
INEQUALITIES FOR NORMALIZED ENTROPIC
DETERMINANT OF POSITIVE OPERATORS IN HILBERT

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A on a Hilbert space H and a
�xed unit vector x 2 H; de�ne the normalized determinant by �x(A) :=
exp [hlnAx; xi] and the normalized entropic determinant by

�x(A) := exp [�hA lnAx; xi] :
In this paper we show among others that, if Aj > 0 and pj � 0; j 2 f1; :::; ng
with

Pn
j=1 pj = 1; then

nY
j=1

[�x (Aj)]
pj �

0@ nY
j=1

[�x(Aj)]
pj

1A�
DPn

j=1 pjAjx;x
E

for all x 2 H with kxk = 1: In particular, we have

�x (A) � [�x(A)]�hAx;xi

for all x 2 H with kxk = 1:

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [6], [7], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by�x(A) := exp hlnAx; xi and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.
Some of the fundamental properties of normalized determinant are as follows,

[6].
For each unit vector x 2 H; see also [9], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
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2 S. S. DRAGOMIR

(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.

We de�ne the logarithmic mean of two positive numbers a; b by

(1.1) L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.2) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [13]

(1.3) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
For the entropy function � (t) = �t ln t; t > 0; the operator entropy has the

following expression:
� (A) = �A lnA

for positive A:
For x 2 H; kxk = 1; we de�ne the normalized entropic determinant �x(A) by

(1.5) �x(A) := exp (�hA lnAx; xi) = exp h� (A)x; xi :
Let x 2 H; kxk = 1: Observe that the map A ! �x(A) is norm continuous and
since

exp (�htA ln (tA)x; xi)
= exp (�htA (ln t+ lnA)x; xi) = exp (�h(tA ln t+ tA lnA)x; xi)
= exp (�hAx; xi t ln t) exp (�t hA lnAx; xi)

= exp ln
�
t�hAx;xit

�
[exp (�hA lnAx; xi)]�t ;

hence

(1.6) �x(tA) = t
�thAx;xi [�x(A)]

�t

for t > 0 and A > 0:
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Observe also that

(1.7) �x(I) = 1 and �x(tI) = t
�t

for t > 0:
In [2] we showed that, if A; B > 0; then for all x 2 H with kxk = 1 and t 2 [0; 1] ;

�x((1� t)A+ tB) � (�x (A))
1�t

(�x (B))
t
:

We also have the bounds 

A2x; x

�
hAx; xi

!�hAx;xi
� �x(A) � hAx; xi

�hAx;xi
;

where A > 0 and x 2 H withkxk = 1.
If y 2 H; y 6= 0; then we can extend the de�nition of the normalized entropic

determinant as follows

��y(A) := exp (�hA lnAy; yi) = exp h� (A) y; yi :
Also we can consider

��y(A) := exp hlnAy; yi
for y 2 H; y 6= 0:
We observe that

��y(A) =
h
� y
kyk
(A)
ikyk2

and ��y(A) =
h
� y

kyk
(A)
ikyk2

for y 2 H; y 6= 0:
Motivated by the above results, in this paper we show among others that, if

Aj > 0 and pj � 0; j 2 f1; :::; ng with
Pn

j=1 pj = 1; then

nY
j=1

[�x (Aj)]
pj �

0@ nY
j=1

[�x(Aj)]
pj

1A�hPn
j=1 pjAjx;xi

for all x 2 H with kxk = 1: In particular, we have

�x (A) � [�x(A)]
�hAx;xi

for all x 2 H with kxk = 1:

2. Main Results

We say that the functions f; g : [a; b] �! R are synchronous (asynchronous) on
the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :
It is obvious that, if f; g are monotonic and have the same monotonicity on

the interval [a; b] ; then they are synchronous on [a; b] while if they have opposite
monotonicity, they are asynchronous.

