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Abstract

Here we study the univariate fuzzy fractional quantitative approxi-
mation of fuzzy real valued functions on a compact interval by quasi-
interpolation arctangent-algebraic-Gudermannian-generalized symmetri-
cal activation function relied fuzzy neural network operators. These ap-
proximations are derived by establishing fuzzy Jackson type inequalities
involving the fuzzy moduli of continuity of the right and left Caputo fuzzy
fractional derivatives of the involved function. The approximations are
fuzzy pointwise and fuzzy uniform. The related feed-forward fuzzy neural
networks are with one hidden layer. We study also the fuzzy integer deriv-
ative and just fuzzy continuous cases. Our fuzzy fractional approximation
result using higher order fuzzy di¤erentiation converges better than in the
fuzzy just continuous case.
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1 Introduction

The author in [1] and [2], see chapters 2-5, was the �rst to derive quantitative
neural network approximations to continuous functions with rates by very specif-
ically de�ned neural network operators of Cardaliaguet-Euvrard and �Squash-
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ing�types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
He studied there both the univariate and multivariate cases. The de�ning these
operators �bell-shaped�and �squashing�function are assumed to be of compact
support.
The author inspired by [28], continued his studies on neural networks ap-

proximation by introducing and using the proper quasi-interpolation operators
of sigmoidal and hyperbolic tangent type which resulted into [10], [13] - [20], by
treating both the univariate and multivariate cases.
Continuation of the author�s works ([17], [18] and [19], Chapter 20) is this ar-

ticle where fuzzy neural network approximation based on arctangent-algebraic-
Gudermannian-generalized symmetrical activation functions is taken at the frac-
tional and ordinary levels resulting into higher rates of approximation. We
involve the fuzzy ordinary derivatives and the right and left Caputo fuzzy frac-
tional derivatives of the fuzzy function under approximation and we establish
tight fuzzy Jackson type inequalities. An extensive background is given on
fuzzyness, fractional calculus and neural networks, all needed to present our
work.
Our fuzzy feed-forward neural networks (FFNNs) are with one hidden layer.

About neural networks in general study [35], [38], [39].

2 Fuzzy Fractional Mathematical Analysis Ba-
sics

(see also [19], pp. 432-444)
We need the following basic background

De�nition 1 (see [43]) Let � : R! [0; 1] with the following properties:
(i) is normal, i.e., 9 x0 2 R; � (x0) = 1:
(ii) � (�x+ (1� �) y) � minf� (x) ; � (y)g, 8 x; y 2 R, 8 � 2 [0; 1] (� is

called a convex fuzzy subset).
(iii) � is upper semicontinuous on R, i.e. 8 x0 2 R and 8 " > 0, 9 neigh-

borhood V (x0) : � (x) � � (x0) + ", 8 x 2 V (x0) :
(iv) The set supp (�) is compact in R (where supp(�) := fx 2 R : � (x) > 0g).
We call � a fuzzy real number. Denote the set of all � with RF .
E.g. �fx0g 2 RF , for any x0 2 R, where �fx0g is the characteristic function

at x0.
For 0 < r � 1 and � 2 RF de�ne

[�]
r
:= fx 2 R : � (x) � rg
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and
[�]

0
:= fx 2 R : � (x) � 0g:

Then it is well known that for each r 2 [0; 1], [�]r is a closed and bounded
interval on R ([34]).

For u; v 2 RF and � 2 R, we de�ne uniquely the sum u� v and the product
�� u by

[u� v]r = [u]r + [v]r , [�� u]r = � [u]
r , 8 r 2 [0; 1] ;

where
[u]

r
+ [v]

r means the usual addition of two intervals (as substes of R) and
� [u]

r means the usual product between a scalar and a subset of R (see, e.g.
[43]).
Notice 1� u = u and it holds

u� v = v � u, �� u = u� �:

If 0 � r1 � r2 � 1 then
[u]

r2 � [u]r1 :

Actually [u]r =
h
u
(r)
� ; u

(r)
+

i
, where u(r)� � u

(r)
+ , u

(r)
� , u

(r)
+ 2 R, 8 r 2 [0; 1].

