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Abstract

In this article we exhibit univariate and multivariate quantitative ap-
proximation by Kantorovich-Choquet type quasi-interpolation neural net-
work operators with respect to supremum norm. This is done with rates
using the �rst univariate and multivariate moduli of continuity. We ap-
proximate continuous and bounded functions on RN ; N 2 N. When
they are also uniformly continuous we have pointwise and uniform conver-
gences. Our activation functions are induced by the arctangent, algebraic,
Gudermannian and generalized symmetrical sigmoid functions.
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1 Introduction

The author in [1] and [2], see Chapters 2-5, was the �rst to establish neural net-
work approximations to continuous functions with rates by very speci�cally de-
�ned neural network operators of Cardaliaguet-Euvrard and "Squashing" types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The de�ning these operators "bell-
shaped" and "squashing" functions are assumed to be compact support. Also
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in [2] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions,
see Chaptes 4-5 there.
The author inspired by [20], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8]. For recent works see [9] - [19].
The author here performs univariate and multivariate arctangent-algebraic-

Gudermannian-generalized symmetrical sigmoid activation functions based neural
network approximations to continuous functions over the whole RN , N 2 N,
then he extends his results to complex valued functions. All convergences here
are with rates expressed via the modulus of continuity of the involved function
and given by very tight Jackson type inequalities. This is a continuation of [12],
Chapter 1.
The author comes up with the "right" precisely de�ned �exible quasi-interpolation,

Kantorovich-Choquet type integral coe¢ cient neural networks operators asso-
ciated with: arctangent-algebraic-Gudermannian-generalized symmetrical sig-
moid activation functions. In preparation to prove our results we establish
important properties of the basic density functions de�ning our operators.
Feed-forward neural networks (FNNs) with one hidden layer, the only type

of networks we deal with in this article, are mathematically expressed as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) , x 2 Rs, s 2 N,

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x, and
� is the activation function of the network. In many fundamental neural network
models, the activation functions are the arctangent-algebraic-Gudermannian-
generalized symmetrical sigmoid activation functions. About neural networks
in general read [25], [26], [27].

2 Background

Next we present brie�y about the Choquet integral.
We make

De�nition 1 Consider 
 6= ? and let C be a �-algebra of subsets in 
.
(i) (see, e.g., [28], p. 63) The set function � : C ! [0;+1] is called a

monotone set function (or capacity) if � (?) = 0 and � (A) � � (B) for all
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A;B 2 C, with A � B. Also, � is called submodular if

� (A [B) + � (A \B) � � (A) + � (B) , for all A;B 2 C:

� is called bounded if � (
) < +1 and normalized if � (
) = 1:
(ii) (see, e.g., [28], p. 233, or [21]) If � is a monotone set function on C

and if f : 
! R is C-measurable (that is, for any Borel subset B � R it follows
f�1 (B) 2 C), the for any A 2 C, the Choquet integral is de�ned by

(C)

Z
A

fd� =

Z +1

0

� (F� (f) \A) d� +
Z 0

�1
[� (F� (f) \A)� � (A)] d�;

where we used the notation F� (f) = f! 2 
 : f (!) � �g. Notice that if f � 0
on A, then in the above formula we get

R 0
�1 = 0:

The integrals on the right-hand side are the usual Riemann integral.
The function f will be called Choquet integrable on A if (C)

R
A
fd� 2 R.

Next we list some well known properties of the Choquet integral.

Remark 2 If � : C ! [0;+1] is a monotone set function, then the following
properties hold:
(i) For all a � 0 we have (C)

R
A
afd� = a � (C)

R
A
fd� (if f � 0 then see,

e.g., [28], Theorem 11.2, (5), p. 228 and if f is arbitrary sign, then see, e.g.,
[22], p. 64, Proposition 5.1, (ii)).
(ii) For all c 2 R and f of arbitrary sign, we have (see, e.g., [28], pp.

