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Abstract

Here we study further the quasi-interpolation arctangent-algebraic-
Gudermannian-generalized symmetrical activation functions relied neural
network operators of one hidden layer. Based on fractional calculus the-
ory we derive fractional Voronovskaya type asymptotic expansions for the
approximation of these operators to the unit operator, as we are studying
the univariate case. We treat also analogously the multivariate case by
using Fréchet derivatives. The functions under approximation are Banach
space valued.
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1 Background

This is a continuation and generalization of [8].
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1.1 About the arctangent activation function

We consider the

arctanx =

Z x

0

dz

1 + z2
; x 2 R: (1)

We will be using

h (x) :=
2

�
arctan

��
2
x
�
=
2

�

Z �x
2

0

dz

1 + z2
, x 2 R; (2)

which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (�x) = �h (x) , h (+1) = 1, h (�1) = �1;

and
h0 (x) =

4

4 + �2x2
> 0, all x 2 R: (3)

We consider the activation function

 1 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (4)

and we notice that
 1 (�x) =  1 (x) ; (5)

it is an even function.
Since x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  1 (x) > 0, all x 2 R.
We see that

 1 (0) =
1

�
arctan

�

2
�= 18:31: (6)

Let x > 0, we have that

 01 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) =

�4�2x�
4 + �2 (x+ 1)

2
��
4 + �2 (x� 1)2

� < 0: (7)

That is
 01 (x) < 0, for x > 0: (8)

That is  1 is strictly decreasing on [0;1) and clearly is strictly increasing on
(�1; 0], and  01 (0) = 0:
Observe that

lim
x!+1

 1 (x) =
1
4 (h (+1)� h (+1)) = 0;

and
lim

x!�1
 1 (x) =

1
4 (h (�1)� h (�1)) = 0:

(9)

That is the x-axis is the horizontal asymptote on  1.
All in all,  1 is a bell symmetric function with maximum  1 (0)

�= 18:31:
We need
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Theorem 1 ([10], p. 286) We have that

1X
i=�1

 1 (x� i) = 1, 8 x 2 R: (10)

Theorem 2 ([10], p. 287) It holdsZ 1

�1
 1 (x) dx = 1: (11)

So that  1 (x) is a density function on R:
We mention

Theorem 3 ([10], p. 288) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 1 (nx� k) <
2

�2 (n1�� � 2) =: c1 (�; n) : (12)

Denote by b�c the integral part of the number and by d�e the ceiling of the
number.
We need

Theorem 4 ([10], p. 289) Let x 2 [a; b] � R and n 2 N so that dnae � bnbc.
It holds

1Pbnbc
k=dnae  1 (nx� k)

<
1

 1 (1)
�= 0:0868 =: �1; 8 x 2 [a; b] : (13)

Note 5 ([10], pp. 290-291)
i) We have that

lim
n!1

bnbcX
k=dnae

 1 (nx� k) 6= 1; (14)

for at least some x 2 [a; b] :
ii) For large enough n 2 N we always obtain dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general, by Theorem 1, it holds

bnbcX
k=dnae

 1 (nx� k) � 1: (15)
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We introduce (see [15])

Z1 (x1; :::; xN ) := Z1 (x) :=
NY
i=1

 1 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (16)

Denote by a = (a1; :::; aN ) and b = (b1; :::; bN ) :
It has the properties:
(i) Z1 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z1 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z1 (x1 � k1; :::; xN � kN ) = 1;

(17)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z1 (nx� k) = 1; (18)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z1 (x) dx = 1; (19)

that is Z1 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z1 (nx� k) <
2

�2 (n1�� � 2) = c1 (�; n) , (20)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN :
(vi) By Theorem 4 we get that

0 <
1Pbnbc

k=dnae Z1 (nx� k)
<

1

( 1 (1))
N
�= (0:0868)N =: 1 (N) ; (21)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z1 (nx� k) 6= 1; (22)
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for at least some x 2
�QN

i=1 [ai; bi]
�
:

Above it is kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set 1 := (1; :::;1),
�1 = (�1; :::�1) upon the multivariate context.

