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Abstract

In this article we exhibit multivariate basic approximation by a Kantorovich-
Shilkret type quasi-interpolation neural network operators with respect to
supremum norm. This is done with rates using the multivariate modu-
lus of continuity. We approximate continuous and bounded functions on
RN , N 2 N. When they are additionally uniformly continuous we derive
pointwise and uniform convergences. We include also the related Complex
approximation. Our activation functions are induced by the arctangent,
algebraic, Gudermannian and generalized symmetrical sigmoid functions.
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1 Introduction

Here we are motivated by [1].
The author here performs multivariate arctangent-algebraic-Gudermannian-

generalized symmetrical activation functions based neural network approxima-
tion to continuous functions over RN ; N 2 N, and then he extends his results
to complex valued functions. The convergences here are with rates expressed
via the multivariate modulus of continuity of the involved function and given
by very tight Jackson type inequalities.
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The author comes up with the "right" precisely de�ned �exible quasi-interpolation
Kantorovich-Shilkret type integral coe¢ cient neural network operators associ-
ated to the arctangent-algebraic-Gudermannian-generalized symmetrical acti-
vation functions. This is a continuation of [3], Chapter 11.
Feed-forward neural network (FNNs) with one hidden layer with deal with,

are expressed mathematicaly as

Nn (x) =
nX
j=0

cj� (haj � xi+ bj) ; x 2 Rs, s 2 N;

where for 0 � j � n, bj 2 R are the thresholds, aj 2 Rs are the connection
weights, cj 2 R are the coe¢ cients, haj � xi is the inner product of aj and x, and
� is the activation function of the network. In many fundamental neural network
models the activation functions are the arctangent- algebraic- Gudermannian-
generalized symmetrical activation functions.
About neural networks in general you may read [12], [13], [14]. In recent years

non-additive integrals, like the N. Shilkret one [15], have become fashionable and
more useful in Economic theory, etc.

2 Background

Here we follow [15].
Let F be a �-�eld of subsets of an arbitrary set 
. An extended non-negative

real valued function � on F is called maxitive if � (?) = 0 and

� ([i2IEi) = sup
i2I

� (Ei) ; (1)

where the set I is of cardinality at most countable. We also call � a maxitive
measure. Here f stands for a non-negative measurable function on 
. In [15],
Niel Shilkret developed his non-additive integral de�ned as follows:

(N�)

Z
D

fd� := sup
y2Y

fy � � (D \ ff � yg)g ; (2)

where Y = [0;m] or Y = [0;m) with 0 < m � 1, and D 2 F . Here we take
Y = [0;1).
It is easily proved that

(N�)

Z
D

fd� = sup
y>0

fy � � (D \ ff > yg)g : (3)

The Shilkret integral takes values in [0;1].
The Shilkret integral ([15]) has the following properties:

(N�)

Z



�Ed� = � (E) ; (4)
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where �E is the indicator function on E 2 F ,

(N�)
Z
D

cfd� = c (N�)

Z
D

fd�; c � 0; (5)

(N�)

Z
D

sup
n2N

fnd� = sup
n2N

(N�)

Z
D

fnd�; (6)

where fn, n 2 N, is an increasing sequence of elementary (countably valued)
functions converging uniformly to f . Furthermore we have

(N�)

Z
D

fd� � 0; (7)

f � g implies (N�)

Z
D

fd� � (N�)

Z
D

gd�; (8)

where f; g : 
! [0;1] are measurable.
Let a � f (!) � b for almost every ! 2 E, then

a� (E) � (N�)

Z
E

fd� � b� (E) ;

(N�)

Z
E

1d� = � (E) ;

f > 0 almost everywhere and (N�)
R
E
fd� = 0 imply � (E) = 0;

(N�)
R


fd� = 0 if and only f = 0 almost everywhere;

(N�)
R


fd� <1 implies that

N (f) := f! 2 
jf (!) 6= 0g has �-�nite measure; (9)

(N�)

Z
D

(f + g) d� � (N�)

Z
D

fd�+ (N�)

Z
D

gd�;

and ����(N�)

Z
D

fd�� (N�)

Z
D

gd�

���� � (N�)

Z
D

jf � gj d�: (10)

From now on in this article we assume that � : F ! [0;+1):