232-233, or [22], p. 65) (C)
R
A
(f + c) d� = (C)

R
A
fd�+ c � � (A) :

If � is submodular too, then for all f; g of arbitrary sign and lower bounded,
we have (see, e.g., [22], p. 75, Theorem 6.3)

(C)

Z
A

(f + g) d� � (C)
Z
A

fd�+ (C)

Z
A

gd�:

(iii) If f � g on A then (C)
R
A
fd� � (C)

R
A
gd� (see, e.g., [28], p. 228,

Theorem 11.2, (3) if f; g � 0 and p. 232 if f; g are of arbitrary sign).
(iv) Let f � 0. If A � B then (C)

R
A
fd� � (C)

R
B
fd�. In addition, if � is

�nitely aubadditive, then

(C)

Z
A[B

fd� � (C)
Z
A

fd�+ (C)

Z
B

fd�:

(v) It is immediate that (C)
R
A
1 � d� (t) = � (A) :

(vi) The formula � (A) =  (M (A)), where  : [0; 1]! [0; 1] is an increasing
and concave function, with  (0) = 0,  (1) = 1 and M is a probability measure
(or only �nitely additive) on a �-algebra on 
 (that is, M (?) = 0, M (
) = 1

and M is countably additive), gives simple examples of normalized, monotone
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and submodular set functions (see, e.g., [22], pp. 16-17, Example 2.1). Such
of set functions � are also called distorsions of countably normalized, additive
measures (or distorted measures). For a simple example, we can take  (t) =
2t
1+t ;  (t) =

p
t:

If the above  function is increasing, concave and satis�es only  (0) =
0, then for any bounded Borel measure m, � (A) =  (m (A)) gives a simple
example of bounded, monotone and submodular set function.
(vii) If � is a countably additive bounded measure, then the Choquet integral

(C)
R
A
fd� reduces to the usual Lebesgue type integral (see, e.g., [22], p. 62, or

[28], p. 226).
(viii) If f � 0, then (C)

R
A
fd� � 0.

(ix) Let � =
p
M , where M is the Lebesgue measure on [0;+1), then � is

a monotone and submodular set function, furthermore � is strictly positive, see
[24].
(x) If 
 = RN , N 2 N, we call � strictly positive if � (A) > 0, for any open

subset A � RN :

2.1 About the arctangent activation function

We consider the

arctanx =

Z x

0

dz

1 + z2
; x 2 R: (1)

We will be using

h (x) :=
2

�
arctan

��
2
x
�
=
2

�

Z �x
2

0

dz

1 + z2
, x 2 R; (2)

which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (�x) = �h (x) , h (+1) = 1, h (�1) = �1;

and
h0 (x) =

4

4 + �2x2
> 0, all x 2 R: (3)

We consider the activation function

 1 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (4)

and we notice that
 1 (�x) =  1 (x) ; (5)

it is an even function.
Since x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  1 (x) > 0, all x 2 R.
We see that

 1 (0) =
1

�
arctan

�

2
�= 18:31: (6)
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Let x > 0, we have that

 01 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) =

�4�2x�
4 + �2 (x+ 1)

2
��
4 + �2 (x� 1)2

� < 0: (7)

That is
 01 (x) < 0, for x > 0: (8)

That is  1 is strictly decreasing on [0;1) and clearly is strictly increasing on
(�1; 0], and  01 (0) = 0:
Observe that

lim
x!+1

 1 (x) =
1
4 (h (+1)� h (+1)) = 0;

and
lim

x!�1
 1 (x) =

1
4 (h (�1)� h (�1)) = 0:

(9)

That is the x-axis is the horizontal asymptote on  1.
All in all,  1 is a bell symmetric function with maximum  1 (0)

�= 18:31:
We need

Theorem 3 ([11], p. 286) We have that

1X
i=�1

 1 (x� i) = 1, 8 x 2 R: (10)

Theorem 4 ([11], p. 287) It holdsZ 1

�1
 1 (x) dx = 1: (11)

So that  1 (x) is a density function on R:
We mention

Theorem 5 ([11], p. 288) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 1 (nx� k) <
2

�2 (n1�� � 2) : (12)

We introduce (see [17])

Z1 (x1; :::; xN ) := Z1 (x) :=
NY
i=1

 1 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (13)
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It has the properties:
(i) Z1 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z1 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z1 (x1 � k1; :::; xN � kN ) = 1;

(14)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z1 (nx� k) = 1; (15)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z1 (x) dx = 1; (16)

that is Z1 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z1 (nx� k) <
2

�2 (n1�� � 2) =: c1 (�; n) , (17)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN :
Above it is kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set 1 := (1; :::;1),

�1 = (�1; :::�1) upon the multivariate context.