1.2 About the algebraic activation function

Here see also [11].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (23)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
2m

> 0, 8 x 2 R, (24)

proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:

We consider the activation function

 2 (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (25)

Clearly it is  2 (x) =  2 (�x) ; 8 x 2 R, so that  2 is an even function and
symmetric with respect to the y-axis. Clealry  2 (x) > 0, 8 x 2 R.
Also it is

 2 (0) =
1

2 2m
p
2
: (26)

By [11], we have that  02 (x) < 0 for x > 0. That is  2 is strictly decreasing
over (0;+1) :
Clearly,  2 is strictly increasing over (�1; 0) and  02 (0) = 0.
Furthermore we obtain that

lim
x!+1

 2 (x) =
1

4
[' (+1)� ' (+1)] = 0; (27)

and
lim

x!�1
 2 (x) =

1

4
[' (�1)� ' (�1)] = 0: (28)

That is the x-axis is the horizontal asymptote of  2.
Conclusion,  2 is a bell shape symmetric function with maximum

 2 (0) =
1

2 2m
p
2
; m 2 N: (29)

We need
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Theorem 6 ([11]) We have that

1X
i=�1

 2 (x� i) = 1, 8 x 2 R: (30)

Theorem 7 ([11]) It holds Z 1

�1
 2 (x) dx = 1: (31)

Theorem 8 ([11]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 2 (nx� k) <
1

4m (n1�� � 2)2m
=: c2 (�; n) ; m 2 N:

(32)

We need

Theorem 9 ([11]) Let [a; b] � R and n 2 N so that dnae � bnbc. It holds

1
bnbcP

k=dnae
 2 (nx� k)

< 2
�
2m
p
1 + 4m

�
=: �2; (33)

8 x 2 [a; b], m 2 N:

Note 10 1) By [11] we have that

lim
n!1

bnbcX
k=dnae

 2 (nx� k) 6= 1; (34)

for at least some x 2 [a; b] :
2) Let [a; b] � R. For large n 2 N we always have dnae � bnbc. Also

a � k
n � b, i¤ dnae � k � bnbc.
In general it holds that

bnbcX
k=dnae

 2 (nx� k) � 1: (35)

We introduce (see also [17])

Z2 (x1; :::; xN ) := Z2 (x) :=
NY
i=1

 2 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (36)
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It has the properties:
(i) Z2 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z2 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z2 (x1 � k1; :::; xN � kN ) = 1;

(37)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z2 (nx� k) = 1; (38)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z2 (x) dx = 1; (39)

that is Z2 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z2 (nx� k) <
1

4m (n1�� � 2)2m
= c2 (�; n) , (40)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN , m 2 N:
(vi) By Theorem 9 we get that

0 <
1Pbnbc

k=dnae Z2 (nx� k)
<

1

( 2 (1))
N
�=
�
2
�
2m
p
1 + 4m

��N
:= 2 (N) ; (41)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z2 (nx� k) 6= 1; (42)

for at least some x 2
�QN

i=1 [ai; bi]
�
:
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1.3 About the Gudermannian activation function

See also [29], [12].
Here we consider gd (x) the Gudermannian function [29], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (43)

Let the normalized generator sigmoid function

f (x) :=
4

�
� (x) =

4

�

Z x

0

dt

cosh t
=
8

�

Z x

0

1

et + e�t
dt; x 2 R: (44)

Here
f 0 (x) =

4

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

 3 (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (45)

By [12], we get that
 3 (x) =  3 (�x) ; 8 x 2 R; (46)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (47)

an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain  3 (x) > 0, 8 x 2 R:
By [12], we have that

 3 (0) =
2

�
gd (1) �= 0:551: (48)

By [12]  3 is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and  03 (0) = 0.
Also we have that

lim
x!+1

 3 (x) = lim
x!�1

 3 (x) = 0; (49)

that is the x-axis is the horizontal asymptote for  3.
Conclusion,  3 is a bell shaped symmetric function with maximum  3 (0)

�=
0:551.
We need
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Theorem 11 ([12]) It holds that

1X
i=�1

 3 (x� i) = 1, 8 x 2 R: (50)

Theorem 12 ([12]) We have thatZ 1

�1
 3 (x) dx = 1: (51)

So  3 (x) is a density function.

Theorem 13 ([12]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 3 (nx� k) <
1

�e(n1���2)
=

4e2

�en1��
=: c3 (�; n) : (52)

Theorem 14 ([12]) Let [a; b] � R and n 2 N; so that dnae � bnbc. It holds

1
bnbcP

k=dnae
 3 (nx� k)

<
�

gd (2)
�= 2:412 =: �3; (53)

8 x 2 [a; b] :

We make

Remark 15 ([12])
(i) We have that

lim
n!1

bnbcX
k=dnae

 3 (nx� k) 6= 1; (54)

for at least some x 2 [a; b] :
(ii) Let [a; b] � R. For large n we always have dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general it holds

bnbcX
k=dnae

 3 (nx� k) � 1: (55)

We introduce (see also [14])

Z3 (x1; :::; xN ) := Z3 (x) :=

NY
i=1

 3 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (56)
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It has the properties:
(i) Z3 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z3 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z3 (x1 � k1; :::; xN � kN ) = 1;

(57)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z3 (nx� k) = 1; (58)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z3 (x) dx = 1; (59)

that is Z3 is a multivariate density function.
(v) It is also clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z3 (nx� k) <
4e2

