
SOME BASIC RESULTS FOR THE NORMALIZED ENTROPIC
DETERMINANT OF POSITIVE OPERATORS IN HILBERT

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A on a Hilbert space H and
a �xed unit vector x 2 H; de�ne the normalized entropic determinant by
�x(A) := exp [�hA lnAx; xi]. In this paper we show among others that, if A;
B > 0; then for all x 2 H with kxk = 1 and t 2 [0; 1] ;

�x((1� t)A+ tB) � (�x (A))1�t (�x (B))t :
Also we have the bounds 


A2x; x
�

hAx; xi

!�hAx;xi
� �x(A) � hAx; xi�hAx;xi ;

where A > 0 and x 2 H withkxk = 1.

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [4], [5], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by�x(A) := exp hlnAx; xi and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.
Some of the fundamental properties of normalized determinant are as follows,

[4].
For each unit vector x 2 H; see also [7], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
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(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <
� < 1.

We de�ne the logarithmic mean of two positive numbers a; b by

(1.1) L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [4] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.2) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [11]

(1.3) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [5], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
For the entropy function � (t) = �t ln t; t > 0; the operator entropy has the

following expression:
� (A) = �A lnA

for positive A:
For x 2 H; kxk = 1; we de�ne the normalized entropic determinant �x(A) by

(1.5) �x(A) := exp (�hA lnAx; xi) = exp h� (A)x; xi :
Let x 2 H; kxk = 1: Observe that the map A ! �x(A) is norm continuous and
since

exp (�htA ln (tA)x; xi)
= exp (�htA (ln t+ lnA)x; xi) = exp (�h(tA ln t+ tA lnA)x; xi)
= exp (�hAx; xi t ln t) exp (�t hA lnAx; xi)

= exp ln
�
t�hAx;xit

�
[exp (�hA lnAx; xi)]�t ;

hence

(1.6) �x(tA) = t
�thAx;xi [�x(A)]

�t

for t > 0 and A > 0:
Observe also that

(1.7) �x(I) = 1 and �x(tI) = t
�t

for t > 0:
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Motivated by the above results, in this paper we show among others that, if A;
B > 0; then for all x 2 H; kxk = 1 and t 2 [0; 1] ;

�x((1� t)A+ tB) � (�x (A))
1�t

(�x (B))
t
:

Also we have the bounds 

A2x; x

�
hAx; xi

!�hAx;xi
� �x(A) � hAx; xi

�hAx;xi
;

where A > 0 and x 2 H; kxk = 1.

2. Main Results

We have the following upper and lower bounds for normalized entropic determi-
nant :

Proposition 1. If A > 0; then for all x 2 H; kxk = 1;

(2.1)

 

A2x; x

�
hAx; xi

!�hAx;xi
� �x(A) � hAx; xi

�hAx;xi
:

Proof. The entropy function � (t) = �t ln t; t > 0 is operator concave. By utilizing
Jensen�s inequality for concave function g on (0;1) ; we have

hg (B)x; xi � g (hBx; xi) ; x 2 H; kxk = 1;
which gives that

�x(A) = exp h� (A)x; xi � exp [� (hAx; xi)] = exp ln hAx; xi
�hAx;xi

= hAx; xi�hAx;xi :
Also for x 2 H; kxk = 1

�x(A) := exp (�hA lnAx; xi) = exp
�
�
D
(lnA)A1=2x;A1=2x

E�
= exp

 A1=2x2*� (lnA) A1=2xA1=2x ; A1=2xA1=2x
+!

Since the function � ln t is convex on (0;1) ; then by Jensen�s inequality for the
convex function h = � ln;

hh (B) y; yi � h (hBy; yi) ; y 2 H; kyk = 1;

by taking y = A1=2x

kA1=2xk ; x 2 H; kxk = 1; we derive*
� (lnA) A1=2xA1=2x ; A1=2xA1=2x

+
� � ln

*
A
A1=2xA1=2x ; A1=2xA1=2x

+
;

which gives that A1=2x2*� (lnA) A1=2xA1=2x ; A1=2xA1=2x
+

� ln
*
A
A1=2xA1=2x ; A1=2xA1=2x

+�kA1=2xk2
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and by taking the exponential, we get

