INEQUALITIES FOR NORMALIZED ENTROPIC
DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp [(In Az, )] and the normalized entropic determinant by

Ny (A) :=exp[— (Aln Az, x)].
In this paper we show among others that, if A; > 0and p; >0, j € {1,...,n}
with Z?zl pj =1, then
n n _<Z;L:1 ijjz’I>
[1 . ()% < (H [Az(Aj)}pj)
i=1 j=1

J
for all z € H with ||z|| = 1. In particular, we have
ng (4) < [Ag ()]~ Ane
for all z € H with |lz|| = 1.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely [|z] = 1, defined by A, (A) := exp (ln Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[6].
For each unit vector x € H, see also [9], we have:

(i) continuity: the map A — A, (A) is norm continuous;

(i) bounds: <A*1m,x>71 < AL(A) < (Az, z);

(iii) continuous mean: <Apx,x>1/p I Az(A) for p | 0 and (A”z,:z:>1/p 1T AL(A)
for p T 0;

(iv) power equality: A, (A%) = A (A)! for all t > 0;

(v) homogeneity: A, (tA) =tA(A) and A, (tT) =t for all t > 0;
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(vi) monotonicity: 0 < A < B implies A,(A) < A, (B);
(vil) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
(viil) Ky Fan type inequality: A((1 —a) A+ aB) > AL (A)17*A,(B)® for 0 <

a < 1.
We define the logarithmic mean of two positive numbers a, b by
In gilana if b 7& a,
(L.1) L(a,b) :=
a if b= a.

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

Mhm—mlnM
M—-m

(1.2) 0< (Az,z) — Ay(A) < L(m,M) {lnL(m,M)+ 1
for all x € H, ||z|| = 1.
We recall that Specht’s ratio is defined by [13]

Bt he (0,1) U (1,00),
(13) S(h) — eln(hh—l)

lifh=1.

It is well known that lim,_, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [7], the authors obtained the following multiplicative reverse inequality as well

(Az, x) M
14 1< <S|—
(14) - AL(A) m
for0<mI<A<MIandzeH,|z|=1.
For the entropy function 7 (t) = —tln¢, ¢ > 0, the operator entropy has the
following expression:
n(A)=—-AlnA
for positive A.
For z € H, ||z|| = 1, we define the normalized entropic determinant n,(A) by
(1.5) 7o(A) 1= exp (— (Aln Az, 2)) = exp {1 (A) 2, 7).

Let x € H, ||z|| = 1. Observe that the map A — n,(A) is norm continuous and
since

exp (— (tAln (tA) z, z))
=exp(— (tA(Int+1nA)z,z)) =exp(— ((tAlnt + tAln A) z, z))
=exp (— (Az,z) tInt) exp (—t (Aln Az, z))
=expln (t_<Ax’x)t) [exp (— (Aln Az, x>)]_t ,
hence
(1.6) 0, (EA) = 1A [, (A)]
for t > 0 and A > 0.
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Observe also that
(1.7) n.(I)=1and n,(tI)=t""

for t > 0.
In [2] we showed that, if A, B > 0, then for all z € H with ||z|]| = 1 and ¢ € [0,1],

n. (1= t) A+tB) > (n, (A)" " (n, (B))".
We also have the bounds
—(Az,z)
<A2(E, £U> —(Az,x)
-— < < ’
( o < ,(4) < {dz,2)" ),

where A > 0 and = € H with|jz| = 1.
If y € H, y # 0, then we can extend the definition of the normalized entropic
determinant as follows

M, (A) == exp (— (Aln Ay, y)) = exp (n (A4) y,y) -

Also we can consider

v

Ay(A) :=exp (In Ay, y)
fory € H, y # 0.
‘We observe that
. vl o llyll?
iy (A) = [n ()] and A,(4) = [A (4)]

Tyl Tyl
forye H, y # 0.
Motivated by the above results, in this paper we show among others that, if
Aj>0and p; >0, 5 €{l,...,n} with 337, p; = 1, then

—(ZioipiAje.x)

[T . (A < { T 1A

for all © € H with ||z| = 1. In particular, we have
7, (A) < [Ag(4) =4
for all z € H with ||z|| = 1.

2. MAIN RESULTS

We say that the functions f, g : [a,b] — R are synchronous (asynchronous) on
the interval [a, ] if they satisfy the following condition:

(f@&)—f(s))(g(t)—g(s)) > (<)0 for each ¢, s € [a,b].
It is obvious that, if f, g are monotonic and have the same monotonicity on

the interval [a, ], then they are synchronous on [a,b] while if they have opposite
monotonicity, they are asynchronous.

