REFINEMENTS AND REVERSES OF SOME INEQUALITIES
FOR THE NORMALIZED ENTROPIC DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and
a fixed unit vector z € H, define the normalized entropic determinant by
N, (A) := exp[— (Aln Az, z)]. In this paper we show among others that, if A
satisfies the condition 0 <m < A < M, then

1< exp { 2]\142 ((Azm, z) — <Aa:,x)2>}

and
1 <exp {% (<A2w,x> — (Aa:,w)Z)}

< ¢ < exp {% <<A21’ ) — <A’”’m>2>}

for x € H, ||z|| = 1.
for z € H, ||z|| = 1.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[6].
For each unit vector x € H, see also [8], we have:

(i) continuity: the map A — A,(A) is norm continuous;

(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);
(iil) continuous mean: (Apx,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T Az(A)
for p T 0;
1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Normalized determinants, Inequalities.
1

RGMIA Res. Rep. Coll. 25 (2022), Art. 43, 15 pp.  Received 06/04/22



2 S.S. DRAGOMIR

) power equality: Ay(AY) = A, (A)t for all t > 0;

) homogeneity: A, (tA) =tA,(A) and A, (tI) =t for all ¢t > 0;
(vi) monotonicity: 0 < A < B implies Az(A) < A, (B);

i) multiplicativity: A,(AB) = A,(A)A;(B) for commuting A and B;

) Ky Fan type inequality: A,((1 —a) A+ aB) > AL (A)'"*AL(B)* for 0 <
a< 1l

We define the logarithmic mean of two positive numbers a, b by
b—a__if h £ q,

Inb—Ina

L(a,b) :=
aif b= a.

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < m < A < M, where m, M are positive
numbers,

MInm—mInM 1

(1.1) 0< (Az,z) — Ay(A) < L(m,M) |InL(m, M) + M —m

for all x € H, ||z|| = 1.
The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.2) a7y < (1—v)a+uvb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [12]

— R it h e (0,1) U (1,00)
eln| hh—T

(1.3) S (h) := ( )

Lifh=1.

It is well known that lim,_, S (h) = 1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [7], the authors obtained the following multiplicative reverse inequality as well
(Az, x) M
14 1< <S|—
(14) - AL(A) m
for0O<mI<A<MIandzeH,|z|=1.
Since 0 < M~ < A=t <m™'I, then by (1.4) for A= we get

s (1) -5 ()7) s (2),

which is equivalent to

(1.5) Mi&W”§S<M)

T (Al x) ! m

forx € H, ||z|| = 1.
For the entropy function n(t) = —tInt, ¢ > 0, the operator entropy has the
following expression:
n(A)=—-AlnA

for positive A.
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For z € H, ||z|| = 1, we define the normalized entropic determinant n,(A) by
(16) 1 (A) = exp (— (Aln Az, 2)) = exp {1 (A) 7,) .

Let € H, ||z|| = 1. Observe that the map A — n,(A) is norm continuous and
since

exp (— (tAln (tA) z, z))
=exp(— (tA(lnt+InA)z,z)) = exp (— ((tAlnt + tAln A) z, x))
=exp (— (Az,z) tlnt) exp (—t (Aln Az, z))

— expln (fmm,xﬂ) [exp (— (Aln Az, 2))] ",
hence
(1.7) 0, (tA) = ¢ AR [y (A)]

for ¢t >0 and A > 0.
Observe also that

(1.8) n,(I)=1and n,(tl) =t""

for t > 0.
In the recent paper [4] we obtained among others that, if A, B > 0, then for all
x € H,||z||=1and ¢t €[0,1],

(1.9) N.(L=1) A+tB) > (1, (A)'™" (n, (B))".
Also we have the bounds

2, o —(Az,x)
(1.10) (%x,’x;) < ,(A4) < (Az, )40

where A > 0 and z € H, ||z|| = 1.
Motivated by the above results, in this paper we show among others that, if A
satisfies the condition 0 <m < A < M, then