2.1 About the arctangent activation function

We consider the

arctanx =

Z x

0

dz

1 + z2
; x 2 R: (11)

We will be using

h (x) :=
2

�
arctan

��
2
x
�
=
2

�

Z �x
2

0

dz

1 + z2
, x 2 R; (12)
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which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (�x) = �h (x) , h (+1) = 1, h (�1) = �1;

and
h0 (x) =

4

4 + �2x2
> 0, all x 2 R: (13)

We consider the activation function

 1 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (14)

and we notice that
 1 (�x) =  1 (x) ; (15)

it is an even function.
Since x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  1 (x) > 0, all x 2 R.
We see that

 1 (0) =
1

�
arctan

�

2
�= 18:31: (16)

Let x > 0, we have that

 01 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) =

�4�2x�
4 + �2 (x+ 1)

2
��
4 + �2 (x� 1)2

� < 0: (17)

That is
 01 (x) < 0, for x > 0: (18)

That is  1 is strictly decreasing on [0;1) and clearly is strictly increasing on
(�1; 0], and  01 (0) = 0:
Observe that

lim
x!+1

 1 (x) =
1
4 (h (+1)� h (+1)) = 0;

and
lim

x!�1
 1 (x) =

1
4 (h (�1)� h (�1)) = 0:

(19)

That is the x-axis is the horizontal asymptote on  1.
All in all,  1 is a bell symmetric function with maximum  1 (0)

�= 18:31:
We need

Theorem 1 ([2], p. 286) We have that

1X
i=�1

 1 (x� i) = 1, 8 x 2 R: (20)
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Theorem 2 ([2], p. 287) It holdsZ 1

�1
 1 (x) dx = 1: (21)

So that  1 (x) is a density function on R:
We mention

Theorem 3 ([2], p. 288) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 1 (nx� k) <
2

�2 (n1�� � 2) : (22)

We introduce (see [8])

Z1 (x1; :::; xN ) := Z1 (x) :=
NY
i=1

 1 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (23)

It has the properties:
(i) Z1 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z1 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z1 (x1 � k1; :::; xN � kN ) = 1;

(24)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z1 (nx� k) = 1; (25)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z1 (x) dx = 1; (26)

that is Z1 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z1 (nx� k) <
2

�2 (n1�� � 2) =: c1 (�; n) , (27)
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0 < � < 1; n 2 N : n1�� > 2, x 2 RN :
Above it is kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set 1 := (1; :::;1),

�1 = (�1; :::�1) upon the multivariate context.

2.2 About the algebraic activation function

Here see also [4].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (28)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
2m

> 0, 8 x 2 R, (29)

proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:

We consider the activation function

 2 (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (30)

Clearly it is  2 (x) =  2 (�x) ; 8 x 2 R, so that  2 is an even function and
symmetric with respect to the y-axis. Clealry  2 (x) > 0, 8 x 2 R.
Also it is

 2 (0) =
1

2 2m
p
2
: (31)

By [4], we have that  02 (x) < 0 for x > 0. That is  2 is strictly decreasing over
(0;+1) :
Clearly,  2 is strictly increasing over (�1; 0) and  02 (0) = 0.
Furthermore we obtain that

lim
x!+1

 2 (x) =
1

4
[' (+1)� ' (+1)] = 0; (32)

and
lim

x!�1
 2 (x) =

1

4
[' (�1)� ' (�1)] = 0: (33)

That is the x-axis is the horizontal asymptote of  2.
Conclusion,  2 is a bell shape symmetric function with maximum

 2 (0) =
1

2 2m
p
2
; m 2 N: (34)

We need
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Theorem 4 ([4]) We have that
1X

i=�1
 2 (x� i) = 1, 8 x 2 R: (35)

Theorem 5 ([4]) It holds Z 1

�1
 2 (x) dx = 1: (36)

Theorem 6 ([4]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 2 (nx� k) <
1

4m (n1�� � 2)2m
; m 2 N: (37)

We introduce (see also [9])

Z2 (x1; :::; xN ) := Z2 (x) :=
NY
i=1

 2 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (38)

It has the properties:
(i) Z2 (x) > 0, 8 x 2 RN ;
(ii)
1X

k=�1
Z2 (x� k) :=

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
Z2 (x1 � k1; :::; xN � kN ) = 1;

