SOME BASIC RESULTS FOR THE NORMALIZED ENTROPIC
DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and
a fixed unit vector z € H, define the normalized entropic determinant by
N4 (A) := exp [— (Aln Az, z)]. In this paper we show among others that, if A,
B > 0, then for all x € H with ||z|| =1 and ¢t € [0,1],

(1 —1) A+tB) > (n, (A)' " (n, (B))".

Also we have the bounds

—(Az,x)
A2
<< $7$>> Snz(A) < <A$,I>7<AI’I>,

(Ax, z)
where A > 0 and = € H with|jz| = 1.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (ln Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[4].
For each unit vector x € H, see also [7], we have:

(i) continuity: the map A — A, (A) is norm continuous;

(i) bounds: <A*1m,x>71 < AL(A) < (Az, z);
(iii) continuous mean: <Apx,x>1/p | Az(A) for p | 0 and (Apm,:zz>1/p T Az(A)
for p T 0;

(iv) power equality: A, (AY) = A (A)! for all t > 0;
v) homogeneity: A, (tA) =tA,(A) and A, (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A,(A) < A, (B);
(vil) multiplicativity: A, (AB) = A,(A)A,(B) for commuting A and B;
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(viii) Ky Fan type inequality: A,((1 —a) A+ aB) > Ay (A)} A, (B)* for 0 <

a <1
We define the logarithmic mean of two positive numbers a, b by
In 2:?na if b 7& a,
(1.1) L(a,d) :=
a if b = a.

In [4] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

MInm —mlIn M _q
M—m

(1.2) 0< (Az,z) — AL(A) < L(m,M) {lnL(m,M) +

for all z € H, ||z| = 1.
We recall that Specht’s ratio is defined by [11]

— R ifhe (0,1)U(1,00),
eln(h

1

1
=)
lifh=1.

It is well known that lim,_, S (h) =1, S(h) = S(3) > 1 for h >0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [5], the authors obtained the following multiplicative reverse inequality as well

(1.3) S(h) =

(Az, x) M
14 1< <S | —
(14) - AL(A) m
for0<mlI <A< MIandzx € H, |z| =1.
For the entropy function n(t) = —tln¢, ¢ > 0, the operator entropy has the
following expression:
n(A)=—-AlnA
for positive A.
For xz € H, ||z|| = 1, we define the normalized entropic determinant n,(A) by
(15) Ny (A) = exp (— (Aln Az, 7)) = exp (7 (4) 2, 7).

Let z € H, ||z|| = 1. Observe that the map A — n,(A) is norm continuous and
since

exp (— (tAln (tA) z, z))
=exp(— (tA(Int+1InA)z,z)) =exp(— ((tAlnt +tAln A) z, z))
=exp (— (Az,z) tInt) exp (—t (Aln Az, z))
=expln (t_<A$’x)t) [exp (— (Aln Az, z))] ",
hence
(1.6) M (LA) = 7145 [ (A)]) 7

for ¢t >0 and A > 0.
Observe also that

(1.7) n,(I)=1and n,(tI) =t""
for t > 0.
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Motivated by the above results, in this paper we show among others that, if A,
B >0, then for all x € H,||z|| =1 and ¢ € [0,1],
1—
1.((L=8) A+ tB) > (1, (A)"" (n, (B))".

Also we have the bounds

—(Az,x)
<A2$, $> —(Az,x)
N T < < )
( <A$,$> = 771("4) = <A.’E,$> )

where A >0 and z € H, ||z| = 1.

2. MAIN RESULTS

We have the following upper and lower bounds for normalized entropic determi-
nant:

Proposition 1. If A > 0, then for all x € H, ||z|| = 1,
—(Az,x)
(A%z, x)
2.1 A=/ < n,(A) < (Az, z) A=)
(2.1) <<Am’x>> < n,(4) < (A7)

Proof. The entropy function 7 (t) = —¢lnt, t > 0 is operator concave. By utilizing
Jensen’s inequality for concave function g on (0,00), we have

(g(B)x,z) < g((Bz,z)), € H, ||| =1,
which gives that
. (A) = exp (n (A) z,z) < exp [n ((Az, 2))] = expIn (Az, )~ A=)
= <Am,x>_<A$"”> .
Also for z € H,||z|| =1
N, (A) :=exp (— (Aln Az, x)) = exp (_ <(1n A) Al/2x,A1/2x>)