1< exp{2A142 (<A2x,x> — <Ax,x>2>}

< % <o g ((4%0.2) — t4n.07)

and

forx € H, ||z|| = 1.
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2. INEQUALITIES FOR p € (—00,0) U (1, 00)

Assume that A > 0. For a vector y # 0 we can extend the normalized entropic
determinant as 7, (A) := exp (In Ay, y) . We observe that

7,(A) :=exp<—A1nAy,y>=exp(|y||2< “Amal, L)

o -amag )] -l

Theorem 1. Assume that A; are operators such that 0 < m < A; < M, j €
{1,...,n}. Define

for any y # 0.

p(p 1) forp e (1,00),

AURTES
2 for p € (—o0,0)
and
1-p
B forp e (1,00),
o, (m, M) =
1—-p
% forp € (—00,0).
Then
n n P
(2.1) L<exp | ¢, (m, M) | > (Alzja;) — | D (Ajzj,a))
j=1 j=1
n *( j= 1(4; waIJ>)
(ijl <Aj$jv$j>)
<
— n
H ﬁ.l,] (AJ)
j=1
P

n

<exp | ®, (m, M) Z(A zj,mj Z (Ajz;, ;) ,
Jj=1 j=1

for each x; € H, j € {1,...,n} with 377, | |)* =

{1,..,n}. If f is a twice differentiable function on (m, M) and for p €

Proof. Let A; be positive definite operators with Sp (4,) C [m,M] C (0,00) j
(=
(1, oo) we have for some ¢ < ® that

t27p 1"
(2.2) » <g(t) .—mf (t) < ® for any t € (m, M),
then, see [3],
n n P
(2.3) o . <A 13]7$J> Z (Ajzj, ;)
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n

Z i) zj i) — f Z<ijjv$j>

J=1 Jj=1
P

n n
<o Z ij,:rj Z (Ajz;, ;)
j=1 j=1

for each z; € H, j € {1,...,n} with 327, ll;))* = 1.
We consider the convex function f (t) =tInt, t € [m, M] C (0,00). Then

2P 1 T,
g(t) = - = t-P.
) plp=1)t plp-1)
For p € (1,00), we have
m!=P M-p
sup ¢(t) = —— and inf )= ——
t€[m, M) Q pp—1) setmom? 9() pp—1)
and for p € (—o0,0)
(t) L S
sup g¢g(t) = sup =
te[m,M] te[m,M] P (p - 1) p (p - 1)
and ) .
-p -p
inf ¢g(¢t)= inf t = .
te(m,M] tefmm pp—1) pp-1)
Therefore by (2.3) we get
n n P
(2.4) 0< ¢ Z A §Ti,T5) — Z <Aj$j,$j>
j=1 j=1
< (AjInAjz;,x;) Z (Ajxj,xj) Z(ijj,xj)
j=1 j=1 j=1
n n P
< By (m, M) | Y (Alzj ) — (D> (Ajzj,ay) | |,
j=1 j=1
where ¢, (m, M) and @, (m, M) are given above.
If we take the exponential in (2.4), then we obtain
n n P
(2.5) 1 <exp Z (AT mj,acj Z (Ajx;, ;)
j=1 j=1
_ e {— (23;1 (Agag,e;)) n (S, (Aje5.35) )|
B exp (L)_y (— Ay In Ajwy, ;) )
P

n

<exp | D, (m, M) Z<A§xj,:rj>— Z(Aja:j7wj> )
j=1

Jj=1

for each z; € H, j € {1,....,n} with 337, [lz;]|” = 1.
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Since
exp Z (—A;jInAjz;,z;) | = H exp(—AjlnAjz;, z;) = H Mz, (4;),
i=1 2 -
hence by (2.5) we derive (2.1). O

Remark 1. Assume that A; are operators such that 0 < m < A; < M, j €
{1,...,n}. If we take p =2 in (2.1), then we get

n

1 n
(2.6) 1 <exp oYYel Z (Azj,a;) — Z (Ajzj, ;)
Jj=1

j=1

(EJ {4 xbm)*(zj {Ajzs,a5))