�en1��
= c3 (�; n) ; (60)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:
(vi) By Theorem 14 we get that

0 <
1Pbnbc

k=dnae Z3 (nx� k)
<

�
�

gd (2)

�N
�= (2:412)N =: 3 (N) ; (61)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z3 (nx� k) 6= 1; (62)

for at least some x 2
�QN

i=1 [ai; bi]
�
:
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1.4 About the generalized symmetrical activation func-
tion

Here we consider the generalized symmetrical sigmoid function ([13], [22])

f1 (x) =
x

(1 + jxj�)
1
�

; � > 0, x 2 R. (63)

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.
The parameter � is a shape parameter controling how fast the curve ap-

proaches the asymptotes for a given slope at the in�ection point. When � = 1
f1 is the absolute sigmoid function, and when � = 2; f1 is the square root
sigmoid function. When � = 1:5 the function approximates the arctangent
function, when � = 2:9 it approximates the logistic function, and when � = 3:4
it approximates the error function. Parameter � is estimated in the likelihood
maximization ([22]). For more see [22].
Next we study the particular generator sigmoid function

f2 (x) =
x�

1 + jxj�
� 1
�

; � is an odd number, x 2 R: (64)

We have that f2 (0) = 0, and

f2 (�x) = �f2 (x) ; (65)

so f2 is symmetric with respect to zero.
When x � 0, we get that ([13])

f 02 (x) =
1

(1 + x�)
�+1
�

> 0; (66)

that is f2 is strictly increasing on [0;+1) and f2 is strictly increasing on (�1; 0].
Hence f2 is strictly increasing on R.
We also have f2 (+1) = f2 (�1) = 1:
Let us consider the activation function ([13]):

 4 (x) =
1

4
[f2 (x+ 1)� f2 (x� 1)] =

1

4

264 (x+ 1)�
1 + jx+ 1j�

� 1
�

� (x� 1)�
1 + jx� 1j�

� 1
�

375 : (67)

Clearly it holds ([13])

 4 (x) =  4 (�x) ; 8 x 2 R: (68)
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and
 4 (0) =

1

2 �
p
2
; (69)

and  4 (x) > 0, 8 x 2 R.
Following [13], we have that  4 is strictly decreasing over [0;+1), and  4

is strictly increasing on (�1; 0], by  4-symmetry with respect to y-axis, and
 04 (0) = 0:

Clearly it is
lim

x!+1
 4 (x) = lim

x!�1
 4 (x) = 0; (70)

therefore the x-axis is the horizontal asymptote of  4 (x) :
The value

 4 (0) =
1

2 �
p
2
; � is an odd number, (71)

is the maximum of  4, which is a bell shaped function.
We need

Theorem 16 ([13]) It holds

1X
i=�1

 4 (x� i) = 1, 8 x 2 R: (72)

Theorem 17 ([13]) We have thatZ 1

�1
 4 (x) dx = 1: (73)

So that  4 (x) is a density function on R:
We need

Theorem 18 ([13]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: j = �1
: jnx� jj � n1��

 4 (nx� j) <
1

2� (n1�� � 2)�
=: c4 (�; n) ; (74)

where � 2 N is an odd number.

We also need

Theorem 19 ([13]) Let [a; b] � R and n 2 N so that dnae � bnbc. Then

1
bnbcP

k=dnae
 4 (jnx� kj)

< 2
�
p
1 + 2� =: �4; (75)

where � is an odd number, 8 x 2 [a; b] :
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We make

Remark 20 ([13]) (1) We have that

lim
n!1

bnbcX
k=dnae

 4 (nx� k) 6= 1; for at least some x 2 [a; b] : (76)

(2) Let [a; b] � R. For large enough n we always obtain dnae � bnbc. Also
a � k

n � b, i¤ dnae � k � bnbc.
In general it holds that

bnbcX
k=dnae

 4 (nx� k) � 1: (77)

We introduce (see also [16])

Z4 (x1; :::; xN ) := Z4 (x) :=
NY
i=1

 4 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (78)

It has the properties:
(i) Z4 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z4 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z4 (x1 � k1; :::; xN � kN ) = 1;

(79)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z4 (nx� k) = 1; (80)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z4 (x) dx = 1; (81)

that is Z4 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z4 (nx� k) <
1

2� (n1�� � 2)�
= c4 (�; n) ; (82)
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0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; � is odd.
(vi) By Theorem 19 we get that

0 <
1Pbnbc

k=dnae Z4 (nx� k)
<
�
2

�
p
1 + 2�

�N
=: 4 (N) ; (83)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N, � is odd.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z4 (nx� k) 6= 1; (84)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

The next integrals are of Bochner type ([25]).
We need

De�nition 21 ([10]) Let [a; b] � R, X be a Banach space, � > 0; m = d�e 2 N,
(d�e is the ceiling of the number), f : [a; b] ! X. We assume that f (m) 2
L1 ([a; b] ; X). We call the Caputo-Bochner left fractional derivative of order �:

(D�
�af) (x) :=

1

� (m� �)

Z x

a

(x� t)m���1 f (m) (t) dt; 8 x 2 [a; b] : (85)

If � 2 N, we set D�
�af := f (m) the ordinary X-valued derivative (de�ned similar

to numerical one [28]), and also set D0
�af := f:

By [10], (D�
�af) (x) exists almost everywhere in x 2 [a; b] and D�

�af 2
L1 ([a; b] ; X).
If
f (m)

L1([a;b];X)
<1, then by [10],D�

�af 2 C ([a; b] ; X) ; hence kD�
�afk 2

C ([a; b]) :

We mention

Lemma 22 ([10]) Let � > 0, � =2 N, m = d�e, f 2 Cm�1 ([a; b] ; X) and
f (m) 2 L1 ([a; b] ; X). Then D�

�af (a) = 0.

We mention

De�nition 23 ([10]) Let [a; b] � R, X be a Banach space, � > 0, m := d�e.
We assume that f (m) 2 L1 ([a; b] ; X), where f : [a; b]! X. We call the Caputo-
Bochner right fractional derivative of order �:

�
D�
b�f

�
(x) :=

(�1)m

� (m� �)

Z b

x

(z � x)m���1 f (m) (z) dz; 8 x 2 [a; b] : (86)

We observe that
�
Dm
b�f

�
(x) = (�1)m f (m) (x) ; for m 2 N, and

�
D0
b�f

�
(x) =

f (x) :

14



By [10],
�
D�
b�f

�
(x) exists almost everywhere on [a; b] and

�
D�
b�f

�
2 L1 ([a; b] ; X).

If
f (m)

L1([a;b];X)
< 1, and � =2 N; by [10], D�

b�f 2 C ([a; b] ; X) ; henceD�
b�f

 2 C ([a; b]) :
We need

Lemma 24 ([10]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m = d�e,
� > 0, � =2 N. Then D�

b�f (b) = 0.

We mention the left fractional vector Taylor formula

Theorem 25 ([10]) Let m 2 N and f 2 Cm ([a; b] ; X) ; where [a; b] � R and
X is a Banach space, and let � > 0 : m = d�e. Then

f (x) =
m�1X
i=0

(x� a)i

i!
f (i) (a) +

1

� (�)

Z x

a

(x� z)��1 (D�
�af) (z) dz; (87)

8 x 2 [a; b] :

We also mention the right fractional vector Taylor formula

Theorem 26 ([10]) Let [a; b] � R, X be a Banach space, � > 0, m = d�e,
f 2 Cm ([a; b] ; X). Then

f (x) =
m�1X
i=0

(x� b)i

i!
f (i) (b) +

1

� (�)

Z b

x

(z � x)��1
�
D�
b�f

�
(z) dz; (88)

8 x 2 [a; b] :

Convention 27 We assume that

D�
�x0f (x) = 0, for x < x0; (89)

and
D�
x0�f (x) = 0, for x > x0; (90)

for all x; x0 2 [a; b] :

We mention

Proposition 28 ([10]) Let f 2 Cn ([a; b] ; X), n = d�e, � > 0. Then D�
�af (x)

is continuous in x 2 [a; b].

Proposition 29 ([10]) Let f 2 Cm ([a; b] ; X), m = d�e, � > 0. Then D�
b�f (x)

is continuous in x 2 [a; b].

We also mention
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Proposition 30 ([10]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m =

d�e, � > 0 and

D�
�x0f (x) =

1

� (m� �)

Z x

x0

(x� t)m���1 f (m) (t) dt; (91)

for all x; x0 2 [a; b] : x � x0:

Then D�
�x0f (x) is continuous in x0.

Proposition 31 ([10]) Let f 2 Cm�1 ([a; b] ; X), f (m) 2 L1 ([a; b] ; X), m =

d�e, � > 0 and

D�
x0�f (x) =

(�1)m

� (m� �)

Z x0

x

(� � x)m���1 f (m) (�) d�; (92)

for all x; x0 2 [a; b] : x0 � x:

Then D�
x0�f (x) is continuous in x0.

Corollary 32 ([10]) Let f 2 Cm ([a; b] ; X), m = d�e, � > 0, x; x0 2 [a; b].
Then Da

�x0f (x) ; D
a
x0�f (x) are jointly continuous functions in (x; x0) from

[a; b]
2 into X, X is a Banach space.