2 A2y A2y
_ 1/2 _
exp (HA :L'H < (IHA) HA1/2$H7 ||A1/2J}|| >>

Since the function —Int is convex on (0,00), then by Jensen’s inequality for the
convex function h = — In,

(h(B)y,y) > h((By,y)), y € H,|lyll =1,

by taking y = %, x € H,||z|| =1, we derive

Al/Zx AI/QQC A1/2x A1/2.Z‘
<‘ ) a7 ||A1/2w||> . ‘1“<A|»A1/2x||’ TA72] >

which gives that

2 A2y A2y
1/2 _
HA SCH < (IHA) ||A1/2$||, HAl/QxH>

Al/2, Al/24 _||Al/29”||2
>In( A

|42 ” [ A1
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and by taking the exponential, we get

A2 A2 ~[|at/2a]|®
1n.(A) = <AH A1/2xH>
_ [1 ( A%,@} e ( (4z,2) )“‘“ﬁ
(Az, x) (A%z, )
which proves the first part of (2.1). O

Proposition 2. If A, B > 0, then for allx € H,||z|| =1 and t € [0,1], then we
have the Ky Fan type inequality

(2.2) 1. ((L=t) A+1B) > (n, ()" (n, (B))".
Proof. Since entropy function 7 (-) is operator concave, then
(L= 1) A+tB) > (1— t)n(A) + t (B)

for all t € [0,1].
If we take the inner product over z € H, ||z|| = 1, then we get

(((1 = 1) A+ tB)2,2) > (1— 1) (n(A) 2,3) + £ (1 (B) 3, 3)
If we take the exponential, then we derive that
(1 —t)A+tB)=exp(n((1 —t) A+ tB)z,x)
zexp[(1=1t)(n(A)z,z) +t(n(B)=,z)
= (exp (n (A) @, )" " (exp (n(B) z, z))’
= (1, (A)"™" (0, (B))",
which proves the desired inequality (2.2). O

We define the logarithmic mean of two positive numbers a, b by

if b # a,

m

L(a,b) :=
aif b= a.

The following Hermite-Hadamard type integral inequalities hold:
Corollary 1. With the assumptions of Proposition 2,

(2.3) /0n_t((l—t)A+tB)dtZL(nm(A),nm(B)).
and
20w (258) 2 [ ma-0am i car a0 B a

Proof. If we take the integral over ¢ € [0,1] in (2.2), then we get

/0 no(1—£) A+ tB)dt > / e (A" [, (B)]! dt

=L(n,(A),n,(B))
for all A, B > 0, which proves (2.3).
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We get from (2.2) for t = 1/2 that

" (A*B) > . (A2 o, (B2,

2
If we replace A by (1 —t) A+¢B and B by tA + (1 — t) B we obtain
A+ B
(F50) 2= a B A (- B
By taking the integral, we derive the desired result (2.4). O

Theorem 1. If A > 0, then for allz € H, ||z|| = 1 and a > 0, we have the following
inequalities

(25) 7o (4) < a4 exp [ (A, 2) + d]
and
(2.6) A, (A) < aexp [(11 (Az,z) — 1] .

Proof. 1t is well know that, if f is differentiable convex on an interval I, then for
all u, v € I we have

(2.7) frw)w=—v) < fu)—f@)<f(u)w-10).

Consider the convex function f (t) = tInt, t > 0. Since f’ (t) =Int+1, ¢t > 0, hence
by (2.7) we get

(2.8) (nv+1)(u—v) <ulnu—ovinv < (Inu+1) (v —v)
namely
(lnv+1)(u—v)—ulnu < —vhnv < —ulnu+ (Inu+1) (u —v)
giving that
(u—v)lnv—ulhnut+u—v<—-vhv<u—v—vlnu

for u, v > 0.
If we take u = a and use the functional calculus for v = A > 0, then we get

(a—A)lnA—alna+a— A< -AlmA<a—A-Alnaq,
namely
alnA—AlnA—A—aln (g) <—-AlnA< —In(ea) A+ a.
If we take the inner product over z € H, ||z|| = 1, then we get
a{ln Az, z) — (Aln Az, z) — (Az,z) —In (g)a < —(Aln Az, x)

<In (ea)_mac’x) +a.
If we take the exponential, then we get
exp [a {ln Az, z)] exp [— (Aln Az, )]
(%)a exp [(Az, x)]

<exp[— (Aln Az, z)]

S (ea)7<AI,ZE>

expa
= a2 oxp [ (Az, z) 4 d].