2.2 About the algebraic activation function

Here see also [17].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (18)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
2m

> 0, 8 x 2 R, (19)

proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:
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We consider the activation function

 2 (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (20)

Clearly it is  2 (x) =  2 (�x) ; 8 x 2 R, so that  2 is an even function and
symmetric with respect to the y-axis. Clealry  2 (x) > 0, 8 x 2 R.
Also it is

 2 (0) =
1

2 2m
p
2
: (21)

By [13], we have that  02 (x) < 0 for x > 0. That is  2 is strictly decreasing
over (0;+1) :
Clearly,  2 is strictly increasing over (�1; 0) and  02 (0) = 0.
Furthermore we obtain that

lim
x!+1

 2 (x) =
1

4
[' (+1)� ' (+1)] = 0; (22)

and
lim

x!�1
 2 (x) =

1

4
[' (�1)� ' (�1)] = 0: (23)

That is the x-axis is the horizontal asymptote of  2.
Conclusion,  2 is a bell shape symmetric function with maximum

 2 (0) =
1

2 2m
p
2
; m 2 N: (24)

We need

Theorem 6 ([13]) We have that

1X
i=�1

 2 (x� i) = 1, 8 x 2 R: (25)

Theorem 7 ([13]) It holds Z 1

�1
 2 (x) dx = 1: (26)

Theorem 8 ([13]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 2 (nx� k) <
1

4m (n1�� � 2)2m
; m 2 N: (27)
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We introduce (see also [18])

Z2 (x1; :::; xN ) := Z2 (x) :=
NY
i=1

 2 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (28)

It has the properties:
(i) Z2 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z2 (x� k) :=
1X

k1=�1

1X
k2=�1

:::

1X
kN=�1

Z2 (x1 � k1; :::; xN � kN ) = 1;

(29)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z2 (nx� k) = 1; (30)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z2 (x) dx = 1; (31)

that is Z2 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z2 (nx� k) <
1

4m (n1�� � 2)2m
=: c2 (�; n) , (32)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN , m 2 N:

2.3 About the Gudermannian activation function

See also [29], [14].
Here we consider gd (x) the Gudermannian function [29], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (33)

Let the normalized generator sigmoid function

f (x) :=
4

�
� (x) =

4

�

Z x

0

dt

cosh t
=
8

�

Z x

0

1

et + e�t
dt; x 2 R: (34)
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Here
f 0 (x) =

4

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

 3 (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (35)

By [14], we get that
 3 (x) =  3 (�x) ; 8 x 2 R; (36)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (37)

an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain  3 (x) > 0, 8 x 2 R:
By [14], we have that

 3 (0) =
2

�
gd (1) �= 0:551: (38)

By [14]  3 is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and  03 (0) = 0.
Also we have that

lim
x!+1

 3 (x) = lim
x!�1

 3 (x) = 0; (39)

that is the x-axis is the horizontal asymptote for  3.
Conclusion,  3 is a bell shaped symmetric function with maximum  3 (0)

�=
0:551.
We need

Theorem 9 ([14]) It holds that

1X
i=�1

 3 (x� i) = 1, 8 x 2 R: (40)

Theorem 10 ([14]) We have thatZ 1

�1
 3 (x) dx = 1: (41)

So  3 (x) is a density function.
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Theorem 11 ([14]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 3 (nx� k) <
1

�e(n1���2)
=

4e2

�en1��
: (42)

We introduce (see also [16])

Z3 (x1; :::; xN ) := Z3 (x) :=
NY
i=1

 3 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (43)

It has the properties:
(i) Z3 (x) > 0, 8 x 2 RN ;
(ii)
1X

k=�1
Z3 (x� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
Z3 (x1 � k1; :::; xN � kN ) = 1;

(44)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z3 (nx� k) = 1; (45)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z3 (x) dx = 1; (46)

that is Z3 is a multivariate density function.
(v) It is also clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z3 (nx� k) <
4e2

�en1��
= c3 (�; n) ; (47)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:

2.4 About the generalized symmetrical activation func-
tion

Here we consider the generalized symmetrical sigmoid function ([15], [23])

f1 (x) =
x

(1 + jxj�)
1
�

; � > 0, x 2 R. (48)
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This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.
The parameter � is a shape parameter controling how fast the curve ap-

proaches the asymptotes for a given slope at the in�ection point. When � = 1
f1 is the absolute sigmoid function, and when � = 2; f1 is the square root
sigmoid function. When � = 1:5 the function approximates the arctangent
function, when � = 2:9 it approximates the logistic function, and when � = 3:4
it approximates the error function. Parameter � is estimated in the likelihood
maximization ([23]). For more see [23].
Next we study the particular generator sigmoid function

f2 (x) =
x�

1 + jxj�
� 1
�

; � is an odd number, x 2 R: (49)

We have that f2 (0) = 0, and

f2 (�x) = �f2 (x) ; (50)

so f2 is symmetric with respect to zero.
When x � 0, we get that ([15])

f 02 (x) =
1

(1 + x�)
�+1
�

> 0; (51)

that is f2 is strictly increasing on [0;+1) and f2 is strictly increasing on (�1; 0].
Hence f2 is strictly increasing on R.
We also have f2 (+1) = f2 (�1) = 1:
Let us consider the activation function ([15]):

 4 (x) =
1

4
[f2 (x+ 1)� f2 (x� 1)] =

1

4

264 (x+ 1)�
1 + jx+ 1j�

� 1
�

� (x� 1)�
1 + jx� 1j�

� 1
�

375 : (52)

Clearly it holds ([15])

 4 (x) =  4 (�x) ; 8 x 2 R: (53)

and
 4 (0) =

1

2 �
p
2
; (54)

and  4 (x) > 0, 8 x 2 R.

11



Following [15], we have that  4 is strictly decreasing over [0;+1), and  4
is strictly increasing on (�1; 0], by  4-symmetry with respect to y-axis, and
 04 (0) = 0:

Clearly it is
lim

x!+1
 4 (x) = lim

x!�1
 4 (x) = 0; (55)

therefore the x-axis is the horizontal asymptote of  4 (x) :
The value

 4 (0) =
1

2 �
p
2
; � is an odd number, (56)

is the maximum of  4, which is a bell shaped function.
We need

Theorem 12 ([15]) It holds

1X
i=�1

 4 (x� i) = 1, 8 x 2 R: (57)

Theorem 13 ([15]) We have thatZ 1

�1
 4 (x) dx = 1: (58)

So that  4 (x) is a density function on R:
We need

Theorem 14 ([15]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: j = �1
: jnx� jj � n1��

 4 (nx� j) <
1

2� (n1�� � 2)�
; (59)

where � 2 N is an odd number.

We introduce (see also [19])

Z4 (x1; :::; xN ) := Z4 (x) :=

NY
i=1

 4 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (60)

It has the properties:
(i) Z4 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z4 (x� k) :=
1X

k1=�1

1X
k2=�1

:::

1X
kN=�1

Z4 (x1 � k1; :::; xN � kN ) = 1;

(61)
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where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z4 (nx� k) = 1; (62)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z4 (x) dx = 1; (63)

that is Z4 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z4 (nx� k) <
1

2� (n1�� � 2)�
=: c4 (�; n) ; (64)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; � is odd.
For f 2 C+B

�
RN
�
(continuous and bounded functions from RN into R+), we

de�ne the �rst modulus of continuity

!1 (f; �) := sup

x; y 2 RN
kx� yk1 � h

jf (x)� f (y)j , h > 0: (65)

Given that f 2 C+U
�
RN
�
(uniformly continuous from RN into R+, same de�ni-

tion for !1), we have that
lim
h!0

!1 (f; h) = 0: (66)

When N = 1, !1 is de�ned as in (65) with k�k1 collapsing to j�j and has the
property (66).

3 Main Results

We need

De�nition 15 Let L be the Lebesgue �-algebra on RN , N 2 N, and the set func-
tion � : L ! [0;+1), which is assumed to be monotone, submodular and strictly
positive. For f 2 C+B

�
RN
�
, we de�ne the general multivariate Kantorovich-

Choquet type neural network operators for any x 2 RN (j = 1; 2; 3; 4):

jK
�
n (f; x) = jK

�
n (f; x1; :::; xN ) := (67)
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1X
k=�1

0@ (C) R[0; 1n ]N f �t+ k
n

�
d� (t)

�
��
0; 1n

�N�
1AZj (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

0@ (C) R 1
n

0
:::
R 1

n

0
f
�
t1 +

k1
n ; t2 +

k2
n ; :::; tN +

kN
n

�
d� (t1; :::; tN )

�
��
0; 1n

�N�
1A

 
NY
i=1

 j (nxi � ki)
!
;

where x = (x1; :::; xN ) 2 RN , k = (k1; :::; kN ), t = (t1; :::; tN ), n 2 N:
Clearly here �

��
0; 1n

�N�
> 0, 8 n 2 N.