We make

Remark 33 ([10], pp. 263-266) Let
�
RN ; k�kp

�
, N 2 N; where k�kp is the

Lp-norm, 1 � p � 1. RN is a Banach space, and
�
RN
�j� denotes the j�-

fold product space RN � ::: � RN endowed with the max-norm kxk(RN )j� :=

max
1���j�

kx�kp, where x := (x1; :::; xj�) 2
�
RN
�j�

:

Let
�
X; k�k

�
be a general Banach space. Then the space Lj� := Lj�

��
RN
�j�

; X
�

of all j�-multilinear continuous maps g :
�
RN
�j� ! X, j� = 1; :::;m, is a Ba-

nach space with norm

kgk := kgkLj� := sup�
kxk

(RN )j�
=1

� kg (x)k = sup kg (x)k
kx1kp ::: kxj�kp

: (93)

Let M be a non-empty convex and compact subset of RN and x0 2M is �xed.
Let O be an open subset of RN : M � O. Let f : O ! X be a con-

tinuous function, whose Fréchet derivatives (see [27]) f (j�) : O ! Lj� =

Lj�

��
RN
�j�
;X
�
exist and are continuous for 1 � j� � m, m 2 N.

Call (x� x0)j� := (x� x0; :::; x� x0) 2
�
RN
�j� , x 2M .

We will work with f jM :
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Then, by Taylor�s formula ([18], [27], p. 124), we get

f (x) =

m�1X
j�=0

f (j�) (x0) (x� x0)j�

j�!
+Rm (x; x0) ; all x 2M; (94)

where the remainder is the Riemann integral

Rm (x; x0) :=

Z 1

0

(1� u)m�1

(m� 1)! f
(m) (x0 + u (x� x0)) (x� x0)m du; (95)

here we set f (0) (x0) (x� x0)0 = f (x0) :

We obtain f (m) (x0 + u (x� x0)) (x� x0)m

�f (m) (x0 + u (x� x0)) kx� x0kmp � f (m)1 kx� x0kmp ; (96)

and

kRm (x; x0)k �
f (m)1

m!
kx� x0kmp : (97)

Let
�
X; k�k

�
be a general Banach space.

We will study the following neural network operators.

De�nition 34 Let f 2 C ([a; b] ; X), n 2 N. We set

jAn (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
 j (nx� k)Pbnbc

k=dnae  j (nx� k)
, 8 x 2 [a:b] ; j = 1; 2; 3; 4: (98)

These are univariate neural network operators.

De�nition 35 Let f 2 C
�
NQ
i=1

[ai; bi] ; X

�
and n 2 N such that dnaie � bnbic,

i = 1; :::; N . We will study the following multivariate linear neural network

operators (x := (x1; :::; xN ) 2
�
NQ
i=1

[ai; bi]

�
)

jHn (f; x) := jHn (f; x1; :::; xN ) :=

Pbnbc
k=dnae f

�
k
n

�
Zj (nx� k)Pbnbc

k=dnae Zj (nx� k)
= (99)

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1  j (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie  j (nxi � ki)

� ;

for j = 1; 2; 3; 4:
For large enough n we always obtain dnaie � bnbic, i = 1; :::; N . Also

ai � ki
n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
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In this article �rst we �nd fractional Voronskaya type asymptotic expansions
for jAn (f; x), x 2 [a; b], then we �nd multivariate Voronskaya type asymptotic

expansions for jHn (f; x), x 2
�
NQ
i=1

[ai; bi]

�
; n 2 N; j = 1; 2; 3; 4:

Our considered neural networks here are of one hidden layer.
For earlier motivational neural networks related work, see [1] - [10]. For

neural networks in general, read [23], [24] and [26].

2 Main Results

We present our �rst univariate main result, as Voronovskaya type asymptotic
expansion.

Theorem 36 Let
�
X; k�k

�
be a Banach space, 0 < � < 1

2 and 0 < � � 1��
� ,

N 2 N : N = d�e, f 2 CN ([a; b] ; X), x 2 [a; b], n 2 N large enough : n1�� > 2.
Assume that

D�
x�f





1;[a;x]

,
kD�

�xfk

1;[x;b]

�M , M > 0: Then

jAn (f; x)� f (x) =
N�1X
j�=1

f (j�) (x)

j�!
jAn

�
(� � x)j�

�
(x) + o

�
1

n�(��")

�
; (100)

where 0 < " � �:

If N = 1, the sum in (100) collapses.
The last (100) implies that

n�(��")

24
jAn (f; x)� f (x)�

N�1X
j�=1

f (j�) (x)

j�!
jAn

�
(� � x)j�

�
(x)

35! 0; (101)

as n!1, 0 < " � �.
When N = 1, or f (j�) (x) = 0, j� = 1; :::; N � 1; then we derive that

n�(��") [jAn (f; x)� f (x)]! 0

as n!1, 0 < " � �. Of great interest is the case of � = 1
2 :

Above it is j = 1; 2; 3; 4:

Proof. From Theorem 25 (87), we get by the left Caputo fractional vector
Taylor formula that

f

�
k

n

�
=

N�1X
j�=0

f (j�) (x)

j�!