For � > 0 one has �u(r)� = (�� u)(r)� , respectively.
De�ne D : RF � RF ! RF by

D (u; v) := sup
r2[0;1]

max
n���u(r)� � v(r)�

��� ; ���u(r)+ � v(r)+
���o ;

where
[v]

r
=
h
v
(r)
� ; v

(r)
+

i
; u; v 2 RF :

We have that D is a metric on RF :
Then (RF ; D) is a complete metric space, see [43], [44].

Here
�P
stands for fuzzy summation and eo := �f0g 2 RF is the neural

element with respect to �, i.e.,

u� e0 = e0� u = u, 8 u 2 RF :

Denote
D� (f; g) = sup

x2X�R
D (f; g) ;

where f; g : X ! RF :
We mention
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De�nition 2 Let f : X � R! RF , X interval, we de�ne the (�rst) fuzzy
modulus of continuity of f by

!
(F)
1 (f; �)X = sup

x;y2X, jx�yj��
D (f (x) ; f (y)) , � > 0:

When g : X � R! R, we de�ne

!1 (g; �) = !1 (g; �)X = sup
x;y2X, jx�yj��

jg (x)� g (y)j :

We de�ne by CUF (R) the space of fuzzy uniformly continuous functions from
R ! RF , also CF (R) is the space of fuzzy continuous functions on R, and
Cb (R;RF ) is the fuzzy continuous and bounded functions.
We mention

Proposition 3 ([5]) Let f 2 CUF (X) : Then !
(F)
1 (f; �)X <1, for any � > 0.

By [9], p. 129 we have that CUF ([a; b]) = CF ([a; b]), fuzzy continuous func-
tions on [a; b] � R:

Proposition 4 ([5]) It holds

lim
�!0

!
(F)
1 (f; �)X = !

(F)
1 (f; 0)X = 0;

i¤ f 2 CUF (X), where X is a compact interval.

Proposition 5 ([5]) Here [f ]r =
h
f
(r)
� ; f

(r)
+

i
, r 2 [0; 1] : Let f 2 CF (R). Then

f
(r)
� are equicontinuous with respect to r 2 [0; 1] over R, respectively in �:

Note 6 It is clear by Propositions 4, 5, that if f 2 CUF (R), then f
(r)
� 2 CU (R)

(uniformly continuous on R). Also if f 2 Cb (R;RF ) implies f
(r)
� 2 Cb (R)

(continuous and bounded functions on R).

Proposition 7 Let f : R ! RF . Assume that !F1 (f; �)X , !1
�
f
(r)
� ; �

�
X
,

!1

�
f
(r)
+ ; �

�
X
are �nite for any � > 0, r 2 [0; 1] ; where X any interval of

R:
Then

!
(F)
1 (f; �)X = sup

r2[0;1]
max

n
!1

�
f
(r)
� ; �

�
X
; !1

�
f
(r)
+ ; �

�
X

o
:

Proof. Similar to Proposition 14.15, p. 246 of [9].
We need
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Remark 8 ([3]). Here r 2 [0; 1], x(r)i ; y
(r)
i 2 R, i = 1; :::;m 2 N. Suppose that

sup
r2[0;1]

max
�
x
(r)
i ; y

(r)
i

�
2 R, for i = 1; :::;m:

Then one sees easily that

sup
r2[0;1]

max

 
mX
i=1

x
(r)
i ;

mX
i=1

y
(r)
i

!
�

mX
i=1

sup
r2[0;1]

max
�
x
(r)
i ; y

(r)
i

�
: (1)

We need

De�nition 9 Let x; y 2 RF . If there exists z 2 RF : x = y � z, then we call z
the H-di¤erence on x and y, denoted x� y.

De�nition 10 ([42]) Let T := [x0; x0 + �] � R, with � > 0. A function f :
T ! RF is H-di¤erentiable at x 2 T if there exists an f 0 (x) 2 RF such that
the limits (with respect to D)

lim
h!0+

f (x+ h)� f (x)
h

, lim
h!0+

f (x)� f (x� h)
h

(2)

exist and are equal to f 0 (x) :
We call f 0 the H-derivative or fuzzy derivative of f at x.