�x(A) �
*
A
A1=2xA1=2x ; A1=2xA1=2x

+�kA1=2xk2

=

�
1

hAx; xi


A2x; x

���hAx;xi
=

�
hAx; xi
hA2x; xi

�hAx;xi
;

which proves the �rst part of (2.1). �

Proposition 2. If A; B > 0; then for all x 2 H; kxk = 1 and t 2 [0; 1] ; then we
have the Ky Fan type inequality

(2.2) �x((1� t)A+ tB) � (�x (A))
1�t

(�x (B))
t
:

Proof. Since entropy function � (�) is operator concave, then
� ((1� t)A+ tB) � (1� t) � (A) + t� (B)

for all t 2 [0; 1] :
If we take the inner product over x 2 H; kxk = 1; then we get

h� ((1� t)A+ tB)x; xi � (1� t) h� (A)x; xi+ t h� (B)x; xi :
If we take the exponential, then we derive that

�x((1� t)A+ tB) = exp h� ((1� t)A+ tB)x; xi
� exp [(1� t) h� (A)x; xi+ t h� (B)x; xi]
= (exp h� (A)x; xi)1�t (exp h� (B)x; xi)t

= (�x (A))
1�t

(�x (B))
t
;

which proves the desired inequality (2.2). �

We de�ne the logarithmic mean of two positive numbers a; b by

L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

The following Hermite-Hadamard type integral inequalities hold:

Corollary 1. With the assumptions of Proposition 2,

(2.3)
Z 1

0

�x((1� t)A+ tB)dt � L (�x (A) ; �x (B)) :

and

(2.4) �x

�
A+B

2

�
�
Z 1

0

[�x ((1� t)A+ tB)]
1=2
[�x (tA+ (1� t)B)]

1=2
dt:

Proof. If we take the integral over t 2 [0; 1] in (2.2), then we getZ 1

0

�x((1� t)A+ tB)dt �
Z 1

0

[�x (A)]
1�t

[�x (B)]
t
dt

= L (�x (A) ; �x (B))

for all A; B > 0; which proves (2.3).
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We get from (2.2) for t = 1=2 that

�x

�
A+B

2

�
� [�x (A)]

1=2
[�x (B)]

1=2
:

If we replace A by (1� t)A+ tB and B by tA+ (1� t)B we obtain

�x

�
A+B

2

�
� [�x ((1� t)A+ tB)]

1=2
[�x (tA+ (1� t)B)]

1=2
:

By taking the integral, we derive the desired result (2.4). �
Theorem 1. If A > 0; then for all x 2 H; kxk = 1 and a > 0; we have the following
inequalities

(2.5) �x (A) � a�hAx;xi exp [�hAx; xi+ a]
and

(2.6) �x(A) � a exp
�
1

a
hAx; xi � 1

�
:

Proof. It is well know that, if f is di¤erentiable convex on an interval I; then for
all u; v 2 I we have
(2.7) f 0 (v) (u� v) � f (u)� f (v) � f 0 (u) (u� v) :
Consider the convex function f (t) = t ln t; t > 0: Since f 0 (t) = ln t+1; t > 0, hence
by (2.7) we get

(2.8) (ln v + 1) (u� v) � u lnu� v ln v � (lnu+ 1) (u� v)
namely

(ln v + 1) (u� v)� u lnu � �v ln v � �u lnu+ (lnu+ 1) (u� v)
giving that

(u� v) ln v � u lnu+ u� v � �v ln v � u� v � v lnu
for u; v > 0:
If we take u = a and use the functional calculus for v = A > 0; then we get

(a�A) lnA� a ln a+ a�A � �A lnA � a�A�A ln a;
namely

a lnA�A lnA�A� a ln
�a
e

�
� �A lnA � � ln (ea)A+ a:

If we take the inner product over x 2 H; kxk = 1; then we get

a hlnAx; xi � hA lnAx; xi � hAx; xi � ln
�a
e

�a
� �hA lnAx; xi

� ln (ea)�hAx;xi + a:
If we take the exponential, then we get

exp [a hlnAx; xi] exp [�hA lnAx; xi]�
a
e

�a
exp [hAx; xi]

� exp [�hA lnAx; xi]

� (ea)�hAx;xi exp a
= a�hAx;xi exp [�hAx; xi+ a] :