(39)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z2 (nx� k) = 1; (40)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z2 (x) dx = 1; (41)

that is Z2 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z2 (nx� k) <
1

4m (n1�� � 2)2m
=: c2 (�; n) , (42)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN , m 2 N:
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2.3 About the Gudermannian activation function

See also [5], [16].
Here we consider gd (x) the Gudermannian function [16], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (43)

Let the normalized generator sigmoid function

f (x) :=
4

�
� (x) =

4

�

Z x

0

dt

cosh t
=
8

�

Z x

0

1

et + e�t
dt; x 2 R: (44)

Here
f 0 (x) =

4

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

 3 (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (45)

By [5], we get that
 3 (x) =  3 (�x) ; 8 x 2 R; (46)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (47)

an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain  3 (x) > 0, 8 x 2 R:
By [5], we have that

 3 (0) =
2

�
gd (1) �= 0:551: (48)

By [5]  3 is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and  03 (0) = 0.
Also we have that

lim
x!+1

 3 (x) = lim
x!�1

 3 (x) = 0; (49)

that is the x-axis is the horizontal asymptote for  3.
Conclusion,  3 is a bell shaped symmetric function with maximum  3 (0)

�=
0:551.
We need
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Theorem 7 ([5]) It holds that

1X
i=�1

 3 (x� i) = 1, 8 x 2 R: (50)

Theorem 8 ([5]) We have thatZ 1

�1
 3 (x) dx = 1: (51)

So  3 (x) is a density function.

Theorem 9 ([5]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 3 (nx� k) <
1

�e(n1���2)
=

4e2

�en1��
: (52)

We introduce (see also [7])

Z3 (x1; :::; xN ) := Z3 (x) :=

NY
i=1

 3 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (53)

It has the properties:
(i) Z3 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z3 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z3 (x1 � k1; :::; xN � kN ) = 1;

(54)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z3 (nx� k) = 1; (55)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z3 (x) dx = 1; (56)

that is Z3 is a multivariate density function.
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(v) It is also clear that

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z3 (nx� k) <
4e2

�en1��
= c3 (�; n) ; (57)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:

2.4 About the generalized symmetrical activation func-
tion

Here we consider the generalized symmetrical sigmoid function ([6], [11])

f1 (x) =
x

(1 + jxj�)
1
�

; � > 0, x 2 R. (58)

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.
The parameter � is a shape parameter controling how fast the curve ap-

proaches the asymptotes for a given slope at the in�ection point. When � = 1
f1 is the absolute sigmoid function, and when � = 2; f1 is the square root
sigmoid function. When � = 1:5 the function approximates the arctangent
function, when � = 2:9 it approximates the logistic function, and when � = 3:4
it approximates the error function. Parameter � is estimated in the likelihood
maximization ([11]). For more see [11].
Next we study the particular generator sigmoid function

f2 (x) =
x�

1 + jxj�
� 1
�

; � is an odd number, x 2 R: (59)

We have that f2 (0) = 0, and

f2 (�x) = �f2 (x) ; (60)

so f2 is symmetric with respect to zero.
When x � 0, we get that ([6])

f 02 (x) =
1

(1 + x�)
�+1
�

> 0; (61)

that is f2 is strictly increasing on [0;+1) and f2 is strictly increasing on (�1; 0].
Hence f2 is strictly increasing on R.
We also have f2 (+1) = f2 (�1) = 1:
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Let us consider the activation function ([6]):

 4 (x) =
1

4
[f2 (x+ 1)� f2 (x� 1)] =

1

4

264 (x+ 1)�
1 + jx+ 1j�

� 1
�

� (x� 1)�
1 + jx� 1j�

� 1
�

375 : (62)

Clearly it holds ([6])
 4 (x) =  4 (�x) ; 8 x 2 R: (63)

and
 4 (0) =

1

2 �
p
2
; (64)

and  4 (x) > 0, 8 x 2 R.
Following [6], we have that  4 is strictly decreasing over [0;+1), and  4

is strictly increasing on (�1; 0], by  4-symmetry with respect to y-axis, and
 04 (0) = 0:

Clearly it is
lim

x!+1
 4 (x) = lim

x!�1
 4 (x) = 0; (65)

therefore the x-axis is the horizontal asymptote of  4 (x) :
The value

 4 (0) =
1

2 �
p
2
; � is an odd number, (66)

is the maximum of  4, which is a bell shaped function.
We need

Theorem 10 ([6]) It holds
1X

i=�1
 4 (x� i) = 1, 8 x 2 R: (67)

Theorem 11 ([6]) We have thatZ 1

�1
 4 (x) dx = 1: (68)

So that  4 (x) is a density function on R:
We need

Theorem 12 ([6]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: j = �1
: jnx� jj � n1��

 4 (nx� j) <
1

2� (n1�� � 2)�
; (69)

where � 2 N is an odd number.
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We introduce (see also [10])

Z4 (x1; :::; xN ) := Z4 (x) :=
NY
i=1

 4 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (70)

It has the properties:
(i) Z4 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z4 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z4 (x1 � k1; :::; xN � kN ) = 1;

(71)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z4 (nx� k) = 1; (72)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z4 (x) dx = 1; (73)

that is Z4 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1

 k

n � x



1 > 1

n�

Z4 (nx� k) <
1

2� (n1�� � 2)�
=: c4 (�; n) ; (74)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; � is odd.
For f 2 C+B

�
RN
�
(continuous and bounded functions from RN into R+), we

de�ne the �rst modulus of continuity

!1 (f; �) := sup

x; y 2 RN
kx� yk1 � h

jf (x)� f (y)j , h > 0: (75)

Given that f 2 C+U
�
RN
�
(uniformly continuous from RN into R+, same de�ni-

tion for !1), we have that
lim
h!0

!1 (f; h) = 0: (76)

When N = 1, !1 is de�ned as in (75) with k�k1 collapsing to j�j and has the
property (76).
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3 Main Results

We need

De�nition 13 Let L be the Lebesgue �-algebra on RN , N 2 N, and the maxitive
measure � : L ! [0;+1), such that for any A 2 L with A 6= ?, we get
� (A) > 0.
For f 2 C+B

�
RN
�
, we de�ne the multivariate Kantorovich-Shilkret type

neural network operators for any x 2 RN :

jT
�
n (f; x) = jT

�
n (f; x1; :::; xN ) :=

1X
k=�1

0@ (N�)
R
[0; 1N ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1AZj (nx� k) =

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1

0@ (N�)
R 1

n

0
:::
R 1

n

0
f
�
t1 +

k1
n ; t2 +

k2
n ; :::; tN +

kN
n

�
d� (t1; :::; tN )

�
��
0; 1n

�N�
1A

(77)

�
 

NY
i=1

 j (nxi � ki)
!
;

where x = (x1; :::; xN ) 2 RN , k = (k1; :::; kN ), t = (t1; :::; tN ), n 2 N; j =
1; 2; 3; 4:

Clearly here �
��
0; 1n

�N�
> 0, 8 n 2 N.

Above we notice that
kjT�n (f)k1 � kfk1 , (78)

so that jT�n (f; x) is well-de�ned, j = 1; 2; 3; 4.

We make

Remark 14 Let t 2
�
0; 1n

�N
and x 2 RN , then

f

�
t+

k

n

�
= f

�
t+

k

n

�
� f (x) + f (x) �

����f �t+ k

n

�
� f (x)

����+ f (x) ; (79)
hence

(N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) �

(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) + f (x)�
 �
0;
1

n

�N!
: (80)

That is

(N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t)� f (x)�

 �
0;
1

n

�N!
� (81)
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(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) :
Similarly, we have

f (x) = f (x)� f
�
t+

k

n

�
+ f

�
t+

k

n

�
�
����f �t+ k

n

�
� f (x)

����+ f �t+ k

n

�
;

hence

(N�)

Z
[0; 1n ]

N
f (x) d� (t) � (N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t)
+ (N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) :

That is

f (x)�

 �
0;
1

n

�N!
� (N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t) � (82)

(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) :
By (81) and (82) we derive�����(N�)

Z
[0; 1n ]

N
f

�
t+

k

n

�
d� (t)� f (x)�

 �
0;
1

n

�N!����� �
(N�)

Z
[0; 1n ]

N

����f �t+ k

n

�
� f (x)

���� d� (t) : (83)

In particular it holds������
(N�)

R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N� � f (x)

������ �
(N�)

R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N� : (84)

We present the following approximation result.