Above is assumed that the H-di¤erences f (x+ h)� f (x), f (x)� f (x� h)
exists in RF in a neighborhood of x:
Higher order H-fuzzy derivatives are de�ned the obvious way, like in the real

case.
We denote by CNF (R), N � 1, the space of all N -times continuously H-

fuzzy di¤erentiable functions from R into RF ; similarly is de�ned CNF ([a; b]),
[a; b] � R:
We mention

Theorem 11 ([36]) Let f : R ! RF be H-fuzzy di¤erentiable. Let t 2 R,
0 � r � 1. Clearly

[f (t)]
r
=
h
f (t)

(r)
� ; f (t)

(r)
+

i
� R:

Then (f (t))(r)� are di¤erentiable and

[f 0 (t)]
r
=

��
f (t)

(r)
�

�0
;
�
f (t)

(r)
+

�0�
:

I.e.
(f 0)

(r)
� =

�
f
(r)
�

�0
, 8 r 2 [0; 1] :
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Remark 12 ([4]) Let f 2 CNF (R), N � 1. Then by Theorem 11 we obtainh
f (i) (t)

ir
=

��
f (t)

(r)
�

�(i)
;
�
f (t)

(r)
+

�(i)�
;

for i = 0; 1; 2; :::; N; and in particular we have that�
f (i)
�(r)
�
=
�
f
(r)
�

�(i)
,

for any r 2 [0; 1] ; all i = 0; 1; 2; :::; N:

Note 13 ([4]) Let f 2 CNF (R), N � 1. Then by Theorem 11 we have f (r)� 2
CN (R), for any r 2 [0; 1] :

Items 11-13 are valid also on [a; b].
By [9], p. 131, if f 2 CF ([a; b]), then f is a fuzzy bounded function.
We need also a particular case of the Fuzzy Henstock integral (� (x) = �

2 ),
see [43].

De�nition 14 ([33], p. 644) Let f : [a; b] ! RF . We say that f is Fuzzy-
Riemann integrable to I 2 RF if for any " > 0, there exists � > 0 such that for
any division P = f[u; v] ; �g of [a; b] with the norms �(P ) < �, we have

D

 �X
P

(v � u)� f (�) ; I
!
< ":

We write

I := (FR)

Z b

a

f (x) dx: (3)

We mention

Theorem 15 ([34]) Let f : [a; b]! RF be fuzzy continuous. Then

(FR)

Z b

a

f (x) dx

exists and belongs to RF , furthermore it holds"
(FR)

Z b

a

f (x) dx

#r
=

"Z b

a

(f)
(r)
� (x) dx;

Z b

a

(f)
(r)
+ (x) dx

#
;

8 r 2 [0; 1] :

For the de�nition of general fuzzy integral we follow [37] next.
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De�nition 16 Let (
;�; �) be a complete �-�nite measure space. We call F :

! RF measurable i¤ 8 closed B � R the function F�1 (B) : 
! [0; 1] de�ned
by

F�1 (B) (w) := sup
x2B

F (w) (x) , all w 2 


is measurable, see [37].

Theorem 17 ([37]) For F : 
! RF ,

F (w) =
n�
F
(r)
� (w) ; F

(r)
+ (w)

�
j0 � r � 1

o
;

the following are equivalent
(1) F is measurable,
(2) 8 r 2 [0; 1], F (r)� ; F

(r)
+ are measurable.

Following [37], given that for each r 2 [0; 1], F (r)� ; F
(r)
+ are integrable we

have that the parametrized representation��Z
A

F
(r)
� d�;

Z
A

F
(r)
+ d�

�
j0 � r � 1

�
(4)

is a fuzzy real number for each A 2 �:
The last fact leads to

De�nition 18 ([37]) A measurable function F : 
! RF ,

F (w) =
n�
F
(r)
� (w) ; F

(r)
+ (w)

�
j0 � r � 1

o
is integrable if for each r 2 [0; 1], F (r)� are integrable, or equivalently, if F (0)� are
integrable.