From the second inequality, we get (2.5).
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From the �rst inequality, we get

exp [a hlnAx; xi]�
a
e

�a
exp [hAx; xi]

� 1;

namely
[�x(A)]

a � aa exp [hAx; xi � a]
and by taking the power 1

a we obtain (2.6). �

Remark 1. For given A > 0; x 2 H; kxk = 1 and a > 0; consider the function
f (t) = t�hAx;xi exp [�hAx; xi+ t] ; t > 0:

We have

f 0 (t)

= �hAx; xi t�hAx;xi�1 exp [�hAx; xi+ t] + t�hAx;xi exp [�hAx; xi+ t]
= exp [�hAx; xi+ t] t�hAx;xi�1 (t� hAx; xi) :

We observe that the function f is decreasing on (0; hAx; xi) and increasing on
(hAx; xi ;1) showing that

inf
t2(0;1)

f (t) = f (hAx; xi) = hAx; xi�hAx;xi :

Therefore the best inequality we can get from (2.5) is for a = hAx; xi ; namely the
second inequality in (2.1).
Consider the function

g (t) = t exp

�
1

t
hAx; xi � 1

�
; t > 0;

then

g0 (t) = exp
�
t�1 hAx; xi � 1

�
+ t exp

�
t�1 hAx; xi � 1

��
�hAx; xi

t2

�
= exp

�
t�1 hAx; xi � 1

��
1� hAx; xi

t

�
:

We have that g0 (t0) = 0 for t0 = hAx; xi which shows that f is strictly decreasing
on (0; hAx; xi) and strictly increasing on (hAx; xi ;1) : Therefore

inf
t2(0;1)

g (t) = g (hAx; xi) = hAx; xi ;

and we obtain the best inequality from (2.6) that is the second inequality in (ii) from
the introduction.

The following result also holds, see [2]:

Lemma 1. Let I be an interval and f : I ! R be a convex and di¤erentiable
function on �I (the interior of I) whose derivative f 0 is continuous on �I: If A and B
are selfadjoint operators on the Hilbert space H with Sp (A) ; Sp (B) � [m;M ] � �I;
then

hf 0 (A)x; xi hBy; yi � hf 0 (A)Ax; xi(2.9)

� hf (B) y; yi � hf (A)x; xi � hf 0 (B)By; yi � hAx; xi hf 0 (B) y; yi
for any x; y 2 H with kxk = kyk = 1:
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In particular, we have

hf 0 (A)x; xi hAy; yi � hf 0 (A)Ax; xi(2.10)

� hf (A) y; yi � hf (A)x; xi � hf 0 (A)Ay; yi � hAx; xi hf 0 (A) y; yi
for any x; y 2 H with kxk = kyk = 1 and

hf 0 (A)x; xi hBx; xi � hf 0 (A)Ax; xi(2.11)

� hf (B)x; xi � hf (A)x; xi � hf 0 (B)Bx; xi � hAx; xi hf 0 (B)x; xi
for any x 2 H with kxk = 1:

We have the following result concerning two operators as well:

Theorem 2. Assume that A; B > 0; then

(2.12) �x (B) �
exp hAx; xi

exp hBy; yi [�x(A)]hBy;yi

for x; y 2 H with kxk = kyk = 1:
In particular,

(2.13) �x (B) �
exp hAx; xi

exp hBx; xi [�x(A)]hBx;xi
;

(2.14) �x (A) �
exp hAx; xi

exp hAy; yi [�x(A)]hAy;yi

and

(2.15) �x (A) � [�x(A)]
�hAx;xi

:

Proof. If we write the inequality (2.9) for the convex function f (t) = t ln t; t > 0;
then we get for x; y 2 H with kxk = kyk = 1 that

h(lnA+ 1)x; xi hBy; yi � h(lnA+ 1)Ax; xi
� hB lnBy; yi � hA lnAx; xi
� h(lnB + 1)By; yi � hAx; xi h(lnB + 1) y; yi ;

namely

hlnAx; xi hBy; yi+ hBy; yi � hA lnAx; xi � hAx; xi(2.16)

� hB lnBy; yi � hA lnAx; xi
� hB lnBy; yi+ hBy; yi � hAx; xi hlnBy; yi � hAx; xi :

From the �rst inequality in (2.16) we have

(2.17) hlnAx; xi hBy; yi+ hBy; yi � hAx; xi � hB lnBy; yi ;
while from the second inequality in (2.16) we get