Theorem 1. Assume that A; B > 0 and x; y 2 H with kxk = kyk = 1; then

(2.1) �x(A)�y(B) � [�x(A)]
�hBy;yi

[�y(B)]
�hAx;xi

:

In particular, we have

(2.2) �x(A)�x(B) � [�x(A)]
�hBx;xi

[�x(B)]
�hAx;xi

;
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(2.3) �x(A)�y(A) � [�x(A)]
�hAy;yi

[�y(A)]
�hAx;xi

and

(2.4) �x(A) � [�x(A)]
�hAx;xi

:

Proof. In [1] we obtained, between others, the following two operators and two vec-
tors inequality: if A and B are selfadjoint operators and Sp (A) ; Sp (B) � [m;M ] ;
then for any continuous synchronous (asynchronous) functions f; g : [m;M ] �! R
we have the more general result

hf (A) g (A)x; xi+ hf (B) g (B) y; yi(2.5)

� (�) hf (A)x; xi hg (B) y; yi+ hf (B) y; yi hg (A)x; xi

for each x; y 2 H with kxk = kyk = 1:
If we write (2.5) for the asynchronous functions f (t) = �t; g (t) = ln t; t > 0;

then we obtain

(2.6) �hA lnAx; xi � hB lnBy; yi � � hAx; xi hlnBy; yi � hBy; yi hlnAx; xi

for each x; y 2 H with kxk = kyk = 1:
If we take the exponential in (2.6), then we get

exp [�hA lnAx; xi] exp [�hB lnBy; yi]
� exp [�hAx; xi hlnBy; yi] exp [�hBy; yi hlnAx; xi]

= [exp hlnBy; yi]�hAx;xi [exp hlnAx; xi]�hBy;yi

for each x; y 2 H with kxk = kyk = 1; which is equivalent to (2.1). �

We also have:

Theorem 2. Assume that Aj > 0 and xj 2 H; j 2 f1; :::; ng with
Pn

j=1 kxjk
2
= 1;

then

(2.7)
nY
j=1

�
� xj

kxjk
(A)

�kxjk2
�

0@ nY
j=1

�
� xj

kxjk
(Aj)

�kxjk21A�
Pn

j=1hAjxj ;xji

:

Proof. In [1] we also obtained the following result: let Aj be selfadjoint operators
with Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalars m < M: If f; g :
[m;M ] �! R are continuous and synchronous (asynchronous) on [m;M ] ; then

(2.8)
nX
j=1

hf (Aj) g (Aj)xj ; xji � (�)
nX
j=1

hf (Aj)xj ; xji
nX
j=1

hg (Aj)xj ; xji ;

for each xj 2 H; j 2 f1; :::; ng with
Pn

j=1 kxjk
2
= 1:

If we write the inequality (2.8) for the asynchronous functions f (t) = �t; g (t) =
ln t; t > 0; then we obtain

(2.9)
nX
j=1

�hAj lnAjxj ; xji � �
nX
j=1

hAjxj ; xji
nX
j=1

hlnAjxj ; xji ;

for each xj 2 H; j 2 f1; :::; ng with
Pn

j=1 kxjk
2
= 1:
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By taking the exponential, we derive

exp

0@ nX
j=1

�hAj lnAjxj ; xji

1A � exp

0@� nX
j=1

hAjxj ; xji
nX
j=1

hlnAjxj ; xji

1A :
Observe that

exp

0@ nX
j=1

�hAj lnAjxj ; xji

1A =
nY
j=1

exp [�hAj lnAjxj ; xji]

=
nY
j=1

�� xj

kxjk
(Aj) =

nY
j=1

�
� xj

kxjk
(A)

�kxjk2
and

exp

0@� nX
j=1

hAjxj ; xji
nX
j=1

hlnAjxj ; xji

1A
=

24exp
0@ nX
j=1

hlnAjxj ; xji

1A35�
Pn

j=1hAjxj ;xji

=

24 nY
j=1

exp (hlnAjxj ; xji)

35�
Pn

j=1hAjxj ;xji

=

24 nY
j=1

�� xj

kxjk
(Aj)

35�
Pn

j=1hAjxj ;xji

=

0@ nY
j=1

�
� xj

kxjk
(Aj)

�kxjk21A�
Pn

j=1hAjxj ;xji

for each xj 2 H; j 2 f1; :::; ng with
Pn

j=1 kxjk
2
= 1:

By utilizing (2.9) we derive (2.7). �
Corollary 1. Let Aj > 0 and pj � 0; j 2 f1; :::; ng with

Pn
j=1 pj = 1: Then

(2.10)
nY
j=1

[�x (Aj)]
pj �

0@ nY
j=1

[�x(Aj)]
pj

1A�hPn
j=1 pjAjx;xi

for all x 2 H with kxk = 1:

Proof. If we choose in Theorem 2 xj =
p
pjx; j 2 f1; :::; ng ; where pj � 0; j 2

f1; :::; ng ; with
Pn

j=1 pj = 1 and x 2 H; with kxk = 1 then a simple calculation
shows that the inequality (2.7) becomes (2.10). The details are omitted. �
Remark 1. The case of two operators is as follows

(2.11) [�x (A)]
1�t

[�x (B)]
t �

�
[�x (A)]

1�t
[�x (B)]

t
��h(1�t)A+tBx;xi

;

for A; B > 0; t 2 [0; 1] and x 2 H with kxk = 1:
For t = 1=2; we get

�x (A) �x (B) � [�x (A)�x (B)]
�hA+B2 x;xi ;

for A; B > 0 and x 2 H with kxk = 1:
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If we take B = A; we recapture (2.18).

Theorem 3. Assume that A; B > 0 and x; y 2 H with kxk = kyk = 1: If
q 2 R n f0g and p > 0 with p+ q 6= 0; then�

�x
�
Ap+q

�� 1
p+q hB

qy;yi �
�y
�
Bp+q

�� 1
p+q hA

px;xi
(2.12)

�
�
�y (B

q)
� 1
q hAp+qx;xi

[�x (A
p)]

1
p hBp+qy;yi :

If p < 0 and p+ q 6= 0; then�
�x
�
Ap+q

�� 1
p+q hB

qy;yi �
�y
�
Bp+q

�� 1
p+q hA

px;xi
(2.13)

�
�
�y (B

q)
� 1
q hAp+qx;xi

[�x (A
p)]

1
p hBp+qy;yi :

Proof. We consider only the case of synchronous functions. In this case we have
then

f (t) g (t) + f (s) g (s) � f (t) g (s) + f (s) g (t)
for each t; s 2 [m;M ] :
Assume that h is positive If we multiply this inequality by h (t)h (s) � 0 we get

h (t) f (t) g (t)h (s) + h (t)h (s) f (s) g (s)

� h (t) f (t)h (s) g (s) + h (s) f (s)h (t) g (t)

for each t; s 2 [m;M ] :
If we �x s 2 [m;M ] and use the continuous functional calculus for operators

with spectra in [m;M ] over t we get

h (s)h (A) f (A) g (A) + h (s) f (s) g (s)h (A)

� h (s) g (s)h (A) f (A) + h (s) f (s)h (A) g (A)

and by taking the inner product over x 2 H with kxk = 1; we get

h (s) hh (A) f (A) g (A)x; xi+ h (s) f (s) g (s) hh (A)x; xi
� h (s) g (s) hh (A) f (A)x; xi+ h (s) f (s) hh (A) g (A)x; xi :

If we apply again the functional calculus over B; then we get

hh (A) f (A) g (A)x; xih (B) + hh (A)x; xih (B) f (B) g (B)
� hh (A) f (A)x; xih (B) g (B) + hh (A) g (A)x; xih (B) f (B) :

If we take the inner product for y 2 H with kyk = 1; then we get

hh (A) f (A) g (A)x; xi hh (B) y; yi+ hh (A)x; xi hh (B) f (B) g (B) y; yi(2.14)

� hh (A) f (A)x; xi hh (B) g (B) y; yi+ hh (A) g (A)x; xi hh (B) f (B) y; yi ;

which holds for x; y 2 H with kxk = kyk = 1:
If f and g are asynchronous, then the inequality (2.14) reverses.
For p > 0; f (t) = tp is increasing, g (t) = � ln t is decreasing and h (t) = tq is

positive on (0;1) : By (2.14) we derive

�


Ap+q lnAx; x

�
hBqy; yi � hApx; xi



Bp+q lnBy; y

�
� �



Ap+qx; x

�
hBq lnBy; yi � hAp lnAx; xi



Bp+qy; y

�
;
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namely

� 1

p+ q



Ap+q lnAp+qx; x

�
hBqy; yi � 1

p+ q
hApx; xi



Bp+q lnBp+qy; y

�
� �1

q



Ap+qx; x

�
hBq lnBqy; yi � 1

p
hAp lnApx; xi



Bp+qy; y

�
;

for x; y 2 H with kxk = kyk = 1:
By taking the exponential, we get�
exp

�
�


Ap+q lnAp+qx; x

��� 1
p+q hB

qy;yi �
exp

�
�


Bp+q lnBp+qy; y

��� 1
p+q hA

px;xi

� (exp [�hBq lnBqy; yi])
1
q hAp+qx;xi (exp [�hAp lnApx; xi])