In this case, the fuzzy integral of F over A 2 � is de�ned byZ
A

Fd� :=

��Z
A

F
(r)
� d�;

Z
A

F
(r)
+ d�

�
j0 � r � 1

�
:

By [37], F is integrable i¤ w ! kF (w)kF is real-valued integrable.
Here denote

kukF := D
�
u;e0� , 8 u 2 RF :

We need also

Theorem 19 ([37]) Let F;G : 
! RF be integrable. Then
(1) Let a; b 2 R, then aF + bG is integrable and for each A 2 �,Z

A

(aF + bG) d� = a

Z
A

Fd�+ b

Z
A

Gd�;
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(2) D (F;G) is a real- valued integrable function and for each A 2 �,

D

�Z
A

Fd�;

Z
A

Gd�

�
�
Z
A

D (F;G) d�:

In particular, 



Z
A

Fd�






F
�
Z
A

kFkF d�:

Above � could be the Lebesgue measure, with all the basic properties valid
here too.
Basically here we have�Z

A

Fd�

�r
=

�Z
A

F
(r)
� d�;

Z
A

F
(r)
+ d�

�
; (5)

i.e. �Z
A

Fd�

�(r)
�
=

Z
A

F
(r)
� d�; 8 r 2 [0; 1] :

We need

De�nition 20 Let � � 0, n = d�e (d�e is the ceiling of the number), f 2
ACn ([a; b]) (space of functions f with f (n�1) 2 AC ([a; b]), absolutely continu-
ous functions). We call left Caputo fractional derivative (see [29], pp. 49-52,
[32], [40]) the function

D�
�af (x) =

1

� (n� �)

Z x

a

(x� t)n���1 f (n) (t) dt; (6)

8 x 2 [a; b], where � is the gamma function � (�) =
R1
0
e�tt��1dt; � > 0.

Notice D�
�af 2 L1 ([a; b]) and D�

�af exists a.e. on [a; b].
We set D0

�af (x) = f (x), 8 x 2 [a; b] :

Lemma 21 ([8]) Let � > 0, � =2 N, n = d�e, f 2 Cn�1 ([a; b]) and f (n) 2
L1 ([a; b]) : Then D�

�af (a) = 0:

De�nition 22 (see also [6], [31], [32]) Let f 2 ACm ([a; b]), m = d�e, � > 0.
The right Caputo fractional derivative of order � > 0 is given by

D�
b�f (x) =

(�1)m

� (m� �)

Z b

x

(� � x)m���1 f (m) (�) d�; (7)

8 x 2 [a; b]. We set D0
b�f (x) = f (x) : Notice that D�

b�f 2 L1 ([a; b]) and D
�
b�f

exists a.e. on [a; b] :

Lemma 23 ([8]) Let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]), m = d�e, � > 0;

� =2 N. Then D�
b�f (b) = 0:
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Convention 24 We assume that

D�
�x0f (x) = 0, for x < x0; (8)

and
D�
x0�f (x) = 0, for x > x0; (9)

for all x; x0 2 [a; b]:

We mention

Proposition 25 ([8]) Let f 2 Cn ([a; b]), n = d�e, � > 0. Then D�
�af (x) is

continuous in x 2 [a; b] :

Also we have

Proposition 26 ([8]) Let f 2 Cm ([a; b]), m = d�e, � > 0. Then D�
b�f (x) is

continuous in x 2 [a; b] :

We further mention

Proposition 27 ([8]) Let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]), m = d�e,
� > 0 and

D�
�x0f (x) =

1

� (m� �)

Z x

x0

(x� t)m���1 f (m) (t) dt; (10)

for all x; x0 2 [a; b] : x � x0:

Then D�
�x0f (x) is continuous in x0:

Proposition 28 ([8]) Let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]) ; m = d�e,
� > 0 and

D�
x0�f (x) =

(�1)m

� (m� �)

Z x0

x

(� � x)m���1 f (m) (�) d�; (11)

for all x; x0 2 [a; b] : x � x0:

Then D�
x0�f (x) is continuous in x0:

We need

Proposition 29 ([8]) Let g 2 C ([a; b]), 0 < c < 1, x; x0 2 [a; b]. De�ne

L (x; x0) =

Z x

x0

(x� t)c�1 g (t) dt, for x � x0; (12)

and L (x; x0) = 0, for x < x0:

Then L is jointly continuous in (x; x0) on [a; b]
2
:
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We mention

Proposition 30 ([8]) Let g 2 C ([a; b]), 0 < c < 1, x; x0 2 [a; b]. De�ne

K (x; x0) =

Z x

x0

(� � x)c�1 g (�) d�, for x � x0; (13)

and K (x; x0) = 0, for x > x0:

Then K (x; x0) is jointly continuous from [a; b]
2 into R:

Based on Propositions 29, 30 we derive

Corollary 31 ([8]) Let f 2 Cm ([a; b]), m = d�e, � > 0, � =2 N, x; x0 2
[a; b] : Then D�

�x0f (x), D
�
x0�f (x) are jointly continuous functions in (x; x0)

from [a; b]
2 into R:

We need

Theorem 32 ([8]) Let f : [a; b]2 ! R be jointly continous. Consider

G (x) = !1 (f (�; x) ; �)[x;b] ; (14)

� > 0, x 2 [a; b] :
Then G is continuous in x 2 [a; b] :

Also it holds

Theorem 33 ([8]) Let f : [a; b]2 ! R be jointly continous. Then

H (x) = !1 (f (�; x) ; �)[a;x] ; (15)

x 2 [a; b], is continuous in x 2 [a; b], � > 0:

So that for f 2 Cm ([a; b]), m = d�e, � > 0, � =2 N, x; x0 2 [a; b], we have
that !1

�
D�
�xf; h

�
[x;b]

, !1
�
D�
x�f; h

�
[a;x]

are continuous functions in x 2 [a; b],
h > 0 is �xed.
We make

Remark 34 ([8]) Let f 2 Cn�1 ([a; b]), f (n) 2 L1 ([a; b]) ; n = d�e, � > 0,
� =2 N: Then we have

jD�
�af (x)j �



f (n)

1
� (n� � + 1) (x� a)

n�� , 8 x 2 [a; b] : (16)

Thus we observe

!1 (D
�
�af; �) = sup

x;y2[a;b]
jx�yj��

jD�
�af (x)�D�

�af (y)j (17)
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� sup
x;y2[a;b]
jx�yj��

 

f (n)

1
� (n� � + 1) (x� a)

n��
+



f (n)

1
� (n� � + 1) (y � a)

n��
!

�
2


f (n)

1

� (n� � + 1) (b� a)
n��

: (18)

Consequently

!1 (D
�
�af; �) �

2


f (n)

1

� (n� � + 1) (b� a)
n��

: (19)

Similarly, let f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]) ; m = d�e, � > 0, � =2 N;
then

!1

�
D�
b�f; �

�
�

2


f (m)

1

� (m� � + 1) (b� a)
m��

: (20)

So for f 2 Cm�1 ([a; b]), f (m) 2 L1 ([a; b]) ; m = d�e, � > 0, � =2 N; we �nd

sup
x02[a;b]

!1
�
D�
�x0f; �

�
[x0;b]

�
2


f (m)

1

� (m� � + 1) (b� a)
m��

; (21)

and

sup
x02[a;b]

!1

�
D�
x0�f; �

�
[a;x0]

�
2


f (m)

1

� (m� � + 1) (b� a)
m��

: (22)

By Proposition 15.114, p. 388 of [7], we get here that D�
�x0f 2 C ([x0; b]), and

by [12] we obtain that D�
x0�f 2 C ([a; x0]).

We need

De�nition 35 ([11]) Let f 2 CF ([a; b]) (fuzzy continuous on [a; b] � R), � >
0.
We de�ne the Fuzzy Fractional left Riemann-Liouville operator as

J�a f (x) :=
1

� (�)
�
Z x

a

(x� t)��1 � f (t) dt; x 2 [a; b] ; (23)

J0af := f:

Also, we de�ne the Fuzzy Fractional right Riemann-Liouville operator as

I�b�f (x) :=
1

� (�)
�
Z b

x

(t� x)��1 � f (t) dt; x 2 [a; b] ; (24)

I0b�f := f:

We mention
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De�nition 36 ([11]) Let f : [a; b] ! RF is called fuzzy absolutely continuous
i¤ 8 � > 0, 9 � > 0 for every �nite, pairwise disjoint, family

(ck; dk)
n
k=1 � (a; b) with

nX
k=1

(dk � ck) < �

we get
nX
k=1

D (f (dk) ; f (ck)) < �: (25)

We denote the related space of functions by ACF ([a; b]) :
If f 2 ACF ([a; b]), then f 2 CF ([a; b]) :

It holds

Proposition 37 ([11]) f 2 ACF ([a; b]) , f
(r)
� 2 AEC ([a; b]), 8 r 2 [0; 1]

(absolutely equicontinuous).