H ﬁmj (AY)

<

n

1 n
< exp P Z(A T, T5) Z (Ajz;, ;)
; =

Jj=1

for each x; € H, j € {1,....n} with 377 _, | ))* =
If we take p = —1 in (2.1), then we get

-1

n n
(2.7) 1< exp % S (A7 g gy — | Y (A, @)
=1 =1

—(XZh_i(Ajzj,a5))
< (ZJ 1 (4 $17x1>>

. Hﬂx] (AJ)

-1

n
SeXP Z<A QSJ,JZJ Z ijaxJ
Jj=1

for each x; € H, j € {1,....n} with 377, a;|)* =

The case of normalized determinant is as follows:
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Corollary 1. Assume that p; > 0 with Z?:l pj =1, then

P
(2.8) 1 <exp | ¢,(m, M) Z Apxa: ij (Ajx, x)
j=1
n —<Z;L=1 pJAJ1’7'L>
<Zj:1 pJA]x7CC>

T (A1

j=1
n n P

<exp | D, (m, M) Dj <A§SE,SC> ij (Ajz, z) ’

j=1 Jj=1

forw e H, ||lz| = 1.

The proof follows from (2.1) by taking x; = \/p;x, x € H, ||z| = 1 and observing
that

[ 7., (4) = [ exp (~A;n 4; ypjz, y/pjr) = HGXP [pj (=AjInAjz, z)]

:ﬁ[exp( A;jln Az, z)P Hnw

If we take p = 2 in (2.8), then we get

3

1
(2.9) 1 <exp e ij Aa:x ZA.’,EI

j=1

>—<Z}L=1 pjA;z.a)

<Z?:1 pjdjz,x
<

j=1
2
1 n n
< exp by ij <A]2-z,x> Z (Ajz,x)
J=1 J=1

for each x € H, ||z|| = 1.



8 S.S. DRAGOMIR

If we take p = —1 in (2.8), then we get

-1
(2.10) 1 <exp % ij <Aj_1x7x> — (ij (ij,x>)

-1
< exp ZP1<A , ) (ZPJAQH«“)

forx € H, ||z|| = 1.
The case of two operators is as follows. Assume that 0 < m < A, B < M, and
t €[0,1]. Then
(2.11) 1 <exp{e,(m,M)
x [([(1 = 1) AP +tB*]z,x) — (([(1 —t) A+ tB]z,z))"]}
([(1 =) A+ tB)a,z)” - DAHED
[, (AN o, (B))'
<exp{®,(m,M)
< [([(1 —1) AP +¢B"]w,x) — (([(1 —t) A+ tB]z,z))"]}
forx € H, ||z|| = 1.
If B = A, then we derive
(2.12) 1 <exp{¢, (m, M) [(APz,z) — (Az,z)"]}
< <Az,x>_<Az’$>
1 (A)

forx € H, ||z|| = 1.
For p = 2 we have

<

< exp {®, (m, M) [(A"z, z) — (Az, 2)"]}

(2.13) 1< eXp{2Z\142 {<A2x,m> - <Ax,x>2} }

< W < eXp{Q;ﬂ [<A2x z) — (Az,z) ]}

forx € H, ||z|| = 1.
For p = —1 we obtain

(2.14) 1< exp{ [<A T,T) — (Ax,x>—1}}

< W < exp {Aj (A7) - <A$’m>_1]}

forz € H, ||z|| = 1.
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We observe that the above inequalities (2.12)-(2.14) provide refinements and
reverse of the fundamental bounds for the normalized determinant incorporated in
the second part of (1.10) from the introduction.

It is well known that, see for instance [5, p. 28],

(2.15) (A%z,z) — (Az,z)? < i (M —m)?

forx € H, ||z|| = 1.
Then by (2.13) we get

W < exp {2;2 [<A2x,x> - <Am,m>2} }

{1<M >2}
<exps-(——1

8 \m

forx € H, ||z|| = 1.

