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Abstract

Here we study further the quasi-interpolation arctangent-algebraic-
Gudermannian-generalized symmetrical activation functions relied neural
network operators of one hidden layer. Based on fractional calculus the-
ory we derive fractional Voronovskaya type asymptotic expansions for the
approximation of these operators to the unit operator, as we are studying
the univariate case. We treat also analogously the multivariate case by
using Fréchet derivatives. The functions under approximation are Banach
space valued.
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1 Background

This is a continuation and generalization of [8].
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1.1 About the arctangent activation function

We consider the

T od
arctanx = /0 1_‘_7222, z €R. (1)
We will be using
2 2 [ d
h(x):= - arctan (ggg) = ;/0 ﬁzzz’ z € R, (2)

which is a sigmoid type function and it is strictly increasing. We have that
h(0)=0, h(—z)=—-h(z), h(+o00)=1, h(—o0)=—1,

and

h' () 5 >0, allz cR. (3)

T 4+ 722
We consider the activation function

;Z;l(m)::i(h(x+l)—h(x—1)), zER, (@)

and we notice that
Y1 (=) =9y (2), (5)
it is an even function.
Sincez +1>x —1, then h(z+1) > h(x —1), and ¢, (x) >0, all z € R.
We see that

1 s
= —arctan — = 18.31.
¥, (0) —arctan o 8.3 (6)

Let = > 0, we have that

YL@ = 1 (0 @+ 1) K (e = 1) =

—4m2g <0 ™)
(4+7r2 (1:+1)2) (4+7r2 (x— 1)2) .
That is
) (x) <0, for z > 0. (8)

That is ¢, is strictly decreasing on [0, 00) and clearly is strictly increasing on
(_OO,O]a and ¢/1 (0) =0.
Observe that

lim 1, (z) =} (h(+00) — h(+00)) =0,

ond (9)
lim ¢, (2) = & (A (~0) — h (~o0)) = 0.

Tr— —0Q

=

That is the z-axis is the horizontal asymptote on ;.
All in all, ¢, is a bell symmetric function with maximum ), (0) = 18.31.
We need



Theorem 1 (/10], p. 286) We have that

i¢1(x—i)=1,VxeR. (10)

1=—00

Theorem 2 (/10], p. 287) It holds

/_OO Py (x)de = 1. (11)

So that 1, (x) is a density function on R.
We mention

Theorem 3 ([10], p. 288) Let 0 < a < 1, and n € N with n'=* > 2. It holds

(o]

Z Py (ne—k) < 2z =:¢1 (a,n). (12)

w2 (nl—e —2)
k=—o0
{ nx — k| > ntme

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

‘We need

Theorem 4 ([10], p. 289) Let x € [a,b] C R and n € N so that [na] < [nb].
It holds

1
2 < 008 = ar, Vaelad.  (13)
E}Lg:b[Jmﬂ ¢1 (nm — k) 7/)1 (1)
Note 5 ([10], pp. 290-291)
i) We have that
L)
lim Z ¥y (ne — k) # 1, (14)

k=[na]

for at least some x € [a, b].

it) For large enough n € N we always obtain [na] < [nb]. Also a
iff [na] <k < [nb].

In general, by Theorem 1, it holds

IN
3=
IN

N

Lnb]

> v (nz—k) <L (15)

k=[na]



We introduce (see [15])

N
71 (21, .xy) = 71 (x) := Hz/Jl (z;), x=(z1,...,z5)€RY, N eN. (16)
i=1

Denote by a = (a1, ...,an) and b = (by,...,bn) .
It has the properties:
(i) Z1(z) >0, Ve RV,
(ii)

o

k=—o0 k1=—00 ka=—00 kn=—00

where k 1= (k1,....,k,) € ZN, ¥V x € RV,
hence

(iii)

oo

Z Zy (nz — k) =1,

k=—oc0

VzeRN;neN,
and

(iv)
/ Zy (x)dz =1,
RN

that is Z; is a multivariate density function.
(v) It is clear that

Z Zl(nw—k)<m:

{ k= —o0
1% ==l > 55
0<f<l,neN:n'"#>2 zcRV,

(vi) By Theorem 4 we get that

1
S e k) ()

0

Vze (Hf\il [ai,bi]), n € N.
Furthermore it holds

Lnbd]
lim Z Z1 (nx — k) # 1,
k=[na]

Z Z1 (x—k) = Z Z Z Zl (.73‘1—]{,’1,...