�
k

n
� x
�j�

+
1

� (�)

Z k
n

x

�
k

n
� J

���1
D�
�xf (J) dJ;

(102)
for all x � k

n � b:

18



Also from Theorem 26 (88), using the right Caputo fractional vector Taylor
formula we get

f

�
k

n

�
=

N�1X
j�=0

f (j�) (x)

j�!

�
k

n
� x
�j�

+
1

� (�)

Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ;

(103)
for all a � k

n � x:

We call

Wj (x) :=

bnbcX
k=dnae

 j (nx� k) , j = 1; 2; 3; 4: (104)

Hence we have

f
�
k
n

�
 j (nx� k)
Wj (x)

=
N�1X
j�=0

f (j�) (x)

j�!

 j (nx� k)
Wj (x)

�
k

n
� x
�j�

+ (105)

 j (nx� k)
Wj (x) � (�)

Z k
n

x

�
k

n
� J

���1
D�
�xf (J) dJ;

all x � k
n � b, i¤ dnxe � k � bnbc, and

f
�
k
n

�
 j (nx� k)
Wj (x)

=
N�1X
j�=0

f (j�) (x)

j�!

 j (nx� k)
Wj (x)

�
k

n
� x
�j�

+ (106)

 j (nx� k)
Wj (x) � (�)

Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ;

for all a � k
n � x, i¤ dnae � k � bnxc.

We have that dnxe � bnxc+ 1:
Therefore it holds

bnbcX
k=bnxc+1

f
�
k
n

�
 j (nx� k)
Wj (x)

=
N�1X
j�=0

f (j�) (x)

j�!

bnbcX
k=bnxc+1

 j (nx� k)
�
k
n � x

�j�
Wj (x)

+

(107)

1

� (�)

0@Pbnbc
k=bnxc+1  j (nx� k)

Wj (x)

Z k
n

x

�
k

n
� J

���1
D�
�xf (J) dJ

1A ;

and

bnxcX
k=dnae

f

�
k

n

�
 j (nx� k)
Wj (x)

=
N�1X
j�=0

f (j�) (x)

j�!

bnxcX
k=dnae

 j (nx� k)
Wj (x)

�
k

n
� x
�j�

+

(108)
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1

� (�)

0@ bnxcX
k=dnae

 j (nx� k)
Wj (x)

Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ

1A :

Adding the last two equalities (107) and (108) we obtain

jAn (f; x) =

bnbcX
k=dnae

f

�
k

n

�
 j (nx� k)
Wj (x)

= (109)

N�1X
j�=0

f (j�) (x)

j�!

bnbcX
k=dnae

 j (nx� k)
Wj (x)

�
k

n
� x
�j�

+

1

� (�)Wj (x)

8<:
bnxcX
k=dnae

 j (nx� k)
Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ+

bnbcX
k=bnxc+1

 j (nx� k)
Z k

n

x

�
k

n
� J

���1
(D�

�xf (J)) dJ

9=; :

So we have derived (j = 1; 2; 3; 4)

�j (x) := jAn (f; x)� f (x)�
N�1X
j�=1

f (j�) (x)

j�!
jAn

�
(� � x)j�

�
(x) = ��jn (x) ;

(110)
where

��jn (x) :=
1

� (�)Wj (x)

8<:
bnxcX
k=dnae

 j (nx� k)
Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ

+

bnbcX
k=bnxc+1

 j (nx� k)
Z k

n

x

�
k

n
� J

���1
D�
�xf (J) dJ

9=; : (111)

We set

j�
�
1n (x) :=

1

� (�)

0@Pbnxc
k=dnae  j (nx� k)

Wj (x)

Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ

1A ;

(112)
and

j�
�
2n :=

1

� (�)

0@Pbnbc
k=bnxc+1  j (nx� k)

Wj (x)

Z k
n

x

�
k

n
� J

���1
D�
�xf (J) dJ

1A ;

(113)
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i.e.
��jn (x) = j�

�
1n (x) + j�

�
2n (x) ; j = 1; 2; 3; 4: (114)

We assume b � a > 1
n�
, 0 < � < 1, which is always the case for large enough

n 2 N, that is when n >
l
(b� a)�

1
�

m
: It is always true that either

�� k
n � x

�� � 1
n�

or
�� k
n � x

�� > 1
n�
.

