0) (x� x0)j

j!











�

!1

�
f (m); h

� kx� x0km+1p

(m+ 1)!h
+
kx� x0kmp
2m!

+
h kx� x0km�1p

8 (m� 1)!

!
<1; (55)

8 x; x0 2M:

Here 0 < !1
�
f (m); h

�
<1, by M being compact and f (m) being continuous

on M .
One can rewrite (55) as follows:





f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!











�

!1

�
f (m); h

� k� � x0km+1p

(m+ 1)!h
+
k� � x0kmp
2m!

+
h k� � x0km�1p

8 (m� 1)!

!
; 8 x0 2M; (56)

a pointwise functional inequality on M .
Here (� � x0)j maps M into

�
RN
�j
and it is continuous, also f (j) (x0) maps�

RN
�j
into X and it is continuous. Hence their composition f (j) (x0) (� � x0)j

is continuous from M into X.

Clearly f (�)�
Pm

j=0
f(j)(x0)(��x0)j

j! 2 C (M;X), hence



f (�)�Pm

j=0
f(j)(x0)(��x0)j

j!







2

C (M).

Let
neLNo

N2N
be a sequence of positive linear operators mapping C (M) into

C (M) :

Therefore we obtain0@eLN
0@





f (�)�

mX
j=0

f (j) (x0) (� � x0)j

j!











1A1A (x0) �

!1

�
f (m); h

�24
�eLN �k� � x0km+1p

��
(x0)

(m+ 1)!h
+

�eLN �k� � x0kmp �� (x0)
2m!

13



+
h
�eLN �k� � x0km�1p

��
(x0)

8 (m� 1)!

35 ; (57)

8 N 2 N, 8 x0 2M .

Clearly (57) is valid when M =
NQ
i=1

[ai; bi] and eLn = eAn, see (26).
All the above is preparation for the following theorem, where we assume

Fréchet di¤erentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An; eAn ful�ll its assumptions, see (25), (26), (28), (29) and (30).
We present the following high order approximation results.

Theorem 10 Let O open subset of
�
RN ; k�kp

�
, p 2 [1;1], such that

NQ
i=1

[ai; bi] �

O � RN , and let
�
X; k�k


�
be a general Banach space. Let m 2 N and f 2

Cm (O;X), the space of m-times continuously Fréchet di¤erentiable functions

from O into X. We study the approximation of f j NQ
i=1

[ai;bi]
: Let x0 2

�
NQ
i=1

[ai; bi]

�
and r > 0. Then
1) 





(An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)











�

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (58)

2) additionally if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k
 �

!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(59)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

3)

k(An (f)) (x0)� f (x0)k
 �
mX
j=1

1

j!




�An �f (j) (x0) (� � x0)j�� (x0)





+

14



!1

�
f (m); r

�� eAn �k� � x0km+1p

��
(x0)

� 1
m+1

�
rm!

�� eAn �k� � x0km+1p

��
(x0)

�( m
m+1 )

(60)�
1

(m+ 1)
+
r

2
+
mr2

8

�
;

and
4) 


kAn (f)� fk



1;

NQ
i=1

[ai;bi]
�

mX
j=1

1

j!








�An �f (j) (x0) (� � x0)j�� (x0)









1;x02

NQ
i=1

[ai;bi]

+

!1

0@f (m); r 


� eAn �k� � x0km+1p

��
(x0)




 1
m+1

1;x02
NQ
i=1

[ai;bi]

1A
rm!


� eAn �k� � x0km+1p

��
(x0)




( m
m+1 )

1;x02
NQ
i=1

[ai;bi]
(61)

�
1

(m+ 1)
+
r

2
+
mr2

8

�
:

We need

Lemma 11 The function
� eAn �k� � x0kmp �� (x0) is continuous in x0 2 � NQ

i=1

[ai; bi]

�
,

m 2 N.

Proof. By Lemma 10.3, [11], p. 272.
We give

Corollary 12 (to Theorem 10, case of m = 1) Then
1)

k(An (f)) (x0)� f (x0)k
 �



�An �f (1) (x0) (� � x0)�� (x0)






+

1

2r
!1

�
f (1); r

�� eAn �k� � x0k2p�� (x0)� 1
2

��� eAn �k� � x0k2p�� (x0)� 1
2

(62)�
1 + r +

r2

4

�
;

and

15



2) 


k(An (f))� fk



1;
NQ
i=1

[ai;bi]
�








�An �f (1) (x0) (� � x0)�� (x0)









1;x02

NQ
i=1

[ai;bi]

+

1

2r
!1

0@f (1); r 


� eAn �k� � x0k2p�� (x0)


 1
2

1;x02
NQ
i=1

[ai;bi]

1A



� eAn �k� � x0k2p�� (x0)


 1

2

1;x02
NQ
i=1

[ai;bi]