1 N
< - = (0.0868)

(19)

i (B,n), (20)

=7 ({N), (21



for at least some x € (Hfil [a;, b2]>

Above it is ||z|| = max {|z1], ..., |zn|}, € RV, also set oo := (o0, ..., 00),
—00 = (—00, ... — 00) upon the multivariate context.

1.2 About the algebraic activation function

Here see also [11].
We consider the generator algebraic function

T

¢($)2W7

which is a sigmoidal type of function and is a strictly increasing function.
We see that ¢ (—z) = —¢ (z) with ¢ (0) = 0. We get that

meN, zeR, (23)

1
¢ (r)= ————5 >0, Vz R, (24)

(1+$2m) 2m
proving ¢ as strictly increasing over R, ¢’ (z) = ¢’ (—x). We easily find that
lim p(x) =1, p(+o0)=1,and lim p(z)=-1, p(—o0) = —1.
r— 400 Tr— —00
We consider the activation function

Ya(@) = 1@+ 1) —p(e—1)]. (25)

Clearly it is ¥y (z) = ¥y (—2), V & € R, so that 1, is an even function and
symmetric with respect to the y-axis. Clealry ¢, () > 0,V = € R.

Also it is
1

2%%/2
By [11], we have that 1, (z) < 0 for * > 0. That is 1, is strictly decreasing
over (0,+00).

Clearly, 1, is strictly increasing over (—oo, 0) and % (0) = 0.

Furthermore we obtain that

¥y (0) = (26)

1

lim g, (2) = 7 [p (+00) — ¢ (+00)] = 0, (27)
and ]
lim g, (2) = 5 [p (—00) — 9 (—00)] = 0. (28)

That is the z-axis is the horizontal asymptote of 1),.
Conclusion, v, is a bell shape symmetric function with maximum

We need



Theorem 6 (/11]) We have that

in(x—i)zl,VxeR. (30)

i=—00

Theorem 7 ([11]) It holds
/ Yy () dx = 1. (31)
Theorem 8 ([11]) Let 0 < a < 1, and n € N with n'=* > 2. It holds

- 1
Z Yy (nz—k) < PP E— =:co(a,n), meN.
k= —o0
{: Inz — k| > nl=@

(32)
We need

Theorem 9 (/11]) Let [a,b] C R and n € N so that [na] < |nb]. It holds

1
i <2(WITT7) = 3
>y (nw—k)
k=[na]
Yz € la,b], m € N.
Note 10 1) By [11] we have that
Lnb]
lim Y by (nx— k) # 1, (34)
k=[na]

for at least some x € [a,b] .

2) Let [a,b] C R. For large n € N we always have [na] < |[nb|. Also
a < B <b, iff [na] <k < [nb).

In general it holds that

Lnb]

> gy (nz—k) <L (35)

k=[na]

We introduce (see also [17])

N
Zo (x1, ..y an) 1= Zp (2) = H¢2 (i), == (z1,...,an) €RY, N eN. (36)
i=1



It has the properties:
(i) Zz(x) >0, Vo € RN,
(i)

N Zo(x—k):= > > > Zy(wr—k oy —ky) =1,

k=—o00 ki=—oc0o kag=—00 kny=—0o0

where k := (k1,....,k,) € ZN, ¥ 2 € RV,
hence
(i)
Z Zs (nx — k) =1,
k=—o0

VzeRN:neN,
and

(iv)
/]RN Zs (z)dx =1,

that is Z5 is a multivariate density function.
(v) Tt is clear that

1
Z Zg (nz — ]C) < am (nlfﬁ — 2)2771 = C2 (ﬁan) )

0<B<l,neN:n'F>2 2eRY meN.
(vi) By Theorem 9 we get that
1 1

0< <
St Za(na — k) (o (1)

Ve (HiN:l [ai,bi]), n € N.
Furthermore it holds

Lnb]

lim Z Zy (nx — k) #1,

k=[na]

for at least some x € (Hf\il lai, bJ) -

(38)

(40)

(41)



1.3 About the Gudermannian activation function

See also [29], [12].
Here we consider gd (x) the Gudermannian function [29], which is a sigmoid
function, as a generator function:

x Todt
o (z) = 2arctan (tanh (§)> = /0 ol = gd(z), z eR. (43)
Let the normalized generator sigmoid function
4 4 (7 dt 8 [7 1
- = S == —dt R. 44
1 (@) 71_0'(33) 7r/0 cosht 77/0 et +et ve (44)
Here 4
"(z) = >0, VzeR
(@) 7 cosh @ Ve ’

hence f is strictly increasing on R.
Notice that tanh (—z) = —tanhz and arctan (—z) = —arctanz, z € R.
So, here the neural network activation function will be:

[f(z+1)—f(z—-1)],xzeR (45)

| =

V3 (7) =

By [12], we get that
Y3 (x) =¢3(—z), VzeR, (46)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+00) =
1, f(—o0) = —1 and f(0) = 0. Clearly it is

f(=x)=—f(z), VzeR, (47)

an odd function, symmetric with respect to the origin. Since z+1 >z — 1, and
fx+1)> f(z—1), we obtain 95 (z) >0,V z € R.
By [12], we have that

W, (0) = %gd(l) ~ 0.551. (48)

By [12] 14 is strictly decreasing on (0, +00), and strictly increasing on (—oo0, 0),
and % (0) = 0.
Also we have that
lim ¢y (z) = lim ¢3(z) =0, (49)

r——+00

that is the x-axis is the horizontal asymptote for 5.

Conclusion, 15 is a bell shaped symmetric function with maximum ) (0) =2
0.551.

We need



Theorem 11 ([12]) It holds that

> dy(z—i)=1, VzeR. (50)

i=—00

Theorem 12 ([12]) We have that

[ seriam o
So 4 (x) is a density function.

Theorem 13 ([12]) Let 0 < a < 1, and n € N with n'=* > 2. It holds

oo

1 4€?
Z Ps (nx — k) < e g) = e = 03 (a,n). (52)
Te Te
k=—o00
{: Inz — k| > nt=@

Theorem 14 ([12]) Let [a,b] C R and n € N, so that [na] < |nb|. It holds

1 m
=22412 =
[nb] < 9d(2) “ (53)
2. Y3 (nz—k)
k=[na]
Vz € la,b].
We make
Remark 15 ([12])
(i) We have that
Lnb]
lim Z s (nx — k) #1, (54)
k=[na]

for at least some x € [a, b].
(i) Let [a,b] C R. For large n we always have [na] < |nb|. Alsoa < £ <,
iff [na] <k < |nb].

In general it holds
[nb]

> g(nz—k) <L (55)

k=[na]

We introduce (see also [14])

N
Zs (w1, an) = Z3 (x) == [ [ 3 (x:), 2= (21,..,2n) €ERY, N €N. (56)
i=1



It has the properties:
(i) Z3(x) >0, Vo € RN,
(i)

Z Z3(£U—k) = Z Z Z Zg(xl—kl,...,

k=—o00 ki=—oc0o kag=—00 kny=—0o0

where k := (k1,....,k,) € ZN, ¥ 2 € RV,
hence

(i) .
Z Zs (nx — k) =

k=—o0

/ Zs (z)dx =1,
RN

that is Z3 is a multivariate density function.
(v) Tt is also clear that

oo

(T et

0<B<l,neN:n'F>2 2eRY meN.
(vi) By Theorem 14 we get that

1 m N N
0< < < ) >~ (2.412)7 =
Inb} 7, (nz — k) 9d(2)

k=[na]

Vaoe (Hl 1[az,b]), n € N.
Furthermore it holds

Lnb]
lim Z Zs (nx — k) #1,
n— oo keTma]

for at least some x € (Hf\il [a;, bi]) .

10

42
S Zme-k <o
e

C3 (5’77’)7

WS(N)a

(58)

(60)



1.4 About the generalized symmetrical activation func-
tion

Here we consider the generalized symmetrical sigmoid function ([13], [22])

fl(x):$, un>0,xeR. (63)

(1+ fa])*
This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.

The parameter p is a shape parameter controling how fast the curve ap-
proaches the asymptotes for a given slope at the inflection point. When p =1
f1 is the absolute sigmoid function, and when p = 2, f; is the square root
sigmoid function. When g = 1.5 the function approximates the arctangent
function, when p = 2.9 it approximates the logistic function, and when p = 3.4
it approximates the error function. Parameter p is estimated in the likelihood
maximization ([22]). For more see [22].