Above we notice that

kjK�
n (f)k1 � kfk1 ; (68)

so that jK�
n (f; x) is well-de�ned, j = 1; 2; 3; 4:

We make

Remark 16 Let f 2 C+B
�
RN
�
; t 2

�
0; 1n

�N
and x 2 RN , then

f

�
t+

k

n

�
= f

�
t+

k

n

�
� f (x) + f (x) �

����f �t+ k

n

�
� f (x)

����+ f (x) ;
hence

(C)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) �

(C)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) + (C)Z
[0; 1n ]

N
f (x) d� (t) = (69)

(C)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) + f (x)�
 �
0;
1

n

�N!
:

That is

(C)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t)� f (x)�

 �
0;
1

n

�N!
�

(C)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) : (70)

Similarly, we have that

f (x) = f (x)� f
�
t+

k

n

�
+ f

�
t+

k

n

�
�
����f �t+ k

n

�
� f (x)

����+ f �t+ k

n

�
:
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Hence

(C)

Z
[0; 1n ]

N
f (x)� (dt) �

(C)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) + (C)Z
[0; 1n ]

N
f

�
t+

k

n

�
� (dt) ;

and

f (x)�

 �
0;
1

n

�N!
� (C)

Z
[0; 1n ]

N
f

�
t+

k

n

�
� (dt) �

(C)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) : (71)

By (70) and (71) we derive that�����(C)
Z
[0; 1n ]

N
f

�
t+

k

n

�
� (dt)� f (x)�

 �
0;
1

n

�N!����� �
(C)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) : (72)

In particular, it holds������
0@ (C) R[0; 1n ]N f �t+ k

n

�
� (dt)

�
��
0; 1n

�N�
1A� f (x)

������ �
(C)

R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N� :

(73)

We present the following approximation result.

Theorem 17 Let f 2 C+B
�
RN
�
, 0 < � < 1, x 2 RN , N;n 2 N with n1�� > 2;

j = 1; 2; 3; 4. Then
i)

sup
�
jjK�

n (f; x)� f (x)j � !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 cj (�; n) =: �jn; (74)

and
ii)

sup
�
kjK�

n (f)� fk1 � �jn. (75)

Given that f 2
�
C+U

�
RN
�
\ C+B

�
RN
��
; we obtain lim

n!1 jK
k
n (f) = f , uniformly.

Above cj (�; n) are as in (17), (32), (47) and (64), respectively.
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Proof. We observe that

jjK�
n (f; x)� f (x)j =������

1X
k=�1

0@ (C) R[0; 1n ]N f �t+ k
n

�
d� (t)

�
��
0; 1n

�N�
1AZj (nx� k)�

1X
k=�1

f (x)Zj (nx� k)

������
=

������
1X

k=�1

0@0@ (C) R[0; 1n ]N f �t+ k
n

�
d� (t)

�
��
0; 1n

�N�
1A� f (x)

1AZj (nx� k)

������ � (76)

1X
k=�1

������
0@ (C) R[0; 1n ]N f �t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1A� f (x)

������Zj (nx� k)
(73)
�

1X
k=�1

0@ (C) R[0; 1n ]N ��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZj (nx� k) =

1X
8<: k = �1 k

n � x

1 � 1

n�

0@ (C) R[0; 1n ]N ��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZj (nx� k)+

(77)
1X

8<: k = �1 k
n � x


1 > 1

n�

0@ (C) R[0; 1n ]N ��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZj (nx� k) �

1X
8<: k = �1 k

n � x

1 � 1

n�

0@ (C) R[0; 1n ]N !1 �f; ktk1 +
 k
n � x


1
�
d� (t)

�
��
0; 1n

�N�
1AZj (nx� k)+

2 kfk1

0BBBBBB@
1X

8<: k = �1 k
n � x


1 > 1

n�

Zj (jnx� kj)