�
1 + r +

r2

4

�
; (63)

r > 0:

We make

Remark 13 We estimate 0 < � < 1, m;n 2 N : n1�� > 2,

eAn �k� � x0km+11

�
(x0) =

Pbnbc
k=dnae



 k
n � x0



m+1
1 Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
(22)
<

(2:412)
N

bnbcX
k=dnae





kn � x0




m+1
1

Z (nx0 � k) = (64)

(2:412)
N

8>>>>>><>>>>>>:
bnbcX

8<: k = dnae
:


 k
n � x0




1 � 1

n�





kn � x0




m+1
1

Z (nx0 � k)+

bnbcX
8<: k = dnae
:


 k
n � x0




1 > 1

n�





kn � x0




m+1
1

Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
�

(2:412)
N

(
1

n�(m+1)
+
4e2 kb� akm+11

�en1��

)
; (65)

(where b� a = (b1 � a1; :::; bN � aN )).
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We have proved that (8 x0 2
NQ
i=1

[ai; bi])

eAn �k� � x0km+11

�
(x0) < (2:412)

N

(
1

n�(m+1)
+
4e2 kb� akm+11

�en1��

)
=: '1 (n)

(66)
(0 < � < 1, m;n 2 N : n1�� > 2).
And, consequently it holds


 eAn �k� � x0km+11

�
(x0)





1;x02

NQ
i=1

[ai;bi]
<

(2:412)
N

(
1

n�(m+1)
+
4e2 kb� akm+11

�en1��

)
= '1 (n)! 0; as n! +1: (67)

So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1;1], from
Theorem 10 we have the convergence to zero in the right hand sides of parts (1),
(2).

Next we estimate



� eAn �f (j) (x0) (� � x0)j�� (x0)






:

We have that

� eAn �f (j) (x0) (� � x0)j�� (x0) = Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z (nx0 � k)Pbnbc

k=dnae Z (nx0 � k)
:

(68)
When p =1, j = 1; :::;m; we obtain




f (j) (x0)

�
k

n
� x0

�j








�



f (j) (x0)






kn � x0





j
1
: (69)

We further have that


� eAn �f (j) (x0) (� � x0)j�� (x0)






(22)
<

(2:412)
N

0@ bnbcX
k=dnae






f (j) (x0)
�
k

n
� x0

�j








Z (nx0 � k)

1A �

(2:412)
N

0@ bnbcX
k=dnae




f (j) (x0)






kn � x0




j
1
Z (nx0 � k)

1A = (70)

(2:412)
N



f (j) (x0)




0@ bnbcX
k=dnae





kn � x0




j
1
Z (nx0 � k)

1A =

17



(2:412)
N



f (j) (x0)




8>>>>>><>>>>>>:
bnbcX

8<: k = dnae
:


 k
n � x0




1 � 1

n�





kn � x0




j
1
Z (nx0 � k)

+

bnbcX
8<: k = dnae
:


 k
n � x0




1 > 1

n�





kn � x0




j
1
Z (nx0 � k)

9>>>>>>=>>>>>>;
(23)
� (71)

(2:412)
N



f (j) (x0)


( 1

n�j
+
4e2 kb� akj1
�en1��

)
! 0, as n!1:

That is 


� eAn �f (j) (x0) (� � x0)j�� (x0)





! 0, as n!1:

Therefore when p =1, for j = 1; :::;m, we have proved:


� eAn �f (j) (x0) (� � x0)j�� (x0)





<

(2:412)
N



f (j) (x0)


( 1

n�j
+
4e2 kb� akj1
�en1��

)
� (72)

(2:412)
N



f (j)




1

(
1

n�j
+
4e2 kb� akj1
�en1��

)
=: '2j (n) <1;

and converges to zero, as n!1:

We conclude:
In Theorem 10, the right hand sides of (60) and (61) converge to zero as

n!1, for any p 2 [1;1].
Also in Corollary 12, the right hand sides of (62) and (63) converge to zero

as n!1, for any p 2 [1;1] :

Conclusion 14 We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (63) converge to zero as n ! 1, for p 2 [1;1]. Consequently
An ! I (unit operator) pointwise and uniformly, as n ! 1, where p 2 [1;1].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We further give
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Corollary 15 (to Theorem 10) Let O open subset of
�
RN ; k�k1

�
, such that

NQ
i=1

[ai; bi] � O � RN , and let
�
X; k�k


�
be a general Banach space. Let m 2 N

and f 2 Cm (O;X), the space of m-times continuously Fréchet di¤erentiable
functions from O into X. We study the approximation of f j NQ

i=1

[ai;bi]
: Let x0 2�

NQ
i=1

[ai; bi]

�
and r > 0. Here '1 (n) as in (67) and '2j (n) as in (72), where

n 2 N : n1�� > 2, 0 < � < 1, j = 1; :::;m: Then
1) 





(An (f)) (x0)�

mX
j=0

1

j!