Next we study the particular generator sigmoid function

f2(z) =

©

(1+ 11

We have that f, (0) = 0, and
fa(=2) =—f2(2), (65)

so fo is symmetric with respect to zero.
When x > 0, we get that ([13])

, Ais an odd number, z € R. (64)

Pl

fo@) = ———— >0, (66)

pES
(I1+az*) >
that is fo is strictly increasing on [0, +00) and f is strictly increasing on (—oo, 0].
Hence fs is strictly increasing on R.
We also have f5 (+00) = fa (—o0) = 1.
Let us consider the activation function ([13]):

Yaw) = 11+ 1)~ folw—1) =

i (x+1) __ (x—1) § (67)
(1+|x+1|*)* (1+|a;—1|A)A
Clearly it holds ([13])
Yy (@) =9y (—x), VzeR, (68)

11



and
1

T o

4 (0)

and ¢, () >0,V 2 € R.

Following [13], we have that 1, is strictly decreasing over [0,400), and 1,
is strictly increasing on (—o0,0], by 1,-symmetry with respect to y-axis, and
¥} (0) =0.

Clearly it is

lim o, (2) = lim 4, (2) =0, (70)

r— 400

therefore the z-axis is the horizontal asymptote of 1, (x).

The value 1
P, (0) = 5 A is an odd number, (71)
is the maximum of ,, which is a bell shaped function.
We need
Theorem 16 ([13]) It holds
> Wy (z—i)=1, VzeR (72)
Theorem 17 ([13]) We have that
/ Yy () de = 1. (73)

So that ¢, (x) is a density function on R.
We need

Theorem 18 ([13]) Let 0 < a < 1, and n € N with n'=% > 2. It holds

oo

1104 (TLZL‘ 7]) < M =i (aan) ) (74)

e

tna = j| > ntme

where A € N is an odd number.
We also need

Theorem 19 ([13]) Let [a,b] C R and n € N so that [na]| < |nb]. Then

1
I <2V1+2) = ay, (75)
> Yy (|Inz — k)

k=[na]

where A is an odd number, ¥ x € [a,b].

12



‘We make

Remark 20 ([13]) (1) We have that

L]
lim Z Yy (nx — k) #1, for at least some = € [a,b]. (76)
k=[na]

(2) Let [a,b] C R. For large enough n we always obtain [na] < |nb|. Also
a <k <b, iff [na] <k < [nb).
In general it holds that

Lnb]

> Yy (nz—k) <L (77)

k=[na]

We introduce (see also [16])

N
Zy (21, .y xy) = Zg (x) := Hz/J4 (z;), x=(x1,...,x5)ERY, NeN. (78)
i=1

It has the properties:
(i) Zs(z) >0, Vo e RV,
(i)

Z Z4($—k) = Z Z Z Z4(LE1—]€1,...,$N—/€N)=1,
k=—o00 k1=—00 ko=—0o0 kn=—00
(79)
where k := (ki,...,k,) € ZN,V z € RV,
hence
(iii)
> Zi(nz—k) =1, (80)
k=—oc0
VzeRN; neN,
and
(iv)
/ Zy (x)dx =1, (81)
RN

that is Z4 is a multivariate density function.
(v) It is clear that

{Hﬁk

1 p—
2X (n1=F — 2)*

K

Zy (nx — k) <

—00

1
>nﬁ

|
B8

oo

13



0<B<l,neN:n"#>2 2ecRN, \is odd.
(vi) By Theorem 19 we get that

1 N
0< = < (2V1+24) =), (83)
Zk: [na] Zs (nx - k)

Ve (HZI\; [aiabi]), n € N, X is odd.
Furthermore it holds

[nb]

lim Y Zy(nz—k)# 1, (84)
k=[na]

for at least some z € (Hiil [a;, b2]>

The next integrals are of Bochner type (]25]).
We need

Definition 21 (/10]) Let [a,b] C R, X be a Banach space, o > 0; m = [a] € N,
(-] is the ceiling of the number), f : [a,b] — X. We assume that f(™) €
Ly ([a,b], X). We call the Caputo-Bochner left fractional derivative of order a:

1

o) / C@— " (dt, Vo€ ad].  (85)

(D%) @) = 5

If o € N, we set D2, f := f") the ordinary X -valued derivative (defined similar
to numerical one [28]), and also set D, f = f.

By [10], (D2,f) (z) exists almost everywhere in = € [a,b] and DS, f €
Ly ([CL, b] 7X)

If Hf(m) ||L (a5, %) < 00, then by [10], D&, f € C ([a,b], X), hence | D2, f]| €
C (la, b]) -

‘We mention

Lemma 22 ([10]) Let « > 0, a ¢ N, m = [a], f € C™ 1 ([a,b],X) and
fm € Lo ([a,b], X). Then D2, f (a) = 0.