Theorem 15 Let f 2 C+B
�
RN
�
, 0 < � < 1; x 2 RN ; N;n 2 N with n1�� > 2;

j = 1; 2; 3; 4: Then
i)

sup
�
jjT�n (f; x)� f (x)j � !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 cj (�; n) =: �jn; (85)
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and
ii)

sup
�
kjT�n (f)� fk1 � �jn: (86)

Given that f 2
�
C+U

�
RN
�
\ C+B

�
RN
��
, we obtain lim

n!1 jT
�
n (f) = f , uni-

formly. Above cj (�; n) are as in (27), (42), (57) and (74), respectively.

Proof. We observe that

jjT�n (f; x)� f (x)j =������
1X

k=�1

0@ (N�)
R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1AZj (nx� k)�

1X
k=�1

f (x)Zj (nx� k)

������ =������
1X

k=�1

0@0@ (N�)
R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1A� f (x)

1AZj (nx� k)

������ �
1X

k=�1

������
0@ (N�)

R
[0; 1n ]

N f
�
t+ k

n

�
d� (t)

�
��
0; 1n

�N�
1A� f (x)

������Zj (nx� k)
(84)
�

1X
k=�1

0@ (N�)
R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZj (nx� k) =

1X
8<: k = �1
:


 k
n � x




1 � 1

n�

0@ (N�)
R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZj (nx� k)+

(87)
1X

8<: k = �1
:


 k
n � x




1 > 1

n�

0@ (N�)
R
[0; 1n ]

N

��f �t+ k
n

�
� f (x)

�� d� (t)
�
��
0; 1n

�N�
1AZj (nx� k) �

1X
8<: k = �1
:


 k
n � x




1 � 1

n�

0@ (N�)
R
[0; 1n ]

N !1
�
f; ktk1 +



 k
n � x




1
�
d� (t)

�
��
0; 1n

�N�
1AZj (nx� k)

+2 kfk1

0BBBBBB@
1X

8<: k = �1
:


 k
n � x




1 > 1

n�

Zj (nx� k)

1CCCCCCA (by (27), (42), (57), (74))
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� !1

�
f;
1

n
+
1

n�

�
+ 2 kfk1 cj (�; n) ; (88)

proving the claim.
Additionally we give

De�nition 16 Denote by C+B
�
RN ;C

�
= ff : RN ! Cjf = f1 + if2, where

f1; f2 2 C+B
�
RN
�
, N 2 Ng. We set for f 2 C+B

�
RN ;C

�
that

jT
�
n (f; x) := jT

�
n (f1; x) + i jT

�
n (f2; x) ; j = 1; 2; 3; 4; (89)

8 n 2 N, x 2 RN , i =
p
�1:

Theorem 17 Let f 2 C+B
�
RN ;C

�
, f = f1 + if2, N 2 N, 0 < � < 1, x 2 RN ;

n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then
i)

sup
�
jjT�n (f; x)� f (x)j �

�
!1

�
f1;

1

n
+
1

n�

�
+ !1

�
f2;

1

n
+
1

n�

��
+2 (kf1k1 + kf2k1) cj (�; n) =: ljn, (90)

and
ii)

sup
�
kjT�n (f)� fk � ljn: (91)

Proof.

jjT�n (f; x)� f (x)j = jjT�n (f1; x) + i jT�n (f2; x)� f1 (x)� if2 (x)j =

j(jT�n (f1; x)� f1 (x)) + i (jT�n (f2; x)� f2 (x))j �

jjT�n (f1; x)� f1 (x)j+ jjT�n (f2; x)� f2 (x)j
(85)
� (92)�

!1

�
f1;

1

n
+
1

n�

�
+ 2 kf1k1 cj (�; n)

�
+�

!1

�
f2;

1

n
+
1

n�

�
+ 2 kf2k1 cj (�; n)

�
=�

!1

�
f1;

1

n
+
1

n�

�
+ !1

�
f2;

1

n
+
1

n�

��
+

2 (kf1k1 + kf2k1) cj (�; n) ; (93)

proving the claim.
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