1
p hBp+qy;yi ;

which is equivalent to (2.12). �
Corollary 2. With the assumptions of Theorem 3, and p > 0; we have the partic-
ular inequalities �

�x
�
Ap+q

�� 1
p+q hB

qx;xi �
�x
�
Bp+q

�� 1
p+q hA

px;xi
(2.15)

� [�x (Bq)]
1
q hAp+qx;xi [�x (Ap)]

1
p hBp+qx;xi ;�

�x
�
Ap+q

�� 1
p+q hA

qy;yi �
�y
�
Ap+q

�� 1
p+q hA

px;xi
(2.16)

�
�
�y (A

q)
� 1
q hAp+qx;xi

[�x (A
p)]

1
p hAp+qy;yi

and

(2.17)
�
�x
�
Ap+q

�� 1
p+q [hA

px;xi+hAqx;xi] � [�x (Aq)]
1
q hAp+qx;xi [�x (Ap)]

1
p hAp+qx;xi :

If p < 0; then we have the particular inequalities�
�x
�
Ap+q

�� 1
p+q hB

qx;xi �
�x
�
Bp+q

�� 1
p+q hA

px;xi
(2.18)

� [�x (Bq)]
1
q hAp+qx;xi [�x (Ap)]

1
p hBp+qx;xi ;�

�x
�
Ap+q

�� 1
p+q hA

qy;yi �
�y
�
Ap+q

�� 1
p+q hA

px;xi
(2.19)

�
�
�y (A

q)
� 1
q hAp+qx;xi

[�x (A
p)]

1
p hAp+qy;yi

and

(2.20)
�
�x
�
Ap+q

�� 1
p+q [hA

px;xi+hAqx;xi] � [�x (Aq)]
1
q hAp+qx;xi [�x (Ap)]

1
p hAp+qx;xi :

If we take q = p > 0 in (2.17), then we get

(2.21)
�
�x
�
A2p

�� 1
2p hA

px;xi � [�x (Ap)]
1
p hA2px;xi

for A > 0 and x 2 H with kxk = 1:
Remark 2. If we take p = 1� t; q = t 2 (0; 1) in (2.12), then we get

(2.22) [�x (A)]
hBty;yi ��y (B)�hA1�tx;xi �

�
�y
�
Bt
�� 1

t hAx;xi ��x �A1�t�� 1
1�t hBy;yi ;

for all t 2 (0; 1) ; A; B > 0 and x; y 2 H with kxk = kyk = 1:
In particular, for B = A and y = x we derive

(2.23) [�x (A)]
h(At+A1�t)x;xi �

�
�x
�
At
�� 1

t hAx;xi ��x �A1�t�� 1
1�t hAx;xi ;

for x 2 H with kxk = 1:
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3. Related Results

We also have:

Theorem 4. Assume that Aj > 0 and xj 2 H; j 2 f1; :::; ng with
Pn

j=1 kxjk
2
= 1;

then for all p � 1;

0@ nY
j=1

�
� xj

kxjk

�
Apj
��kxjk21A1=p

24 nY
j=1

�
� xj

kxjk
(Aj)

�kxjk235
Pn

j=1hAp
jxj ;xji

(3.1)

�

0BBBBB@
Pn

j=1 hAjxj ; xji
nY
j=1

�
� xj

kxjk
(Aj)

�kxjk2
1CCCCCA

Pn
j=1hAp

jxj ;xji�(
Pn

j=1hAjxj ;xji)
p

� 1

Proof. Let Aj be selfadjoint operators with Sp (Aj) � [m;M ] for j 2 f1; :::; ng and
for some scalars m < M: In [1] we also obtained the following result: if f; g are
asynchronous on [m;M ] ; then

nX
j=1

hf (Aj)xj ; xji
nX
j=1

hg (Aj)xj ; xji �
nX
j=1

hf (Aj) g (Aj)xj ; xji(3.2)