‘We mention

Definition 23 (/10]) Let [a,b] C R, X be a Banach space, o > 0, m := [«].
We assume that f™) € Ly ([a,b], X), where f : [a,b] — X. We call the Caputo-
Bochner right fractional derivative of order a:

(=)™

b
(DR f) (@) = / (z— )™ {0 () dz, Ve lab].  (86)

(m —a)

We observe that (D™ f) (z) = (=1)™ f™) (z), for m € N, and (Dj_f) (z) =
f ().

14



By [10], (Dg f) () exists almost everywhere on [a, b] and (D f) € L1 ([a,b] , X).

If Hf(’”)HL (a.x) < OO and o ¢ N, by [10], D¢ f € C([a,b],X), hence
D5 f|| € € ([a,B])-

We need

Lemma 24 ([10]) Let f € C™ ' ([a,b],X), f'™ € Ly ([a,b],X), m = [a],
a>0,a¢N. Then Dy f(b) =0.

We mention the left fractional vector Taylor formula

Theorem 25 ([10]) Let m € N and f € C™ ([a,b],X), where [a,b] C R and
X is a Banach space, and let o« > 0:m = [a]. Then

_mil(m_a)i i 1 ‘ a—1/ma
F@=E G @ [T onn @ @

K3

vV z € [a,b].
We also mention the right fractional vector Taylor formula

Theorem 26 ([10]) Let [a,b] C R, X be a Banach space, & > 0, m = [a],
feCm(a,b],X). Then

m—1 T 7 ) b
fay=3 T O+ g [ G- T DR G (59)
i=0 : x

vz € [a,b].

Convention 27 We assume that

Dgxof (.T) = O) fO’f' T < To, (89)
and
Dg,_f(x) =0, for x> xo, (90)

for all x,x0 € [a,b].
We mention

Proposition 28 (/10]) Let f € C"([a,b],X), n = [v], v > 0. Then DY, f (x)
is continuous in T € [a,b].

Proposition 29 (/10]) Let f € C™ ([a,b], X), m = [a], a > 0. Then D}_f (x)
is continuous in z € [a, b].

We also mention

15



Proposition 30 ([10]) Let f € C™ ' ([a,b],X), f™) € Lo ([a,b],X), m =
[a], a >0 and

1 T
D% - - _ pym—a—1 r(m) 1
ol @) = iy [ =0 @ (o1)
for all x,xy € [a,b] : x > xp.

Then D, f (w) is continuous in xo.

Proposition 31 ([10]) Let f € C™ ' ([a,b], X), f™) € Lo ([a,b],X), m =
[a], @ >0 and

(="

D;‘O,f(x) = m

/ Ty fom () e, (92)

for all x,z¢ € [a,b] 1 xzo > x.
Then Dy _ f () is continuous in xo.

Corollary 32 ([10]) Let f € C™ ([a,b],X), m = [a|, a > 0, z,z9 € [a,b].
Then D¢, f(x), Dg,_f(x) are jointly continuous functions in (x,xq) from

[a,b)? into X, X is a Banach space.
We make

Remark 33 ([10], pp. 263-266) Let (RN,IIMP), N € N; where ||, is the
Ly-norm, 1 < p < oo. RY is a Banach space, and (RN)j* denotes the ji-
fold product space RN x ... x RN endowed with the maz-norm 2l gyyix =

| nax. |zxll,, where z = (z1,...,x;.) € (RN)™.

Let (X, ||||A/) be a general Banach space. Then the space L;, := L;, ((RN)j* ,X)

of all j.-multilinear continuous maps g : (RN)j* — X, jy=1,...,m, is a Ba-
nach space with norm

lg ()]l

e lly - Mg,

lgll == llglly,, = sup |lg (@)]], = sup (93)

Il ey =1)

Let M be a non-empty convex and compact subset of RN and xo € M is fived.

Let O be an open subset of RN : M C O. Let f : O — X be a con-
tinuous function, whose Fréchet derivatives (see [27]) fU<) : O — L; =

L;, ((RN)j* ;X) exist and are continuous for 1 < j, <m, m € N.

Call (z — x0)" := (x — 20, ..., ® — x0) € (RN)j*, x € M.
We will work with f|a.