Theorem 1. Assume that A, B > 0 and x, y € H with ||z|| = ||y|| = 1, then
(2.1) 0o (A)n, (B) < [Ag(A)] B9 (A, ()]~ 40
In particular, we have

(2.2) 0o (AN, (B) < [Ax ()] 559 [AL(B)) 4
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(2.3) 12(A)n, (A) < [Ag(A)] A9 (A, (A4)) A
and
(2:4) N, (A) < [A(A)] 7

Proof. In [1] we obtained, between others, the following two operators and two vec-
tors inequality: if A and B are selfadjoint operators and Sp (4), Sp (B) C [m, M],
then for any continuous synchronous (asynchronous) functions f, g : [m, M| — R
we have the more general result

(2.5) (f(A)g(A)z,z) +(f(B)g(B)y,y)
> () (f(A)z,z)(g(B)y,y) +{f (B)y,y) (g (A) z,z)

for each z, y € H with ||z]| = |ly|| = 1.
If we write (2.5) for the asynchronous functions f (¢t) = —t, g (¢) = Int, ¢t > 0,
then we obtain

(2.6) —(AlnAz,z) — (BlnBy,y) < — (Az,z) (In By,y) — (By,y) (In Az, x)

for each z, y € H with ||z|| = |ly|| = 1.
If we take the exponential in (2.6), then we get

exp [— (Aln Az, x)] exp [— (B1n By, y)]
< exp [— (Az, z) (In By, y)] exp [— (By, y) (In Az, z)]

—(Az,z) [ —(By,y)

= [exp (In By, y)] exp (In Az, )]

for each z, y € H with ||z|| = ||y|| = 1, which is equivalent to (2.1). O
We also have:

Theorem 2. Assume that Aj >0 and zj € H, j € {1,...,n} with 377_, H%H2 =
then

. H{ H%H }lejlz . H [A 3 (Aj)} 5112

] P N

=i (Ajmy,m5)

Proof. In [1] we also obtained the following result: let A; be selfadjoint operators

with Sp (4;) € [m, M] for j € {1,...,n} and for some scalars m< M If f, g

[m, M] — R are continuous and synchmnous (asynchronous) on [m, M|, then

(28) Z :L'Jv x] = Z :I,'j,:L'] Z <g (A]) Lj, :L'j> )
j=1 j=1 j=1

for each z; € H, j € {1,....,n} with 337, ll;))* = 1.
If we write the inequality (2.8) for the asynchronous functions f (t) = —t, g (t) =
Int, t > 0, then we obtain

(2.9) Z—(Aj InAjz;,x;) < —Z (Ajxj,x;) Z InAjz;,z;)
j=1 j=1 j=1

for each x; € H, j € {1,...,n} with Y7, [lz;]* =
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By taking the exponential, we derive

n n n

exp Z—(AjlnAja:j,xj> < exp —Z (Ajz;, ;) Z (InAjz;, ;)

j=1 j=1 j=1
Observe that

exp Z— (AjInAjz;, ;) Hexp (AjlnAjx;, x;)]
j=1

j=1 j=1
and
exp [ — Z (Ajzj,xj) Z (InAjz;, ;)
j=1 j=1
r " =i (Ajmy.ag)
= |exp Z(lnAij,xJ)
L j:1
r =i (Ajzs ;)
= H exp ((In Ajz;, ;)
_‘j:1
m =i (Ajmy,@5) " 112 =i (Ajzgay)
= |T1A = (4)) =11 [A L (AJ’)}
o T T
for each z; € H, j € {1,...,n} with Y7, [lz;]* =
By utilizing (2.9) we derive (2.7). O

Corollary 1. Let A; >0 and p; >0, j € {1,...,n} with Z;L:lpj = 1. Then
—(Zry pjAjz.a)

(2.10) [T . (A1 < | TT [2a(A))P
j=1 j=1

for all x € H with ||z|| = 1.

Proof. If we choose in Theorem 2 z; = \/pjz, j € {1,...,n}, where p; > 0, j €
{L,.,n}, with 375, p; = 1 and € H, with [|z]| = 1 then a simple calculation
shows that the mequahty (2.7) becomes (2.10). The details are omitted. O

Remark 1. The case of two operators is as follows
_ _ —((1—t)A+tBz,z)
211 I (A [ B) < (180 () (AL (B)]') ,
for A, B>0,t€[0,1] and x € H with ||z| = 1.
Fort=1/2, we get

<A+B“

n, (A)n, (B) < [A, (A) A, (B)](FF7oe)
for A, B> 0 and x € H with ||z| = 1.
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If we take B = A, we recapture (2.18).