For k = dnae ; :::; bnxc, we consider

1k :=


Z x

k
n

�
J � k

n

���1
D�
x�f (J) dJ




� (115)

Z x

k
n

�
J � k

n

���1 D�
x�f (J)



dJ

�
D�

x�f




1;[a;x]

�
x� �

n

��
�

�
D�

x�f




1;[a;x]

(x� a)�

�
: (116)

That is

1k �
D�

x�f




1;[a;x]

(x� a)�

�
; (117)

for k = dnae ; :::; bnxc :
Also we have in case of

�� k
n � x

�� � 1
n�
that

1k �
Z x

k
n

�
J � k

n

���1 D�
x�f (J)



dJ (118)

�
D�

x�f




1;[a;x]

�
x� �

n

��
�

�
D�

x�f




1;[a;x]

1

n���
:

So that, when
��x� k

n

�� � 1
n�
, we get

1k �
D�

x�f




1;[a;x]

1

�na�
: (119)

Therefore

kj��1n (x)k �
1

� (�)

0@Pbnxc
k=dnae  j (nx� k)

Wj (x)
1k

1A =
1

� (�)
�

8>>>>>><>>>>>>:

Pbnxc8<: k = dnae
:
�� k
n � x

�� � 1
n�

 j (nx� k)

Wj (x)
1k +

Pbnxc8<: k = dnae
:
�� k
n � x

�� > 1
n�

 j (nx� k)

Wj (x)
1k

9>>>>>>=>>>>>>;
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� 1

� (�)

8>>>>>><>>>>>>:

0BBBBBB@

Pbnxc8<: k = dnae
:
�� k
n � x

�� � 1
n�

 j (nx� k)

Wj (x)

1CCCCCCA
D�

x�f




1;[a;x]

1

�n��
+

1

Wj (x)

0BBBBBB@
bnxcX

8<: k = dnae
:
�� k
n � x

�� > 1
n�

 j (nx� k)

1CCCCCCA
D�

x�f




1;[a;x]

(x� a)�

�

9>>>>>>=>>>>>>;
(120)

(by (12), (13); (32), (33); (52), (53); (74), (75))

�

D�
x�f





1;[a;x]

� (�+ 1)

�
1

n��
+ �jcj (�; n) (x� a)�

�
:

Therefore we proved

kj��1n (x)k �

D�
x�f





1;[a;x]

� (�+ 1)

�
1

n��
+ �jcj (�; n) (x� a)�

�
: (121)

But for large enough n 2 N we get

kj��1n (x)k �
2
D�

x�f




1;[a;x]

� (�+ 1)n��
: (122)

Similarly, we have that

2k :=


Z k

n

x

�
k

n
� J

���1
D�
�xf (J) dJ




�

Z k
n

x

�
k

n
� J

���1
kD�

�xf (J)k dJ �

kD�
�xfk


1;[x;b]

�
k
n � x

��
�

�
kD�

�xfk

1;[x;b]

(b� x)�

�
: (123)

That is

2k �
kD�

�xfk

1;[x;b]

(b� x)�

�
; (124)

for k = bnxc+ 1; :::; bnbc :
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Also we have in case of
�� k
n � x

�� � 1
n�
that

2k �

kD�
�xfk


1;[x;b]

�n��
: (125)

Consequently it holds

kj��2n (x)k �
1

� (�)

0@Pbnbc
k=bnxc+1  j (nx� k)

Wj (x)
2k

1A =

1

� (�)

8>>>>>><>>>>>>:

0BBBBBB@

Pbnbc8<: k = bnxc+ 1
:
�� k
n � x

�� � 1
n�

 j (nx� k)

Wj (x)

1CCCCCCA
kD�

�xfk

1;[x;b]

�n��
+

1

Wj (x)

0BBBBBB@
bnbcX

8<: k = bnxc+ 1
:
�� k
n � x

�� > 1
n�

 j (nx� k)

1CCCCCCA
kD�

�xfk

1;[x;b]

(b� x)�

�

9>>>>>>=>>>>>>;
�

kD�
�xfk


1;[x;b]

� (�+ 1)

�
1

n��
+ �jcj (�; n) (b� x)�

�
: (126)

That is

kj��2n (x)k �

kD�
�xfk


1;[x;b]

� (�+ 1)

�
1

n��
+ �jcj (�; n) (b� x)�

�
: (127)

But for large enough n 2 N we get

kj��2n (x)k �
2
kD�

�xfk

1;[x;b]

� (�+ 1)n��
: (128)

Since
D�

x�f




1;[a;x]

,
kD�

�xfk

1;[x;b]

�M , M > 0, we derive

��jn (x) � kj��1n (x)k + kj��2n (x)k (by (122), (128))
� 4M

� (�+ 1)n��
: (129)

That is for large enough n 2 N we get

k�j (x)k =
��jn (x) � � 4M

� (�+ 1)

��
1

n��

�
; (130)

23



resulting to

k� (x)k = O

�
1

n��

�
; (131)

and
k� (x)k = o (1) : (132)

And, letting 0 < " � �, we derive

k� (x)k�
1

n�(��")

� � � 4M

� (�+ 1)

��
1

n�"

�
! 0; (133)

as n!1:
I.e.

k� (x)k = o

�
1

n�(��")

�
; (134)

proving the claim.
It follows a multivariate Voronovskaya type asymptotic expansion.