(2.18) �hA lnAx; xi � hBy; yi � hAx; xi hlnBy; yi � hAx; xi
for x; y 2 H with kxk = kyk = 1:
From (2.17) we obtain

(2.19) hBy; yi � hAx; xi � hB lnBy; yi � hlnAx; xi hBy; yi
for x; y 2 H with kxk = kyk = 1:
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If we take the exponential in (2.19), then we get

exp hBy; yi
exp hAx; xi �

exp hB lnBy; yi
[exp hlnAx; xi]hBy;yi

=
[exp h�B lnBy; yi]�1

[exp hlnAx; xi]hBy;yi

=
[�x (B)]

�1

[�x(A)]
hBy;yi

giving that

exp hBy; yi
exp hAx; xi �

1

�x (B) [�x(A)]
hBy;yi

for x; y 2 H with kxk = kyk = 1:
From (2.19) we obtain similar results with A instead of B: �

3. Related Results

In [1] we obtained the following reverse of Jensen�s inequality

Lemma 2. Let I be an interval and f : I ! R be a convex and di¤erentiable
function on �I (the interior of I) whose derivative f 0 is continuous on �I: If A is a
selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] � �I; then

(0 �) hf (A)x; xi � f (hAx; xi)(3.1)

�

8>>><>>>:
1
2 (M �m)

h
kf 0 (A)xk2 � hf 0 (A)x; xi2

i1=2
1
2 (f

0 (M)� f 0 (m))
h
kAxk2 � hAx; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:
We also have the inequality

(0 �) hf (A)x; xi � f (hAx; xi)(3.2)

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8><>:
[hMx�Ax;Ax�mxi hf 0 (M)x� f 0 (A)x; f 0 (A)x� f 0 (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hf 0 (A)x; xi � f 0(M)+f 0(m)
2

���
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:

Using these inequalities we can state:
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Theorem 3. Assume that the operator A satis�es the condition 0 < m � A � M
for some constants m and M: Then for any x 2 H with kxk = 1;

1 � hAx; xi�hAx;xi

�x (A)
(3.3)

�

8>>><>>>:
exp

�
1
2 (M �m)

h
kln (eA)xk2 � hln (eA)x; xi2

i1=2�
�
M
m

� 1
2 [kAxk

2�hAx;xi2]
1=2

�
�
M

m

� 1
4 (M�m)

and

(3.4) 1 � hAx; xi�hAx;xi

�x (A)
�
�
M
m

� 1
4 (M�m)

L (A; x;m;M)
�
�
M

m

� 1
4 (M�m)

;

where

L (A; x;m;M)

:=

8><>:
exp [hMx�Ax;Ax�mxi hln (M)x� ln (A)x; ln (A)x� ln (m)xi]

1
2 ;

exp
h��hAx; xi � M+m

2

�� ���hln (A)x; xi � lnpmM ���i :
Proof. Now consider the convex function f : (0;1) ! R, f (t) = t ln t; t > 0:
On utilizing the inequality (3.1), then for any positive de�nite operator A on the
Hilbert space H; we have the inequality

0 � hA ln (A)x; xi � hAx; xi ln (hAx; xi)(3.5)

�

8>>><>>>:
1
2 (M �m)

h
kln (eA)xk2 � hln (eA)x; xi2

i1=2
ln
q

M
m

h
kAxk2 � hAx; xi2

i1=2
� 1

2
(M �m) ln

r
M

m

for any x 2 H with kxk = 1:
If we take the exponential in (3.5), then we get

1 � exp [hA ln (A)x; xi � hAx; xi ln (hAx; xi)](3.6)

�

8>>>><>>>>:
exp

�
1
2 (M �m)

h
kln (eA)xk2 � hln (eA)x; xi2

i1=2�

exp

�
ln
q

M
m

h
kAxk2 � hAx; xi2

i1=2�
� exp

(
1

2
(M �m) ln

r
M

m

)
:
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Observe that

exp [hA ln (A)x; xi � hAx; xi ln (hAx; xi)]

=
exp [�hAx; xi ln (hAx; xi)]
exp [�hA ln (A)x; xi]