Theorem 3. Assume that A, B > 0 and z, y € H with ||z|| = |ly| = 1. If
q € R\ {0} and p > 0 with p+ q # 0, then
(2.12) [0, (Ap+q)]riq<34yvy> n, (Bp+q)]riq<A%,x>
1 Ap+q17I 1 ta 7
< [n, (BO) VT, (ampr )
Ifp<0andp+q#0, then
(2.13) [n, (AP+a)] 753 B0 ) - (prea)] o (A7)

> [, ()] (am) 7
Proof. We consider only the case of synchronous functions. In this case we have
then
F@g)+f(s)g(s)=f(t)g(s)+f(s)g(t)
for each ¢, s € [m, M].
Assume that h is positive If we multiply this inequality by A (¢) h (s) > 0 we get
h(t) f(t)g (&) h(s)+h(t)h(s)f(s)g(s)
> h(t) f(E)h(s)g(s)+h(s)f(s)h(t)g(t)
for each ¢, s € [m, M].

If we fix s € [m,M] and use the continuous functional calculus for operators
with spectra in [m, M] over ¢ we get

h(s)h(A)f(A)g(A)+h(s)[f(s)g(s)h(A)
> h(s)g(s)h(A) f(A)+h(s)f(s)h(A)g(A)
and by taking the inner product over z € H with ||z|| = 1, we get
h(s)(h(A) f(A)g(A)z,z)+h(s)[f(s)g(s)(h(A)z, )
= h(s)g(s)(h(A)f(A)z,z)+h(s)[f(s)(h(A)g(A)z,z).
If we apply again the functional calculus over B, then we get
(h(A) f(A)g(A)z,z) h(B)+ (h(A)z,z) h(B) f(B)g(B)
> (h(A) f(A)z,z) h(B) g (B)+ (h(A)g(A)z,z)h(B) f (B).
If we take the inner product for y € H with ||y|| = 1, then we get
(2.14) (h(A) f(A)g(A)z,x) (h(B)y,y) + (h(A)z,z) (h(B) f(B)g(B)y,y)
2 (h(A) f(A)z,z) (h(B) g (B)y,y) + (h(A) g (A)z,z) (h(B) f (B)y,y),

which holds for z, y € H with ||z|| = |ly|| = 1.
If f and g are asynchronous, then the inequality (2.14) reverses.
For p > 0, f(t) = t? is increasing, g (t) = —Int is decreasing and h (t) = t? is
positive on (0,00). By (2.14) we derive
- <Ap+q In A:r,z> (Bly,y) — (APzx, x) <Bp+q In By,y>
< — (AP, ) (B?In By, y) — (AP In Az, z) (B* 1y, y),
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namely
1 1
— APTaIn APy 1) (Bly,y) — —— (APz, 2) ( BP9 1n BPTay,
p+q< ) (B, y) p+q< ) { Y, y)
1 1
< —= (AP, 2) (BYIn By, y) — = (AP In APz, z) (B"*y,y),
q p

for z, y € H with ||z|| = |ly|]| = 1.
By taking the exponential, we get

(exp [— (AP7 010 A7 92, 2)]) 745 P70V (exp [— (BP0 1 BPHay, 4)]) 74 A7)
< (exp [~ (B In B, g)]) 47 (exp [ (47 n AP )2 (2700
which is equivalent to (2.12). O

Corollary 2. With the assumptions of Theorem 3, and p > 0, we have the partic-
ular inequalities

1

(215) [771 (APJFQ)] ﬁ(qu:,:w [771 (Bp+q)] - (APz.x)
< [, (BT (ar)] (87

)

(2.16) [Uz (Ap+q)] 21 (A%y.y) [77y (Ap+q)] S (AP,z)

Ap+q:v,m>

[n, (A7)0 )

and

(2.17) [, (Ar+o)] Pl Al <y (T gy ar) (AT
If p <0, then we have the particular inequalities

(218) I:nx (AP"FQ)] ﬁ(Bq;v,x) I:’)’]a: (Bp+q)] ﬁ(API,I>

1

> [, (BA)H A1) iy, (Am)] 27 )

)

1

(2.19) [1, (APF)] e (A%Yw) [n, (APFa)] 75 (APz,z)

Liartag o 1 grtay
> [, (A0)] 74 gy, apy) AT )
and
_1 1 p+qw’z 1 p+’1w,z
(220)  [n, (A7F7)] 7 V> fn, (an) s AT, (ary) (AT )
If we take ¢ = p > 0 in (2.17), then we get