1CCCCCCA (by (17), (32), (47), (64))

� !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 cj (�; n) ; (78)

proving the claim.
Additionally we give

16



De�nition 18 Denote C+B
�
RN ;C

�
= ff : RN ! Cjf = f1+if2, where f1; f2 2

C+B
�
RN
�
g. We set for f 2 C+B

�
RN ;C

�
that

jK
�
n (f; x) := jK

�
n (f1; x) + i jK

�
n (f2; x) ; (79)

8 n 2 N, x 2 RN ; j = 1; 2; 3; 4; i =
p
�1:

We give

Theorem 19 Let f 2 C+B
�
RN ;C

�
, f = f1 + if2, N 2 N; 0 < � < 1, x 2 RN ,

n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then
i)

sup
�
jjK�

n (f; x)� f (x)j �
�
!1

�
f1;

1

n
+
1

n�

�
+ !1

�
f2;

1

n
+
1

n�

��
+2 (kf1k1 + kf2k1) cj (�; n) =: jn; (80)

and
ii)

sup
�
kjK�

n (f)� fk1 � jn.

Proof. We have that

jjK�
n (f; x)� f (x)j = jjK�

n (f1; x) + i jK
�
n (f2; x)� f1 (x)� if2 (x)j =

j(jK�
n (f1; x)� f1 (x)) + i (jK�

n (f2; x)� f2 (x))j �

jjK�
n (f1; x)� f1 (x)j+ jjK�

n (f2; x)� f2 (x)j
(74)
��

!1

�
f1;

1

n
+
1

n�

�
+ 2 kf1k1 cj (�; n)

�
+ (81)�

!1

�
f2;

1

n
+
1

n�

�
+ 2 kf2k1 cj (�; n)

�
;

proving the claim.
We need

De�nition 20 Let L� be the Lebesgue �-algebra on R, and the set function
�� : L� ! [0;+1], which is assumed to be monotone, submodular and strictly
positive. For f 2 C+B (R), we de�ne the general univariate Kantorovich-Choquet
type neural network operator for any x 2 R (j = 1; 2; 3; 4):

jM
��

n (f; x) =
1X

k=�1

 
(C)

R 1
n

0
f
�
t+ k

n

�
d�� (t)

��
��
0; 1n

�� !
 j (nx� k) : (82)

17



Clearly here ��
��
0; 1n

��
> 0, 8 n 2 N.

Above we notice that jM��

n (f)

1
� kfk1 , (83)

so that jM��

n (f; x) is well-de�ned, j = 1; 2; 3; 4:
Notice that jK�

n , when N = 1, collapses to jM
��

n , j = 1; 2; 3; 4:

It follows another appropiate result.

Corollary 21 (to Theorem 17 when N = 1)
Let f 2 C+B (R), 0 < � < 1, x 2 R; n 2 N with n1�� > 2; j = 1; 2; 3; 4.

Then
i)

sup
��

���jM��

n (f; x)� f (x)
��� � !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 cj (�; n) =: "jn; (84)

and
ii)

sup
�

jM��

n (f)� f

1
� "jn. (85)

Given that f 2
�
C+U (R) \ C

+
B (R)

�
; we obtain lim

n!1 jM
��

n (f) = f , uniformly.

Above cj (�; n) are as in (17), (32), (47) and (64), respectively.

Proof. As similar to Theorem 17 is omitted.
We need

De�nition 22 Let f 2 C+B (R;C) where f = f1+ if2 with f1; f2 2 C+B (R). We
set

jM
��

n (f; x) := jM
��

n (f1; x) + i jM
��

n (f2; x) ; (86)

8 n 2 N; x 2 R; j = 1; 2; 3; 4:

We �nish with

Corollary 23 (to Theorem 19 when N = 1) Let f 2 C+B (R;C), f = f1 + if2,
0 < � < 1, x 2 R, n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then
i)

sup
��

���jM��

n (f; x)� f (x)
��� � �!1�f1; 1

n
+
1

n�

�
+ !1

�
f2;

1

n
+
1

n�

��
+

2 (kf1k1 + kf2k1) cj (�; n) =: �jn; (87)

and
ii)

sup
��

jM��

n (f)� f

1
� �jn.

Proof. As similar to Theorem 19 is omitted.
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