We also use the well known inequality, see for instance [5, p. 28],

(2.17) (A7 g, z) — (Az,z)' < W

(2.16)

forx € H, ||z|| = 1.
Then by (2.14) we obtain

(2.18) W < exp {A; [<A_1m,m> - (Aw,m)_l} }

forx € H, ||z|| = 1.

3. INEQUALITIES FOR p € (0,1)
We also have:

Theorem 2. Assume that A; are operators such that 0 < m < A; < M, j €
{1,...,n}. Then for p € (0,1)

1 n n
—(Zr (Ayy,25))
(Z; 1 (45 xj,ac])) ’
< D
117, (45
j=1
1 n n
< (L —p)mP ;Mﬁjv%) ; (Afzj,x;)

for each x; € H, j € {1,....n} with 377, | )|* =
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In particular,

1/2
4 n n
(3.2) 1 <exp Vil (Z (ijj7mj)> - Z <Aj1-/2$jaxj>

Jj=1

(Za 1 (4 33],3;]>)7(Z}7':1<Ajz_7.,zj>)

H ,F}:z:j (A])
j=1

for each x; € H, j € {1,....n} with 377 _, ;))* =

Proof. If the following condition is satisfied

2P 7
(3.3) < h(t) .:mf (t) < A for any t € (m, M)

and for some 6 < A, where p € (0,1), then for p € (0, 1), we also have [3]

3

(3.4) d [(Z <ijjv%'>> —Z<A§%%‘>]
j=1 j=1
Zl DETN T (Zl (Ajz;, x; )
(Z <ijj,xj>> - Z <A§fﬁjvﬂfj>]

3

<A

for each z; € H, j € {1,...,n} with Z _ H%H
If we take f () = tInt, then

t*77 1
ht) = — =
®) p(l—p)t

1 . 1 1
p(1—=p)tt=r = [p(1—p) M=P p(1 —p)m!=P
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and by (3.4) we get

P n
1

0< p(l—p)M? Z<ijjal"j> *Z<A§$ja$j>
j=1

Jj=1

n

< Xn: A;jlnAjz;, x;) Zn: Ajg,ag) | I | Y ( Ay, ag)
j=1

j=1 j=1
1 n

p
< sa o | | 2 Wimna) | =3 (Afya)
j=1

Jj=1

for each ; € H, j € {1,...,n} with 377, |#;]|* = 1, which implies, by taking the
exponential, the desired result (3.1). O

Corollary 2. Assume that A; are operators such that 0 < m < A; < M, j €
{L,...,n} and p; >0, j € {1,...,n} with 337_, pj = 1. Then for p € (0,1)

P

1 n n

ST | | 2op ma) | =3 (4fea)
j=1 j=1

>—<Z§”:1 piA;z,z)

(3.5) 1 <exp

< exp

P

p(1—p)m!=r >_pildsesa) | =) pi (Afz,z)
j=1 j=1

for each x € H with ||z|| = 1.

In particular,

1/2

(3.6) 1 <exp ﬁ ij (Ajz, x) ij< AL/2, v >

for each x € H with ||z| = 1.
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Similar particular inequalities may be stated, however we state only the case of
one operators, namely, for the operator A satisfying the condition 0 < m < A < M,

(37)  1<exp <p(1_pl)Ml_p (A, z)? — <Ap:17,x>]>

(A, )~ A7) 1

TR <p<1 “pymir

[(Az,z)! — (APx, m}])

for each x € H with ||z|| = 1, where p € (0,1).
For p =1/2 we get

(3.8) 1 <exp (Z\ﬁ/? [<Aax,a:>1/2 _ <A1/2x,x>}>
2, z)~ AT Lo
- <Anx>(A) < exp (mil/z [(Ax,@ /2 _ <A1/2z,$>}>

for each x € H with ||z|| = 1.