We need

De�nition 38 ([11]) We de�ne the Fuzzy Fractional left Caputo derivative,
x 2 [a; b].
Let f 2 CnF ([a; b]), n = d�e, � > 0 (d�e denotes the ceiling). We de�ne

D�F
�a f (x) :=

1

� (n� �) �
Z x

a

(x� t)n���1 � f (n) (t) dt (26)

=

��
1

� (n� �)

Z x

a

(x� t)n���1
�
f (n)

�(r)
�
(t) dt;

1

� (n� �)

Z x

a

(x� t)n���1
�
f (n)

�(r)
+
(t) dt

�
j0 � r � 1

�
=

=

��
1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
�

�(n)
(t) dt;

1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
+

�(n)
(t) dt

�
j0 � r � 1

�
: (27)

So, we get�
D�F
�a f (x)

�r
=

��
1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
�

�(n)
(t) dt;

1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
+

�(n)
(t) dt

��
; 0 � r � 1: (28)

That is�
D�F
�a f (x)

�(r)
� =

1

� (n� �)

Z x

a

(x� t)n���1
�
f
(r)
�

�(n)
(t) dt =

�
D�
�a

�
f
(r)
�

��
(x) ;

12



see [7], [29].
I.e. we get that �

D�F
�a f (x)

�(r)
� =

�
D�
�a

�
f
(r)
�

��
(x) ; (29)

8 x 2 [a; b], in short�
D�F
�a f

�(r)
� = D�

�a

�
f
(r)
�

�
; 8 r 2 [0; 1] : (30)

We need

Lemma 39 ([11]) D�F
�a f (x) is fuzzy continuous in x 2 [a; b].

We need

De�nition 40 ([11]) We de�ne the Fuzzy Fractional right Caputo derivative,
x 2 [a; b].
Let f 2 CnF ([a; b]), n = d�e, � > 0. We de�ne

D�F
b� f (x) :=

(�1)n

� (n� �) �
Z b

x

(t� x)n���1 � f (n) (t) dt

=

( 
(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f (n)

�(r)
�
(t) dt;

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f (n)

�(r)
+
(t) dt

!
j0 � r � 1

)
(31)

=

( 
(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
�

�(n)
(t) dt;

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
+

�(n)
(t) dt

!
j0 � r � 1

)
:

We get

�
D�F
b� f (x)

�r
=

" 
(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
�

�(n)
(t) dt;

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
+

�(n)
(t) dt

!#
; 0 � r � 1:

That is

�
D�F
b� f (x)

�(r)
� =

(�1)n

� (n� �)

Z b

x

(t� x)n���1
�
f
(r)
�

�(n)
(t) dt =

�
D�
b�

�
f
(r)
�

��
(x) ;
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see [6].
I.e. we get that �

D�F
b� f (x)

�(r)
� =

�
D�
b�

�
f
(r)
�

��
(x) ; (32)

8 x 2 [a; b], in short�
D�F
b� f

�(r)
� = D�

b�

�
f
(r)
�

�
; 8 r 2 [0; 1] : (33)

Clearly,

D�
b�

�
f
(r)
�

�
� D�

b�

�
f
(r)
+

�
; 8 r 2 [0; 1] :

We need

Lemma 41 ([11]) D�F
b� f (x) is fuzzy continuous in x 2 [a; b].

3 Real neural network approximation

3.1 About the arctangent activation function neural net-
works

We consider the

arctanx =

Z x

0

dz

1 + z2
; x 2 R: (34)

We will be using

h (x) :=
2

�
arctan

��
2
x
�
=
2

�

Z �x
2

0

dz

1 + z2
, x 2 R; (35)

which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (�x) = �h (x) , h (+1) = 1, h (�1) = �1;

and
h0 (x) =

4

4 + �2x2
> 0, all x 2 R: (36)

We consider the activation function

 1 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (37)

and we notice that
 1 (�x) =  1 (x) ; (38)

it is an even function.
Since x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  1 (x) > 0, all x 2 R.