�
An

�
f (j) (x0) (� � x0)j

��
(x0)











�

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (73)

2) additionally, if f (j) (x0) = 0, j = 1; :::;m, we have

k(An (f)) (x0)� f (x0)k
 �

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 )

�
1

(m+ 1)
+
r

2
+
mr2

8

�
; (74)

3) 


kAn (f)� fk



1;
NQ
i=1

[ai;bi]
�

mX
j=1

'2j (n)

j!
+

!1

�
f (m); r ('1 (n))

1
m+1

�
rm!

('1 (n))
( m
m+1 ) (75)�

1

(m+ 1)
+
r

2
+
mr2

8

�
=: '3 (n)! 0, as n!1:

We continue with

Theorem 16 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kBn (f; x)� f (x)k
 � !1

�
f;
1

n�

�
+
8e2



kfk



1
�en1��

=: �2 (n) ; (76)

2) 


kBn (f)� fk



1 � �2 (n) : (77)
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Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
, we obtain lim

n!1
Bn (f) = f , uni-

formly.

Proof. We have that

Bn (f; x)� f (x)
(16)
=

1X
k=�1

f

�
k

n

�
Z (nx� k)� f (x)

1X
k=�1

Z (nx� k) = (78)

1X
k=�1

�
f

�
k

n

�
� f (x)

�
Z (nx� k) :

Hence

kBn (f; x)� f (x)k
 �
1X

k=�1





f �kn
�
� f (x)









Z (nx� k) =

1X
8<: k = �1

 k

n � x



1 � 1

n�





f �kn
�
� f (x)









Z (nx� k)+

1X
8<: k = �1

 k

n � x



1 > 1

n�





f �kn
�
� f (x)









Z (nx� k)
(16)
�

!1

�
f;
1

n�

�
+ 2




kfk



1
1X

8<: k = �1

 k
n � x




1 > 1

n�

Z (nx� k)
(23)
�

!1

�
f;
1

n�

�
+
8e2



kfk



1
�en1��

; (79)

proving the claim.
We give

Theorem 17 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1. Then
1)

kCn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
8e2



kfk



1
�en1��

=: �3 (n) ; (80)

2) 


kCn (f)� fk



1 � �3 (n) : (81)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Cn (f) = f , uni-

formly.
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Proof. We notice thatZ k+1
n

k
n

f (t) dt =

Z k1+1
n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; t2; :::; tN ) dt1dt2:::dtN =

Z 1
n

0

Z 1
n

0

:::

Z 1
n

0

f

�
t1 +

k1
n
; t2 +

k2
n
; :::; tN +

kN
n

�
dt1:::dtN =

Z 1
n

0

f

�
t+

k

n

�
dt:

(82)
Thus it holds (by (38))

Cn (f; x) =
1X

k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k) : (83)

We observe that
kCn (f; x)� f (x)k
 =






1X
k=�1

 
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
Z (nx� k)�

1X
k=�1

f (x)Z (nx� k)









=







1X

k=�1

  
nN
Z 1

n

0

f

�
t+

k

n

�
dt

!
� f (x)

!
Z (nx� k)










=







1X

k=�1

 
nN
Z 1

n

0

�
f

�
t+

k

n

�
� f (x)

�
dt

!
Z (nx� k)










� (84)

1X
k=�1

 
nN
Z 1

n

0





f �t+ k

n

�
� f (x)









dt

!
Z (nx� k) =

1X
8<: k = �1

 k

n � x



1 � 1

n�

 
nN
Z 1

n

0





f �t+ k

n

�
� f (x)









dt

!
Z (nx� k)+

1X
8<: k = �1

 k

n � x



1 > 1

n�

 
nN
Z 1

n

0





f �t+ k

n

�
� f (x)









dt

!
Z (nx� k) �

1X
8<: k = �1

 k

n � x



1 � 1

n�

 
nN
Z 1

n

0

!1

�
f; ktk1 +





kn � x





1

�
dt

!
Z (nx� k)+
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2



kfk



1

0BBBBBB@
1X

8<: k = �1

 k
n � x




1 > 1

n�

Z (jnx� kj)

1CCCCCCA �

!1

�
f;
1

n
+
1

n�

�
+
8e2



kfk



1
�en1��

; (85)

proving the claim.
We also present

Theorem 18 Let f 2 CB
�
RN ; X

�
; 0 < � < 1, x 2 RN ; m;N; n 2 N with

n1�� > 2, !1 is for p =1: Then
1)

kDn (f; x)� f (x)k
 � !1

�
f;
1

n
+
1

n�

�
+
8



kfk



1
�en1��

= �4 (n) ; (86)

2) 


kDn (f)� fk





1
� �4 (n) : (87)

Given that f 2
�
CU
�
RN ; X

�
\ CB

�
RN ; X

��
; we obtain lim

n!1
Dn (f) = f ,

uniformly.