Theorem 37 Let
�
X; k�k

�
be a Banach space, m 2 N such that m � 1��

� ,

where 0 < � < 1
2 . Let f 2 C

m
�QN

i=1 [ai; bi] ; X
�
(m-times continuously Fréchet

di¤erentiable functions), x 2
QN
i=1 [ai; bi], and n 2 N : n1�� > 2; j = 1; 2; 3; 4:

Then

jHn (f; x)� f (x) =
m�1X
j�=1

1

j�!
jHn

�
f (j�) (x) (� � x)j� ; x

�
+ o

�
1

n�(m�")

�
; (135)

where 0 < " � m:

If m = 1, the sum in (135) collapses.
The last (135) implies that

n�(m�")

24
jHn (f; x)� f (x)�

m�1X
j�=1

1

j�!
jHn

�
f (j�) (x) (� � x)j� ; x

�35! 0;

(136)
as n!1; 0 < " � m:

When m = 1, or f (j�) (x) = 0, j� = 1; :::;m� 1; then we derive that

n�(m�") [jHn (f; x)� f (x)]! 0; (137)

as n!1, 0 < " � m.
Above it is j = 1; 2; 3; 4:
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Proof. We have that

f

�
k

n

�
� f (x) =

m�1X
j�=1

f (j�) (x)

j�!

�
k

n
� x
�j�

+Rm

�
k

n
; x

�
; (138)

where

Rm

�
k

n
; x

�
:=

Z 1

0

(1� u)m�1

(m� 1)! f
(m)

�
x+ u

�
k

n
� x
���

k

n
� x
�m

du; (139)

here we set f (0) (x)
�
k
n � x

�0
= f (x) :

By (97) we get thatRm�kn; x
�



�
f (m)1

m!

kn � x
m
1

(140)

�
f (m)1

m!
kb� akm1 :

Call

Vj (x) :=

bnbcX
k=dnae

Zj (nx� k) ; (141)

for j = 1; 2; 3; 4:
Hence, we have

jUn (x) :=

Pbnbc
k=dnae Zj (nx� k)Rm

�
k
n ; x

�
Vj (x)

=

Pbnbc8<: k = dnae
:
 k
n � x


1 � 1

n�

Zj (nx� k)Rm
�
k
n ; x

�
Vj (x)

+ (142)

Pbnbc8<: k = dnae
:
 k
n � x


1 > 1

n�

Zj (nx� k)Rm
�
k
n ; x

�
Vj (x)

:

Therefore, we obtain (j = 1; 2; 3; 4)

kjUn (x)kj �

0BBBBBB@
bnbcX

8<: k = dnae
:
 k
n � x


1 � 1

n�

Zj (nx� k)
Vj (x)

1CCCCCCA
f (m)1

m!

1

nm�
+
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0BBBBBB@
bnbcX

8<: k = dnae
:
 k
n � x


1 > 1

n�

Zj (nx� k)
Vj (x)

1CCCCCCA
f (m)1

m!
kb� akm1 (143)

(by (20), (21); (40), (41); (60), (61); (82), (83))

�
f (m)1

m!

�
1

n�m
+ j (N) cj (�; n) kb� ak

m
1

�
:

Consequently, we get that

kjUn (x)kj �
f (m)1

m!

�
1

n�m
+ j (N) cj (�; n) kb� ak

m
1

�
: (144)

For large enough n 2 N, we get

kjUn (x)kj �
2
f (m)1

m!

�
1

n�m

�
: (145)

That is

kjUn (x)kj = O

�
1

n�m

�
; (146)

and
kjUn (x)kj = o (1) : (147)

And, letting 0 < " � m, we derive

kjUn (x)kj�
1

n�(m�")

� �  2f (m)1
m!

!
1

n�"
! 0, (148)

as n!1:
I.e.

kjUn (x)kj = o

�
1

n�(m�")

�
: (149)

By (138) we observe thatPbnbc
k=dnae f

�
k
n

�
Zj (nx� k)

Vj (x)
� f (x) = (150)

m�1X
j�=1

0@Pbnbc
k=dnae

�
f (j�) (x)

�
k
n � x

�j��
Zj (nx� k)

j�!Vj (x)

1A+
Pbnbc

k=dnae Zj (nx� k)Rm
�
k
n ; x

�
Vj (x)

:

26



The last says (j = 1; 2; 3; 4)

jHn (f; x)� f (x)�
m�1X
j�=1

1

j�!
jHn

�
f (j�) (x) (� � x)j� ; x

�
= jUn (x) : (151)

The proof of the theorem is complete.
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