=
exp

h
ln
�
hAx; xi�hAx;xi

�i
exp [�hA ln (A)x; xi] =

hAx; xi�hAx;xi

�x (A)
;

exp

(
ln

r
M

m

h
kAxk2 � hAx; xi2

i1=2)

= exp

8<:ln
24�M

m

� 1
2 [kAxk

2�hAx;xi2]
1=2
359=; =

�
M

m

� 1
2 [kAxk

2�hAx;xi2]
1=2

and

exp

(
1

2
(M �m) ln

r
M

m

)
= exp

"
ln

�
M

m

� 1
4 (M�m)

#
=

�
M

m

� 1
4 (M�m)

:

By making use of (3.6) we derive (3.3).
If we apply now the inequality (3.2), then we have the following result as well

0 � hA ln (A)x; xi � hAx; xi ln (hAx; xi)(3.7)

� 1

2
(M �m) ln

r
M

m

�

8><>:
[hMx�Ax;Ax�mxi hln (M)x� ln (A)x; ln (A)x� ln (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hln (A)x; xi � lnpmM ���
� 1

2
(M �m) ln

r
M

m

for any x 2 H with kxk = 1:
If we take the exponential in (3.7), then we get

1 � hAx; xi�hAx;xi

�x (A)
�
�
M
m

� 1
4 (M�m)

L (A; x;m;M)
�
�
M

m

� 1
4 (M�m)

and the inequality (3.4) is thus proved. �
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Theorem 4. Assume that the operator A satis�es the condition 0 < m � A � M
for some constants m and M: Then for any x 2 H with kxk = 1;

1 � �x (A)�
hA2x;xi
hAx;xi

��hAx;xi(3.8)

�

8>>>><>>>>:
exp

�
1
2 (M �m)

h
hAx; xi



A�1x; x

�
� hx; xi2

i1=2�

exp

�
1

2mM (M �m)
h
hAx; xi



A3x; x

�
�


A2x; x

�2i1=2�
� exp

�
1

4mM
hAx; xi (M �m)2

�
� exp

�
1

4m
(M �m)2

�
:

Proof. If we write the inequality (3.1) for the convex function � ln; then we get

0 � ln (hAy; yi)� hlnAy; yi(3.9)

�

8>>><>>>:
1
2 (M �m)

hA�1y2 � 
A�1y; y�2i1=2
1

2mM (M �m)
h
kAyk2 � hAy; yi2

i1=2
� 1

4mM
(M �m)2 ;

for any y 2 H with kyk = 1:
By taking y = A1=2x

kA1=2xk ; x 2 H; kxk = 1 in (3.9), we obtain

0 � ln
 *

A
A1=2xA1=2x ; A1=2xA1=2x

+!
�
*
lnA

A1=2xA1=2x ; A1=2xA1=2x
+

�

8>>>>>>><>>>>>>>:

1
2 (M �m)

"A�1 A1=2x

kA1=2xk

2 ��A�1 A1=2x

kA1=2xk ;
A1=2x

kA1=2xk

�2#1=2

1
2mM (M �m)

"A A1=2x

kA1=2xk

2 ��A A1=2x

kA1=2xk ;
A1=2x

kA1=2xk

�2#1=2
� 1

4mM
(M �m)2 ;

namely

0 � ln
 

1A1=2x2 
A2x; x�
!
� 1A1=2x2 hA lnAx; xi
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�

8>>>>><>>>>>:
1
2 (M �m)

�
1

kA1=2xk2
A�1=2x2 � 1

kA1=2xk4 hx; xi
2

�1=2

1
2mM (M �m)

�
1

kA1=2xk2
A3=2x2 � 1

kA1=2xk4


A2x; x

�2�1=2
� 1

4mM
(M �m)2 :

By multiplying with
A1=2x2 > 0; we get

(0 �)
A1=2x2 ln 1A1=2x2 
A2x; x�

!
� hA lnAx; xi

�

8>>>>><>>>>>:
1
2 (M �m)

A1=2x2 � 1

kA1=2xk2
A�1=2x2 � 1

kA1=2xk4 hx; xi
2

�1=2

1
2mM (M �m)

A1=2x2 � 1

kA1=2xk2
A3=2x2 � 1

kA1=2xk4


A2x; x

�2�1=2
� 1

4mM

A1=2x2 (M �m)2 ;

namely

0 � hAx; xi ln
 

A2x; x

�
hAx; xi

!
� hA lnAx; xi(3.10)