4. RELATED RESULTS

We also have the following related results:

Theorem 3. Assume that the operator A satisfies the condition 0 < m < A< M
and p € (—o0,0) U (1,00), then

A% Py, A%z, p_l_A7 p
o el
. (A)
S e A
((Azzc,z))

(A* Py, x) <A2x,m>p71 — (Azx, )P
R

< exp {\I/p (m, M)

forz € H, ||z| =1, where

p—1
mi forp € (1,00),

/l/]p (va) =
MP~?t
2o Jorp € (=00,0)
and
p—1
A0 e (1,00),
U, (m,M):=

p—1
2o Jorp € (=00,0).
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Proof. Observe that

n_a: (A7)

1Az

Ax Az
_ A -1
‘eXp< <A (n 4 )|Ax||’||Ax||>)

1 —1
= exp Aln Az, =exp| ——= (—AlnAz,z
(A B >> p<llAmll2< >>

1

= [%(A)]_W _ [77I(A)]7<A271GHC>

for x € H, ||z|| = 1, which gives that

(4.2) ne(A) = [n 4e.

forx € H, ||z|| = 1.
Since 0 < M~ < A~' < m~! written for A~ we get

p(p 7 _ for p € (1,00),
¢, (M~tm™1) =
p(p 1) for p € (—o0,0)
= wp (ma M)
and
MP!
L S0 for p € (1,00),
o, (M ,m ) =
p(p 1) for p € (—0,0).
=W, (m, M),
hence by (2.12) for A~} m we obtain
A Pg o)y (Ax,z)P
4. 1< M~ m™! < —L — :
(43) = &P {¢p( m) (A2z, x) (A2g, x)P
_ (Aw)
( (Az,z) ) (4%.)
< (A%z,x)
= —1
e (A7)

< exp {@p (M_l,m_l)

<A27p1‘,1’> <A$vm>p ‘| }

(A2z.2)  (A2z,z)°

forx € H, ||z|| = 1.
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If we take the power — (A%z,z) < 0 in (4.3), then we get

(A* Py, x) <A2x,x>p71 - <Ax,:n>p] }

O

1> exp {—w,, (m, M)

(Az,z) (Az,x)
( (A%2z,z) )

= [nllﬁizu (A—l)} —(A2%z,x)

(AP, ) <A2x,x>p_1 - <Ax,sc)p] }

> exp {_\I/p (maM) <A2.13 .73>p_2

and by (4.2) we get

(A2, z)P"?

(44) 1 Z exp {wp (m7 M) <A2_pgj’ .I‘> <A2x, Jj>p_ — <Agj’ m>p] }

(Az,x) (Az.2)
( (A2z,z) )

1. (A)

> exp {—\Ilp (m, M)

(A* Py, x) <A2x,x>p_1 — (Ax, )P
(A2g, 2)P~? ’

which is equivalent to (4.1)

Remark 2. If we take p =2 in (4.1), then we get

a5 1zen{ ((atne - ane))
(A%z,z)

forz e H, ||z|| =1, where 0 <m < A < M.
Forp=—11in (4.1) we obtain

A3 A2z, 2) " — (Az,2) 2
(4.6) 1< exp 12 < x,a:>< x,x> _ (Az, )
2M (A2%z, )
< nx(AzA :
( (Az,x) ) T
(A2z,z)
< exp 1 : (A3z,z) (A%x, x>7273— (Az,z)"?
2m (A%, x)
forz e H, ||z|| =1, where 0 <m < A < M.
Since,

(A%z,z) — (Az,2)> < = (M —m)?,

N
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hence by (4.5) we derive
(4.7) 1 <exp {% (<A2x,x> - <Am,m>2>}

: W < oexp {]\24 ((A%,2) - (Ax,m>2)}
(A2z,z)
<

e (g (O = m)?)

forz e H, ||z| = 1.
The inequalities (4.6) and (4.7) provide refinements and reverses of the first
inequality in (77).
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