Proof. Similar to the proof of Theorem 17, as such is omitted.
We make

De�nition 19 Let f 2 CB
�
RN ; X

�
, N 2 N, where

�
X; k�k


�
is a Banach

space. We de�ne the general neural network operator

Fn (f; x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8><>:
Bn (f; x) , if lnk (f) = f

�
k
n

�
;

Cn (f; x) , if lnk (f) = nN
R k+1

n
k
n

f (t) dt;

Dn (f; x) , if lnk (f) = �nk (f) :

(88)

Clearly lnk (f) is anX-valued bounded linear functional such that klnk (f)k
 �


kfk



1 :

Hence Fn (f) is a bounded linear operator with



kFn (f)k



1 �




kfk



1.
We need
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Theorem 20 Let f 2 CB
�
RN ; X

�
, N � 1. Then Fn (f) 2 CB

�
RN ; X

�
:

Proof. Lengthy and similar to the proof of Theorem 21 of [14], as such is
omitted.

Remark 21 By (25) it is obvious that



kAn (f)k



1 �




kfk



1 < 1, and

An (f) 2 C
�
NQ
i=1

[ai; bi] ; X

�
, given that f 2 C

�
NQ
i=1

[ai; bi] ; X

�
:

Call Ln any of the operators An; Bn; Cn; Dn:

Clearly then




L2n (f)





1 =



kLn (Ln (f))k



1 �




kLn (f)k



1 �



kfk



1 ; (89)

etc.
Therefore we get




Lkn (f)





1 �




kfk



1 , 8 k 2 N, (90)

the contraction property.
Also we see that




Lkn (f)





1 �






Lk�1n (f)










1
� ::: �




kLn (f)k



1 �



kfk



1 : (91)

Here Lkn are bounded linear operators.

Notation 22 Here N 2 N, 0 < � < 1: Denote by

cN :=

(
(2:412)

N , if Ln = An;

1, if Ln = Bn; Cn; Dn;
(92)

' (n) :=

�
1
n�
, if Ln = An, Bn;

1
n +

1
n�
, if Ln = Cn; Dn;

(93)


 :=

8<:C

�
NQ
i=1

[ai; bi] ; X

�
, if Ln = An,

CB
�
RN ; X

�
, if Ln = Bn; Cn; Dn;

(94)

and

Y :=

8<:
NQ
i=1

[ai; bi] , if Ln = An,

RN , if Ln = Bn; Cn; Dn:

(95)

We give the condensed

23



Theorem 23 Let f 2 
, 0 < � < 1, x 2 Y ; n; m; N 2 N with n1�� > 2. Then
(i)

kLn (f; x)� f (x)k
 � cN

24!1 (f; ' (n)) + 8e2



kfk



1
�en1��

35 =: � (n) ; (96)

where !1 is for p =1;
and
(ii) 


kLn (f)� fk



1 � � (n)! 0, as n!1: (97)

For f uniformly continuous and in 
 we obtain

lim
n!1

Ln (f) = f;

pointwise and uniformly.

Proof. By Theorems 8, 16, 17, 18.
Next we talk about iterated neural network approximation (see also [9]).
We give

Theorem 24 All here as in Theorem 23 and r 2 N, � (n) as in (96). Then


kLrnf � fk



1 � r� (n) : (98)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln:

Proof. As similar to [14] is omitted.
We also present

Theorem 25 Let f 2 
; m; N; m1;m2; :::;mr 2 N : m1 � m2 � ::: � mr; 0 <

� < 1; m1��
i > 2, i = 1; :::; r; x 2 Y; and let (Lm1 ; :::; Lmr ) as (Am1 ; :::; Amr )

or (Bm1
; :::; Bmr

) or (Cm1
; :::; Cmr

) or (Dm1
; :::; Dmr

), p =1: Then

Lmr

�
Lmr�1 (:::Lm2

(Lm1
f))
�
(x)� f (x)






�
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�
Lmr�1 (:::Lm2

(Lm1
f))
�
� f











1
�

rX
i=1




kLmif � fk





1
�

cN

rX
i=1

24!1 (f; ' (mi)) +
8e2



kfk



1
�en1��

35 �
24



rcN

24!1 (f; ' (m1)) +
8e2



kfk



1
�en1��

35 : (99)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1 :

Proof. As similar to [14] is omitted.
We also give

Theorem 26 Let all as in Corollary 15, and r 2 N. Here '3 (n) is as in (75).
Then 


kArnf � fk



1 � r




kAnf � fk



1 � r'3 (n) : (100)

Proof. As similar to [14] is omitted.

Application 27 A typical application of all of our results is when
�
X; k�k


�
=

(C; j�j), where C are the complex numbers.
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