�

8>>><>>>:
1
2 (M �m)

h
hAx; xi



A�1x; x

�
� hx; xi2

i1=2
1

2mM (M �m)
h
hAx; xi



A3x; x

�
�


A2x; x

�2i1=2
� 1

4mM
hAx; xi (M �m)2 ;

for any y 2 H with kyk = 1:
By taking the exponential in (3.10), we obtain

1 � exp [�hA lnAx; xi]

exp

�
ln
�
hA2x;xi
hAx;xi

��hAx;xi�

�

8>>>><>>>>:
exp

�
1
2 (M �m)

h
hAx; xi



A�1x; x

�
� hx; xi2

i1=2�

exp

�
1

2mM (M �m)
h
hAx; xi



A3x; x

�
�


A2x; x

�2i1=2�
� exp

�
1

4mM
hAx; xi (M �m)2

�
� exp

�
1

4m
(M �m)2

�
;

which is equivalent to (3.8). �

We also have:
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Theorem 5. Assume that the operator A satis�es the condition 0 < m � A � M
for some constants m and M: Then for any x 2 H with kxk = 1;�

1

4mM
(M +m)

2

��M
�
�

1

4mM
(M +m)

2

��hAx;xi
(3.11)

�
 

A2x; x

�
hAx; xi2

!�hAx;xi
� �x(A)

hAx; xi�hAx;xi
� 1:

Proof. From (2.1) we have 

A2x; x

�
hAx; xi2

!�hAx;xi
hAx; xi�hAx;xi � �x(A) � hAx; xi

�hAx;xi
;

which gives that

(3.12)

 

A2x; x

�
hAx; xi2

!�hAx;xi
� �x(A)

hAx; xi�hAx;xi
� 1;

for any x 2 H with kxk = 1:
We use Kantorovich inequality


A2x; x
�

hAx; xi2
� 1

4mM
(M +m)

2

that holds for any x 2 H with kxk = 1; which gives that�
1

4mM
(M +m)

2

��hAx;xi
�
 

A2x; x

�
hAx; xi2

!�hAx;xi
:

Also, �
1

4mM
(M +m)

2

��M
�
�

1

4mM
(M +m)

2

��hAx;xi
and by (3.12) we derive (3.11). �

References

[1] S. S. Dragomir, Some Reverses of the Jensen inequality for functions of selfadjoint operators
in Hilbert spaces, Journal of Inequalities and Applications, Volume 2010, Article ID 496821,
15 pages doi:10.1155/2010/496821.

[2] S.S. Dragomir, Some inequalities for convex functions of selfadjoint operators in Hilbert
spaces, Filomat 23 (2009), no. 3, 81�92. Preprint RGMIA Res. Rep. Coll. 11 (2008), Suple-
ment, Art. 11. [Online https://rgmia.org/papers/v11e/ConvFuncOp.pdf].

[3] T. Furuta, J. Mícíc Hot, J. Peµcaríc and Y. Seo, Mond-Peµcaríc Method in Operator Inequal-
ities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb,
2005.

[4] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153�156.
[5] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht�s Theorem,

Sci. Math., 1 (1998), 307�310.
[6] T. Furuta, Precise lower bound of f(A) � f(B) for A > B > 0 and non-constant operator

monotone function f on [0;1). J. Math. Inequal. 9 (2015), no. 1, 47�52.
[7] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim�s inequality, J.

Math. Inequal., Volume 15 (2021), Number 4, 1637�1645.
[8] J. Mícíc, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and Mond-Peµcaríc,

Math. Ineq. Appl., 2(1999), 83-111.



14 S. S. DRAGOMIR

[9] D.S. Mitrinovíc, J.E. Peµcaríc and A.M. Fink, Classical and New Inequalities in Analysis,
Kluwer Academic Publishers, Dordrecht, 1993.

[10] B. Mond and J. Peµcaríc, Convex inequalities in Hilbert space, Houston J. Math., 19(1993),
405-420.

[11] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
[12] H. Zuo, G. Duan, Some inequalities of operator monotone functions. J. Math. Inequal. 8

(2014), no. 4, 777�781.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand,, Private Bag 3, Johannesburg 2050, South Africa