From the second inequality, we get (2.5).
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From the first inequality, we get

exp [a (In Az, x)]

a <1
(2)" exp[(Az, z)]
namely
[AL(A)]* < a®exp[(Az, z) — a]
and by taking the power % we obtain (2.6). |

Remark 1. For given A >0, x € H,||z|| =1 and a > 0, consider the function
f(t) =t~ A2 exp [— (Az,z) +t], > 0.
We have
f1#)
= — (Az,z) t~ A2 L exp [— (Az, x) + t] + t~ A7) exp [— (Az, z) + 1]
= exp [— (Az, z) + 1]t~ AP0 (4 — (Az, ).
We observe that the function f is decreasing on (0,(Ax,x)) and increasing on
({(Az, ) ,00) showing that
it (6) = f ({Av,2)) = (Az,z)~ A"

te(0,00

Therefore the best inequality we can get from (2.5) is for a = (Azx,x), namely the
second inequality in (2.1).
Consider the function

g(t) =texp [1 (Az, x) —1] , >0,

then

g (t) =exp [t (Az,z) — 1] + texp [t (Az,z) — 1] ((Ax,x))

2
=exp [t (Az,z) — 1] (1 — <Aiz>> )

We have that ¢’ (to) = 0 for to = (Ax,z) which shows that f is strictly decreasing
on (0, (Az, x)) and strictly increasing on ((Az,z),00). Therefore

tei(gfoo)g (t) = g ((Az, z)) = (Az, x)

and we obtain the best inequality from (2.6) that is the second inequality in (ii) from
the introduction.

The following result also holds, see [2]:

Lemma 1. Let I be an interval and f : I — R be a conver and differentiable
function on I (the interior of I) whose derivative f' is continuous on I. If A and B
are selfadjoint operators on the Hilbert space H with Sp (A), Sp (B) C [m, M] C I,
then

(2.9) (f'"(A)z,z) (By,y) — (f' (A) Az, z)
< (f(B)y,y) = (f(A)z,z) < (f(B) By,y) — (Az,2) (' (B) y,9)
for any z,y € H with ||z|| = |ly|]| = 1.
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In particular, we have
(2.10) (f' (A)z,z) (Ay,y) — (f' (A) Az, 2)
< (fA)yy) = {f (A z,z) < (f (A) Ay,y) — (Az, ) (f' (A) y, )
for any xz,y € H with ||z|| = |y|| =1 and
(211)  {(f'(A)a,2) (Ba,2) — ([ (A) Az, )
< {f(B)z,z) — (f (A)z,2) < (f'(B) Bz,z) — (Az,z) (f' (B) z,z)
for any x € H with ||z|| = 1.
We have the following result concerning two operators as well:

Theorem 2. Assume that A, B > 0, then
exp (Ax, x)
(212) e (B) < —
exp (By,y) [Aq(4)]

for x, y € H with ||z| = |ly|| = 1.
In particular,

913 (B) < exp (Azx, x) ’
(2.13) e (B) < exp (Bx, z) [Ay (A)] P2
914 )< exp (Ax, x)

(24 1 (A) < exp (Ay, y) [A, (A)] Y
and

(2.15) n, (A) < [Ag(A4)) A5

Proof. If we write the inequality (2.9) for the convex function f (t) = tlnt, ¢t > 0,
then we get for z, y € H with ||z|| = ||y|| = 1 that

(InA+1)z,z) (By,y) — (In A+ 1) Az, x)
< (BlnBy,y) — (Aln Az, z)
< (B +1) By,y) — (Az,2) (I B+ 1)y,y),
namely
(2.16) (In Az, z) (By,y) + (By,y) — (Aln Az, z) — (Az, z)
< (BlnBy,y) — (Aln Az, x)
< (BlnBy,y) + (By,y) — (Az,z) (In By,y) — (Az, z).
From the first inequality in (2.16) we have

(2.17) (In Az, z) (By,y) + (By,y) — (Az,z) < (BIn By,y),
while from the second inequality in (2.16) we get
(2.18) —(Aln Az, z) < (By,y) — (Az,z) (In By, y) — (Az, x)

for z, y € H with ||z|| = |ly|]| = 1.