�

24 nX
j=1

hf (Aj)xj ; xji � f

0@ nX
j=1

hAjxj ; xji

1A35
�

24 nX
j=1

hg (Aj)xj ; xji � g

0@ nX
j=1

hAjxj ; xji

1A35
for each xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1: Moreover, if either both of

them are convex or both of them are concave on [m;M ], then the right hand side
of (3.2) is nonnegative as well.
Assume that Aj are positive de�nite and p � 1: Then by writing the the inequal-

ity (3.2) for the functions f (t) = tp and g (t) = � ln t; t > 0

(3.3)
nX
j=1



Apj logAxj ; xj

�
�

nX
j=1



Apjxj ; xj

� nX
j=1

hlogAjxj ; xji
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�

24 nX
j=1



Apjxj ; xj

�
�

0@ nX
j=1

hAjxj ; xji

1Ap35
�

24log
0@ nX
j=1

hAjxj ; xji

1A� nX
j=1

log hAjxj ; xji

35
� 0

for each xj 2 H; j 2 f1; :::; ng with
Pn

j=1 kxjk
2
= 1:

By taking the exponential in (3.3), we get

exp

24 nX
j=1



Apj logAxj ; xj

�
�

nX
j=1



Apjxj ; xj

� nX
j=1

hlogAjxj ; xji

35
�

0@exp
24log

0@ nX
j=1

hAjxj ; xji

1A� nX
j=1

log hAjxj ; xji

351A
Pn

j=1hAp
jxj ;xji�(

Pn
j=1hAjxj ;xji)

p

� 1:
Observe that

exp

24 nX
j=1



Apj logAxj ; xj

�
�

nX
j=1



Apjxj ; xj

� nX
j=1

hlogAjxj ; xji

35
= exp

241
p

nX
j=1



Apj logA

p
jxj ; xj

�
�

nX
j=1



Apjxj ; xj

� nX
j=1

hlogAjxj ; xji

35
=

exp
�
1
p

Pn
j=1



Apj logA

p
jxj ; xj

��
exp

hPn
j=1



Apjxj ; xj

�Pn
j=1 hlogAjxj ; xji

i

=

0@ nY
j=1

exp


Apj logA

p
jxj ; xj

�1A1=p

24exp
0@ nY
j=1

hlogAjxj ; xji

1A35
Pn

j=1hAp
jxj ;xji

=

0@ nY
j=1

�� xj

kxjk
(Apj )

1A�1=p

24 nY
j=1

�� xj

kxjk
(Aj)

35
Pn

j=1hAp
jxj ;xji

=

0@ nY
j=1

�
� xj

kxjk

�
Apj
��kxjk21A�1=p

24 nY
j=1

�
� xj

kxjk
(Aj)

�kxjk235
Pn

j=1hAp
jxj ;xji

and

exp

24log
0@ nX
j=1

hAjxj ; xji

1A� nX
j=1

log hAjxj ; xji

35
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=
exp log

�Pn
j=1 hAjxj ; xji

�
exp

�Pn
j=1 log hAjxj ; xji

� = Pn
j=1 hAjxj ; xji
nY
j=1

�� xj

kxjk
(Aj)

=

Pn
j=1 hAjxj ; xji

nY
j=1

�
� xj

kxjk
(Aj)

�kxjk2
for each xj 2 H; j 2 f1; :::; ng with

Pn
j=1 kxjk

2
= 1 and the inequality (3.1) is thus

proved. �

Corollary 3. Let Aj > 0 and pj � 0; j 2 f1; :::; ng with
Pn

j=1 pj = 1: Then0@ nY
j=1

�
�x
�
Apj
��pj1A�1=p

24 nY
j=1

[�x(Aj)]
pj

35h
Pn

j=1 pjA
p
jx;xi

(3.4)

�

0BBBB@
DPn

j=1 pjAjx; x
E

nY
j=1

[�x(Aj)]
pj

1CCCCA
hPn

j=1 pjA
p
jx;xi�h

Pn
j=1 pjAjx;xip

� 1

for all x 2 H with kxk = 1:

Remark 3. For p = 1 we get

(3.5)

0@ nY
j=1

[�x (Aj)]
pj

1A�1

24 nY
j=1

[�x(Aj)]
pj

35h
Pn

j=1 pjAjx;xi � 1;

while for n = 1 we obtain

(3.6)
[�x (A

p)]
�1=p

[�x(A)]
hApx;xi �

�
hAx; xi
�

x
(A)

�hApx;xi�hAx;xip

� 1

provided that A > 0; x 2 H with kxk = 1 and p � 1:
For p = 1 in (3.6) we recapture (2.4), while for p = 2 in (3.6) we derive

(3.7)

�
�x
�
A2
���1=2

[�x(A)]
hA2x;xi �

�
hAx; xi
�

x
(A)

�hA2x;xi�hAx;xi2
� 1

for all x 2 H with kxk = 1:
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