16



Then, by Taylor’s formula ([18], [27], p. 124), we get

(Jx) —
(x) = Z ! xo (z —z0)” + R (z,20), allx € M, (94)
j»=0

where the remainder is the Riemann integral

L] — )™t -
R (%, 20) = /0 (1(m)1)!f(m) (zo +u(z — z0)) (x — 20)™ du, (95)

here we set fO) (z0) (x — 20)° = f (20) .

We obtain B
| £ (@0 +u (@ = 20)) (@~ xo)mHW <
|77 @o +u (@ = ao))|| lle = 2ol < ||| ™[tz = 2ol (96)
and )
s @)y < ML M (97)
m 5 L0 N = m' 0 p -

Let (X, ||||7) be a general Banach space.

We will study the following neural network operators.
Definition 34 Let f € C ([a,b],X), n € N. We set
nb
ZII; Hna] ( ) ql)j (’IME - k)
nb
S s (n — k)

These are univariate neural network operators.

A, (f,z) = , Vaeelad], 7=1,2,3,4.  (98)

Definition 35 Let f € C H [a;, b;] ,X> and n € N such that [na;] < |nb;],

1t =1,.,N. We will study the following multivariate linear neural network
N

operators (z := (z1, .., xx) € (H [ai,bi]>)

=1

Zl\;anna] (k) Zj (TLIE - k)
H, (f,z):= jH,(f,z1,....,aNn) = — = (99)
! b S 2, (e — k)

leﬁblﬁmfl ZIEZI:Hnaz‘\ ZIEZ[)N[JnaN] (%7 ) kTN) (Hz 1 1/) (nccl — z))
Hilil ( JE:IZ[JWJ 77[13' (nmi - kz))

forj=1,234.
For large enough n we always obtain [na;] < |nb;|, i = 1,...,N. Also
a; < % < bi, Zﬁc fnai] < k‘l < Lnblj, 1= 1,...,N,

17



In this article first we find fractional Voronskaya type asymptotic expansions
for ;A, (f,z), x € [a,b], then we find multivariate Voronskaya type asymptotic

N
expansions for jH, (f,z), x € <H [ai,bl-]>; neN; j=1,234.
i=1
Our considered neural networks here are of one hidden layer.

For earlier motivational neural networks related work, see [1] - [10]. For
neural networks in general, read [23], [24] and [26].

2 Main Results

We present our first univariate main result, as Voronovskaya type asymptotic
expansion.

Theorem 36 Let (X, ”Hv) be a Banach space, 0 < < % and 0 < a < 5 =8
NeN:N = [a], feCV(a,b], X) xe[a b], nGNlargeenough. nl=f > 2.
Assume that HHDO“ f|| ” " <M, M >0. Then

[z,b]
N=1 ,(;
U (x . 1
Au(fr) = F@) = Y j,” A, (<. —)) @) o ( ey ) (100
j=1
where 0 < € < a.
If N =1, the sum in (100) collapses.
The last (100) implies that
Nl e (o _
W ()~ o) = 0 T 4 (= o) @) | o, (o
Jx=1 *

asn — 00, 0<e<a.
When N =1, or fU+) (z) =0, j, = 1,..., N — 1, then we derive that

nPe=) [ A, (f,z) — f(x)] =0

asn — 00, 0 <& < a. Of great interest is the case of a = 3.
Above it is j =1,2,3,4.

Proof. From Theorem 25 (87), we get by the left Caputo fractional vector
Taylor formula that

(i) Zf(j E) i [ (E) s

(102)
forallxﬁ%ﬁb.
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Also from Theorem 26 (88), using the right Caputo fractional vector Taylor
formula we get

E\ = fU0@) (kN1 N
f (n> :J_*ZZIO o (n x) + 5 (a)/ﬁ <J n) De_f(J)dJ,
(103)
forallagggx.
We call
nb]
Wj(z)= > ;nz—k), j=1,2,34 (104)
k=[na]
Hence we have
FE) g e —k) = U9 (@) ¢y (ne—k) (& \*
W@ A W@ (o) + o
Y; (nw — k) vk ot o
e ) (i-7) PR
all z < £ < b, iff [nz] <k < |nb], and

; N=1 .., Az — I
f(%)%(mf—k):zf( ) () ¥; (e — k) (k—x> + (106)

Wi @) 3x=0 gt Wi (x)
1/)] (nl' — k) z B ﬁ a—1 .
Wj ()T () /ﬁ (J ) Dg_f(J)dJ,

for all a < % <z, iff [na] <k < [nz].
We have that [nz] < |nz| + 1.
Therefore it holds

[nb] k N—1 ;i [nb] k J=
f ()Y, (ne — k) f9) (x) W (nx — k) (3 — )
= _ +
k:L;wj-H Wj (@) J;O Ji! kanZxH-l Wi ()
o (107)
1 Zkz [nz]+1 ¢j (nz - k) % k ot «
r<a>( W, (@) [ (G-7) o).
and
Lnz] N—-1 . [nz] .
B %, (o — k) [0 @) L w e -k (h \"
> G we - R e ()
k=[na] J J«=0 Jx k=[na] J
(108)
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. (;;JW v, v(;f(;)k) / (J—i)a_lDﬁ_f(J)dJ).