From (2.17) we obtain
(2.19) (By,y) — (Az,z) < (BIn By,y) — (In Az, z) (By, y)

for z, y € H with ||z|| = |ly|]| = 1.



S.S. DRAGOMIR

If we take the exponential in (2.19), then we get

exp (By, y) o &P (BIn By, y) _ [exp(—BlnBy7y>]71
exp (A2, 2) ~ [exp (In Az, 2)]P¥Y  [exp (In Az, z)]PVY)
_ B
(A, (A4)] )
giving that
exp (By, y) 1

exp (Azx, x) = n, (B) [AI(A)]<By7y>

for z, y € H with ||z|| = |ly|| = 1.
From (2.19) we obtain similar results with A instead of B.

3. RELATED RESULTS

In [1] we obtained the following reverse of Jensen’s inequality

Lemma 2. Let I be an interval and f : I — R be a conver and differentiable
function on I (the interior of I) whose deriwative f' is continuous on I. If A is a
selfadjoint operator on the Hilbert space H with Sp (A) C [m, M] C I, then

(3.1 (0 <) {(f (4)z,2) = f ((Ar,))
L4 —m) |If (A)al]* — (' (4)2,2)°)

1/2

IN

L M) = 7 (m) [l e — (Away?]
< 3 (M —m) (7 (M) — ' (m)

for any x € H with ||z| = 1.
We also have the inequality

(32) (0<
1
!
[(Ma — Az, Ax = ma) (f' (M) @ = f' (A)z, f (A)a = f (m)2)]*,
[(Az,z) — M| |(f7 (4) 2, ) — FOOLL
< T (M —m) (7 (M) — ' (m)
for any x € H with ||z| = 1.

Using these inequalities we can state:
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Theorem 3. Assume that the operator A satisfies the condition 0 < m < A < M

for some constants m and M. Then for any x € H with ||z|| = 1,
<A:L_,x>f<AZL’,CE>
3.3 1< 2L
B =T @
) ) 511/2
exp < 5 (M —m) [Hln(eA) z||” — (In(eA) z, z) ]
<

—
~—
Nl
b
2
o
|
—~
2
&
8
~
S
-
~
)

IN
7 N\
3K
~— 3
l
3
g

and
—(Az,x $(M—m) L(M—m
’ - N, (A) ~ L(A,x,m, M)~ \(m ’
where
L(A,xz,m, M)

exp [(Mz — Az, Az — mz) (In (M) x —In (A) z,In (A) z — In (m) x)]% ,

exp [|<Ax,x> — —M;"”|

(In(A)z,x) —ln\/TWH .

Proof. Now consider the convex function f : (0,00) — R, f(¢t) = tlnt, ¢ > 0.
On utilizing the inequality (3.1), then for any positive definite operator A on the
Hilbert space H, we have the inequality

(3.5) 0<(Aln(A)zx,z) — (Az,z) In ((Az, x))

51 —m) [in (eA)al> — (i (eA),2)?]

1/2
In /2 [ Az|* - (Az,2)°]
< E(Mfm)ln\/%
2 m

for any x € H with ||z| = 1.
If we take the exponential in (3.5), then we get

(3.6) 1<exp[(Aln(A)z,z) — (Az,z) In ((Az, z))]

exp {; (M —m) [Hln (eA) z||* — (In (eA) x,xﬂ 1/2}

exp {m V[l As]? ~ (A2, 2)?] 1/2}

§exp{;(Mm)ln M}

<

m
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Observe that

exp[(Aln (4) ,2) — (Az, 7} In ((Az, 2))]
_exp [— (Az, z) In ((Az, )]
exp[— (Aln(A) z, x)]

B exp{ ((Ax x) (Aa, “"))} (A:c :c) (Az,z)
~ exp[—(AIn(4)z,z)] N, (A)

[M 1/2
exp {ln e [||Anc||2 - <Ax,x>2} }
{ [(M> 5[|Am|2—<Az,m>2}”2] } (M> 4 [l 4al? ~(Az,2)?] /2
=expIn||[— =—
m m

and

e { S ar o[} o i (20) 7 (20

By making use of (3.6) we derive (3.3).
If we apply now the inequality (3.2), then we have the following result as well

(3.7) 0<{(Aln(A)zx,z) — (Az,z)In ((Az,x))

Sl M —m) ln\/M
2 m
[(Mz — Az, Az — mx) <ln(M)x—ln(A)x,ln(A)a:—ln(m)x>]%,
|(Az, z) M'””}‘ In(A)z,z) — InvmM
1