14



We see that
 1 (0) =

1

�
arctan

�

2
�= 18:31: (39)

Let x > 0, we have that

 01 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) =

�4�2x�
4 + �2 (x+ 1)

2
��
4 + �2 (x� 1)2

� < 0: (40)

That is
 01 (x) < 0, for x > 0: (41)

That is  1 is strictly decreasing on [0;1) and clearly is strictly increasing on
(�1; 0], and  01 (0) = 0:
Observe that

lim
x!+1

 1 (x) =
1
4 (h (+1)� h (+1)) = 0;

and
lim

x!�1
 1 (x) =

1
4 (h (�1)� h (�1)) = 0:

(42)

That is the x-axis is the horizontal asymptote on  1.
All in all,  1 is a bell symmetric function with maximum  1 (0)

�= 18:31:
We need

Theorem 42 ([20], p. 286) We have that

1X
i=�1

 1 (x� i) = 1, 8 x 2 R: (43)

Theorem 43 ([20], p. 287) It holdsZ 1

�1
 1 (x) dx = 1: (44)

So that  1 (x) is a density function on R:
We mention

Theorem 44 ([20], p. 288) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 1 (nx� k) <
2

�2 (n1�� � 2) =: c1 (�; n) : (45)

15



Denote by b�c the integral part of the number and by d�e the ceiling of the
number.
We further mention

Theorem 45 ([20]) Let x 2 [a; b] � R and n 2 N so that dnae � bnbc. It holds

1Pbnbc
k=dnae  1 (nx� k)

<
1

 1 (1)
�= 0:0868 =: �1; 8 x 2 [a; b] : (46)

We make

Remark 46 ([20]) (i) We have that

lim
n!1

bnbcX
k=dnae

 1 (nx� k) 6= 1; (47)

for at least some x 2 [a; b] :
(ii) For large enough n we always obtain dnae � bnbc. Also a � k

n � b, i¤
dnae � k � bnbc. In general it holds (by (43)) that

bnbcX
k=dnae

 1 (nx� k) � 1: (48)

We give

De�nition 47 ([20]) Let f 2 C ([a; b]) and n 2 N : dnae � bnbc. We de�ne
the real positive linear neural network operator

1An (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
 1 (nx� k)Pbnbc

k=dnae  1 (nx� k)
; x 2 [a; b] : (49)

Clearly here 1An (f; x) 2 C ([a; b]). In [20] we studied the pointwise and
uniform convergence of 1An (f; x) to f (x) with rates.
We mention

Theorem 48 ([20]) Let f 2 C ([a; b]), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b] :
Then
i)

j1An (f; x)� f (x)j � 0:0868
�
!1

�
f;
1

n�

�
+

4 kfk1
�2 (n1�� � 2)

�
=: �1 (f) ; (50)

and
ii)

kAn (f)� fk1 � �1 (f) : (51)

We notice that lim
n!1

An (f) = f , pointwise and uniformly.
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We mention

Theorem 49 ([20]) Let f 2 CN ([a; b]), n;N 2 N, 0 < � < 1, x 2 [a; b] and
n1�� > 2. Then
i)

j1An (f; x)� f (x)j � 0:0868

8<:
NX
j=1

��f (j) (x)��
j!

"
1

n�j
+

2 (b� a)j

�2 (n1�� � 2)

#
+ (52)

"
!1

�
f (N);

1

n�

�
1

n�NN !
+
4


f (N)

1 (b� a)N
N !�2 (n1�� � 2)

#)
=: 
11 (f; x) ;

ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

j1An (f; x0)� f (x0)j � 0:0868�(
!1

�
f (N);

1

n�

�
1

n�NN !
+
4


f (N)

1 (b� a)N
N !�2 (n1�� � 2)

)
=: 
12 (f) ; (53)

and
iii)

k1An (f)� fk1 � 0:0868

8<:
NX
j=1



f (j)

1
j!

"
1

n�j
+

2 (b� a)j

�2 (n1�� � 2)

#
+

"
!1

�
f (N);

1

n�

�
1

n�NN !
+
4


f (N)

1 (b� a)N
N !�2 (n1�� � 2)

#)
=: 
13 (f) : (54)

Again we obtain lim
n!1 1An (f) = f , pointwise and uniformly.