(2.21) [0, (42)] (AP x,z)

for A> 0 and © € H with ||z| = 1.
Remark 2. [fwe takep=1—1t, g=1t € (0,1) in (2.12), then we get

(APz,x)+ (A% x)

< [, (4] )

1
t

2:22) [n, (A)F 0 [, ()] < [, (BT Iy, (a1 Y

for allt € (0,1), A, B> 0 and z, y € H with ||z|| = |ly|]| = 1.
In particular, for B= A and y = © we derive

(2.23) [771. (A)]<(At+,41*t)x,;c> < [nx (At)] L(Az,z) [771- (Al_t)] = (Az,z)
for x € H with ||z|| = 1.

)
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3. RELATED RESULTS

We also have:

Theorem 4. Assume that Aj >0 and z; € H, j € {1,...,n} with 377_, ijHQ =
then for all p > 1,

1/p

ﬁ [ ||m| }W
(3.1) ’ L

”2 =1

Py .
Ajacj,zj>

P (AT — (5o (A ay))”

Y

(s

Proof. Let A; be selfadjoint operators with Sp (A4;) C [m, M] for j € {1,...,n} and
for some scalars m < M. In [1] we also obtained the following result: if f, g are
asynchronous on [m, M|, then

(3.2) S A aga) Y (g (A aj,m) = > (F(A) g(A)) xj, )
j=1 j=1 j=1
> Z Z'],.’ﬂj f Z<Aj(£j,l’j>
j=1 j=1
X D) —g | > (A, ;)
le j=1

for each z; € H, j € {1,...,n} with Z?Zl ||:L'J||2 = 1. Moreover, if either both of
them are convex or both of them are concave on [m, M], then the right hand side
of (3.2) is nonnegative as well.

Assume that A; are positive definite and p > 1. Then by writing the the inequal-
ity (3.2) for the functions f (¢t) =t” and ¢ (t) = —Int, ¢ >0

n

(3.3) Z <A§ log Az, x;) — Z <A§xj, zj) Z (log Ajz;, x;)
j=1 j=1

Jj=1
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2 [Z A IJ"TJ (Z<ijjvxj>> ]

j=1

x log [ Y (Ajmj, @) | = log (Aja), ;)
j=1 j=1
>0
for each z; € H, j € {1,...,n} with 37, [l =
By taking the exponential in (3.3), we get

n n

exp Z <A§ log Az, xj> — Z <A§-’xj, mj> Z (log Ajz;, x;)
j=1

j=1 j=1
) S (Al e, ) — (0 (Ajmy,m))”

> (exp [log (Z (Ajz;, ;) ) Zlog (Ajzj, )
Jj=1

j=1

> 1.
Observe that
exp [Z <A§ log Az, :cj> — Z <A§zj, :cj> Z (log Ajz;, zﬁ]

j=1 j=1 j=1

= exp %Z AplogAng,zj>—Z<A§xj,z] Z (log Az, ]
Jj=1 j=1 j=1

exp ( i1 (A7 logAfmj,xj>>
exp _ZJ 1 <A 17]va> Z?:l <10gAj‘ijxj>]

1/p

Hexp <AplogA ‘T, T5)

S (A7z.25)

and
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exp log (Z 1 (4 x7,xj>) B S (Ajzg, )

exp (ijl log (A;z;, x]>) ﬁ A - (Aj)

for each z; € H, j € {1,...,n} with 3°7_, [|z; | = 1 and the inequality (3.1) is thus
proved. ([l

Corollary 3. Let A; >0 and p; >0, j € {1,...,n} with Z;L:I p; = 1. Then

—1/p
f[ 12 (A7)]

<Zj=1 ij§$>7”>

[Ia
j=1
(ZjmpiAfea)—(Z) . pidsaa)”
<Z?:1 pjd;z, $>

- n -

[T,

j=1

for all x € H with ||z| = 1.

Remark 3. Forp =1 we get

it
(3.5) 7 >1

" (ZroypiAjma)y = 77
TT 4.4

while for n =1 we obtain
- APz x)—(Ax,x)?P
(36) [, (AP <<Ax,x>>< e
(A A T A A (A)
provided that A >0, x € H with ||z|| =1 and p > 1.
For p=11in (3.6) we recapture (2.4), while for p =2 in (3.6) we derive
[77 (AQ)]_1/2 <Al‘ $> <A2z,$>—<Az,x)2
x > i
[Ag(A) Ao (AI(A)>
for all x € H with ||z| = 1.

>1

>1

(3.7)
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