IN

- (M —m) ln\/%
2 m

for any x € H with ||z| = 1.
If we take the exponential in (3.7), then we get

—(Azx,x 4(M m) i —-m
Lo AT () o (M
T 0. (4) L(Az,m, M) = \m

and the inequality (3.4) is thus proved.
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Theorem 4. Assume that the operator A satisfies the condition 0 < m < A < M
for some constants m and M. Then for any x € H with ||z|| = 1,

2 (A4)
(38) 1< ((£;7%>)_<Aw,x>
exp <; (M —m) {(Am,x} <A*1x,x> — <x,x)2] 1/2)
<

exp (21711\4 (M —m) [(Aa:,x) (A3z,x) — <A2x,x>2} 1/2)

< exp (4m1M (A, z) (M — m)2> < exp (4; (M — m)2> .

Proof. If we write the inequality (3.1) for the convex function — In, then we get

(3.9) 0 < In((Ay,y)) — (In Ay, y)
2 B 571/2
L —m) A7) = (A7yp)?]
<
1/2
g (M —m) [I14y]* = (4y,y)*]
1 2
< - _
< Gag M=)
for any y € H with ||y|| = 1.
By taking y = %, x € H,||z|]| =1 in (3.9), we obtain

A1/2$ A1/21~ A1/2:L, A1/2§E
0<In <<AHA1/2xHa HA1/2xH >> - <1nAHA1/2mHv ||A1/2$||>

2 2 1/2
tor-m ||l | - (e i) ]
<
2 2 1/2
st - o[~ (o i) |
< o (M =),

namely

0<In (1 <A2m,x>> # Aln Az, z)

(472 v
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1/2
1 1 — 2 1 2
2 (M_ m) |:||A1/2z||2 HA UQJ;H - HA1/21||4 <.T,],‘> :|
<
) L7112
1 1 1
smar (M —m) [HA”%Z HAS/%H - ALz <A2x,x> }
1 2
- (M-
< Tmar M —m™)

By multiplying with HA1/2$L'||2 > 0, we get

(0<) HA1/295H2IH <HA1/2 H2 (A? >> (Aln Az, x)

) B ) 1/2
O =) 4172 [”” A7~ b ]

A/
<
1/2 3/2..[12 1 9 o112
1/2 N2
< ot HA H (a1 = m)*,
namely
A2
(310)  0<(Ar,z)hn (M) _ (Aln Az, )
1/2
L (M = m) [(Az,2) (A7 2,2) — (@,2)’]
<
- 911/2
i (M —m) [(Az,2) (4%, 2) — (422, 2)’]
Vi (Az,z) (M —m)?,

for any y € H with ||y|| = 1.
By taking the exponential in (3.10), we obtain

exp [— (Aln Az, )]
7<Az,az)
A2z,
exp {ln (<<Aa:,w)>) }

exp (; (M —m) [{Az,2) (A2, z) — (2,2)"] 1/2)

1<

<
o (st 01 ) [t .0) ()] )

< exp (4 lM (Az,z) (M — m)2> < exp <411n (M — m)2> ;

which is equivalent to (3.8).

We also have:
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Theorem 5. Assume that the operator A satisfies the condition 0 < m < A < M
for some constants m and M. Then for any x € H with ||z|| = 1,

1 -M 1 —(Az,x)
11 — (M 2 <(—— (M 2
310 (gugp 01+ m?*) < gy O+ m0?)
—(Az,x
(a)) T @
2 < —(Az,x <L
(Aac,x} <Ax,x> ( )

Proof. From (2.1) we have
—(Az,x)

AQ
Aaz) (Az,2)~ A2 < (4) < (A, z) A2

(Az, z)?
which gives that
—(Az,x)
A2z, A
(3.12) Ao e
(Az, ) (Az,z) =40

for any « € H with ||z]| = 1.
We use Kantorovich inequality
(A%z, @) 1
7 <

(M +m)?

that holds for any « € H with ||z|| = 1, which gives that

—(Az,x) 2
1 ) (A%z,x)
. (M+m oy i
<4mM ( ) > (Az, z)?

—(Aw,z)

Also,

1 -M 1 —(Az,x)
M+ m)?) < —— (M m)?
<4mM( +m) ) = <4mM( +m) )

and by (3.12) we derive (3.11). O
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