Adding the last two equalities (107) and (108) we obtain

i ne
k%ﬂf( )W: (109)
qui( )k%W(ﬁ—xY?
T ) W3 {L;Jfb et / (1) D) ars

[nb]

IRENCEE / (£- J)a1 (D2, (1) dJ} .

k=|nz|+1

So we have derived (5 = 1,2,3,4)

Nl £ (2 ,
@)= sAn ()= £ @)= 30 T A (=07 (@) = 0 (o),
" (110)
where
. 1 [nx] x k a—1 .
ejn (z) = W {k%ﬂ ¥, (nx — k)/ﬁ (J - n) Dz _f(J)dJ
[nb] % k a—1 }
+ (na — L Def(J)dJ p. (111)
2wt [T (5-7)
We set
. . 1 Z}Enw(Jna] (nm—k) z k a—1 .
jeln (.T) = T (a) ( WJ (QL') /i; <‘] - ’I’L) D.L—f (J) dJ ’
(112)
and
gr 1 Sl 5 (0 = K) (5 (k N e pyar
¥en = Ty W, ) [ (o) psww).
(113)
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i.e.
Hf (x) = J Tn (.’L‘) + jQZn (:C), J=1234. (114)

We assume b —a > 0 < B < 1, which is always the case for large enough

nﬁv

n € N, that is when n > [(b — a)fﬂ . It is always true that either ‘% —z| <25

or |k —SL” nB
For k = [na]l, ..., |[nx], we consider
T k a—1
e = H [ (-2) prsoaw) < (115
B v
x ]C a—1
/. <Jn> |p2_s (1), a7
«
r—£) (x —a)”
<[ioesn| . E=E < |oe oo
- HH z fH’Y 00,[a,z] [0 - || z Yoo, [a,z] « ( 6)
That is ( o
r—a
e 11
Yk = Voo, [a,] a ’ ( 7)
for k = [na], ..., [nz].
Also we have in case of |£ — x| < L that
x k a—1
s [, (J—n) |D2 7 (D], a7 (118)
<ozt ., S < ot
el Dl e
So that, when |z — E < nﬁ’ we get
e < 102 f0L (119)
Jla,z] cm“ﬁ
Therefore
[na] —k
i @, < i [ 5020, ) L
I S T () W@ | T
3 L R AL
Hu ol < 55 —2|> 5
Yk T Y1k
Wj (.’E) Wj (.%')
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ZL{nmJ ,f _ frf b; (nx — k)
1 B N N
=) W, (@) HHD ik H - Omaﬁ
|na) )
oS e |, B

{ k= f’ al
(by (12), (13); (32), (33); (52), (53); (74), (75))

HHD?_ Moo faa) [ 1 o
: T(a+1) {naa+aa‘cj(6,n)(w—a>}.

Therefore we proved

DS
I 1n<x>||,ysH” F(alf;’[“’“"]{ ot aye (8, ><x_a>a}. (121)

But for large enough n € N we get

2”HDgif||'YHoo[a z]
1501, @), < F(a+1)naé 2y (122)

Similarly, we have that

k a—1
n (k
= | [T (E-a) pmroa] <
z ¥
L3 k a—1
[ (E-a) iper e <
(r-2)" (b—a)"
o < ||| D . 123
’ Tloo,[z,b] «Q - H” ey 00,[z,b] « ( )
That is
_x)o‘
v < UL e (124)

for k = [nz| +1,..., [nb].
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Also we have in case of }f - x| < 5 that

W|HMH
’72]{) anaﬁ (125)
Consequently it holds
* 1 le;nb[JnTj+1 (’RZE - k) _
M%A@u<rm)( B, -
Zlan (| 41 Y; (nx —k)
! {|k—ﬂ_nﬁ 1Dz, ﬂ“@b+
L (a) Wj (:L') aneB
[nb] .
1 )
| S | fena, 0
k=|nz|+1
{2 % -z > niﬁ
oz,
F(a+1) {naa ajc; (B,n) (b— ) } (126)

That is

szmwmhm .
e

.0* <
1365, @, < —Fas

+ ajcj (B, n) (b—x)a} ) (127)

But for large enough n € N we get

210z 11, |
0% < 128
H392n (l’)”,y = F(onrl)no‘ﬁ ( )
since ||| Da_s1], | - 1D £ Ly S MM >0, we derive
. . . (by (122), (128))  4]f
||9jn (@Hw < Hj91n (ﬂﬁ)H7 + ||j92n (3'9)||7 < m~ (129)

That is for large enough n € N we get

ool < () (). o
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resulting to

1
o, =0 (725). (131)
and
16 ()], =o(1). (132)
And, letting 0 < € < «, we derive
16 ()], AM 1
< — 0, 133
(re=sr) ~ (F(a+1)) <nﬁ) - 15
as nm — oo.
Le. )
16 ()]l = o (n,@(a—s)) , (134)

proving the claim. m
It follows a multivariate Voronovskaya type asymptotic expansion.
Theorem 37 Let (X [I-Il ) be a Banach space, m € N such that m < %,
where 0 < B < 3. Let f € C™ (HZ 1 lai, bi] ,X) (m-times continuously Fréchet
differentiable functwns}, T € Hi:l [ai,bi], andn € N:n'=8 > 2; 5 =1,23 4.
Then
iHn (f,2) = f (2) =

ji ( i) (2) (- — z)" cc) +o (W) , (135)

m—1

)3

where 0 < ¢ < .
If m =1, the sum in (185) collapses.
The last (135) implies that

m—1
m—e 1 )
) G H, (£ ) Z; o (199 @) (=2 2) | =0,
(136)
asn — 00, 0 <e<m.
Whenm =1, or fU+) (z) =0, j, = 1,...,/ — 1, then we derive that
nPU) [ Hy (f,x) — f (2)] =0, (137)

asn — o0, 0 <e<m.
Above it is j =1,2,3,4.
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Proof. We have that

m—1 i
f(k) f <k—x)J +Rm(k7x), (138)
n - n
where

Ry (Sx) = /01 %ﬂm) (:z:+u <z a:>> <z x)mdu, (139)

here we set f(© (z) (£ — I)O =[f(z).
By (97) we get that

(™) ™
‘Rm (’fm> < M L H (140)
n N m! n -
f(m
Ml
Call
L)
Vi (z) := Z Zj (nx — k), (141)
k=[na]
for j =1,2,3,4.
Hence, we have
e Z]E7Lb|Jna-| ; (nz — k) Rz (£, 2) _
i Vi (2)
ZL"bJ _ [nal Zj (nx — k) Rm (%, z)
Lty o
G * )
ylnt) = na] Zj (nz — k) R (£, 2)
{ I — 2l > 5
Vi (2)
Therefore, we obtain (j = 1,2,3,4)
Lnb] (m)
Zj (e —k) | I/ ™)l 1
{ k= [na)
15 -2l < 5



[nb]

(nx — (m
§ me | WML, e
(il

k _ H 1
n xoo>n5

N

(by (20), (21); (40), (41); (60), (61); (82), (83))
< Ml

m)!

b (e B o= ol
Consequently, we get that
Rl

m!

oty < WM A ey oy o] s

For large enough n € N, we get

2 (m)
10w @, < 2 (L) (145)
That is )
“jUn (l‘)”j =0 <n/3m> 5 (146)
and
11Un (@)1, = 0(1). (147)

And, letting 0 < ¢ < m, we derive

‘ ‘ (m)
IsUn @)1 _ (2 [IEs HHM> 1 (148)

(=) ~ m!

as n — OQ.

Le. )
1;Un (@)Il; =0 (nmm_)) : (149)

By (138) we observe that

ZlEanna] ( ) Zj (HI - k)

v, (@) —f(z) = (150)
m—1 Z}Eanna_l ( (j*) () (% _ :E)7*) Z, (na — k)
J:1V; @) i
Z£7Lana] (nx - k) Rm (%, LE)
Vi (2) ’



The last says (j = 1,2,3,4)

J

Hy (f,2) = f@) =)

m—1

1
ﬂj

H, (199 (@) (- = 2" o) = ;U (2).  (151)

ja=1

The proof of the theorem is complete. ®
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