We also mention the real valued fractional approximation result by neural
networks.

Theorem 50 ([20]) Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b]), 0 < � < 1,
x 2 [a; b], n 2 N : n1�� > 2: Then
i) ������1An (f; x)�

N�1X
j=1

f (j) (x)

j!
1An

�
(� � x)j

�
(x)� f (x)

������ �
(0:0868)

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

17



2

�2 (n1�� � 2)

�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
��

=: �11 (f; x) ;

(55)
ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

j1An (f; x)� f (x)j �
(0:0868)

� (�+ 1)8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

2

�2 (n1�� � 2)

�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
��

=: �12 (f; x) ;

(56)
iii)

j1An (f; x)� f (x)j � (0:0868) �8<:
N�1X
j=1

��f (j) (x)��
j!

�
1

n�j
+ (b� a)j 2

�2 (n1�� � 2)

�
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

2

�2 (n1�� � 2)

�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
���

=: �13 (f; x) ;

(57)
8 x 2 [a; b] ;
and
iv)

k1Anf � fk1 � (0:0868) �8<:
N�1X
j=1



f (j)

1
j!

�
1

n�j
+ (b� a)j 2

�2 (n1�� � 2)

�
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

2

�2 (n1�� � 2) (b� a)
�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
=: �14 (f) :

(58)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain the real valued fractionally type pointwise and
uniform convergence with rates of 1An ! I the unit operator, as n!1:
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3.2 About the algebraic activation function neural net-
works

Here see also [21].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (59)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
2m

> 0, 8 x 2 R, (60)

proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:

We consider the activation function

 2 (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (61)

Clearly it is  2 (x) =  2 (�x) ; 8 x 2 R, so that  2 is an even function and
symmetric with respect to the y-axis. Clealry  2 (x) > 0, 8 x 2 R.
Also it is

 2 (0) =
1

2 2m
p
2
: (62)

By [21], we have that  02 (x) < 0 for x > 0. That is  2 is strictly decreasing
over (0;+1) :
Clearly,  2 is strictly increasing over (�1; 0) and  02 (0) = 0.
Furthermore we obtain that

lim
x!+1

 2 (x) =
1

4
[' (+1)� ' (+1)] = 0; (63)

and
lim

x!�1
 2 (x) =

1

4
[' (�1)� ' (�1)] = 0: (64)

That is the x-axis is the horizontal asymptote of  2.
Conclusion,  2 is a bell shape symmetric function with maximum

 2 (0) =
1

2 2m
p
2
; m 2 N: (65)

We need

Theorem 51 ([21]) We have that
1X

i=�1
 2 (x� i) = 1, 8 x 2 R: (66)
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Theorem 52 ([21]) It holds Z 1

�1
 2 (x) dx = 1: (67)

Theorem 53 ([21]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 2 (nx� k) <
1

4m (n1�� � 2)2m
=: c2 (�; n) ; m 2 N:

(68)

Theorem 54 ([21]) Let [a; b] � R and n 2 N so that dnae � bnbc. It holds

1
bnbcP

k=dnae
 2 (nx� k)

< 2
�
2m
p
1 + 4m

�
=: �2; (69)

8 x 2 [a; b], m 2 N:

We make

Remark 55 ([21]) (1) We have that

lim
n!1

bnbcX
k=dnae

 2 (nx� k) 6= 1; for at least some x 2 [a; b] : (70)

(2) In general it holds that

bnbcX
k=dnae

 2 (nx� k) � 1: (71)

We mention

De�nition 56 ([21]) Let f 2 C ([a; b]) and n 2 N : dnae � bnbc. We introduce
and de�ne the real positive valued linear neural network operator

2An (f; x) :=

bnbcP
k=dnae

f
�
k
n

�
 2 (nx� k)

bnbcP
k=dnae

 2 (nx� k)
, x 2 [a; b] : (72)

Clearly here 2An (f; x) 2 C ([a; b]).
We mention here about the pointwise and uniform convergence of 2An (f; x)

to f (x) with rates.
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Theorem 57 ([21]) Let f 2 C ([a; b]), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b],
m 2 N: Then
i)

j2An (f; x)� f (x)j �
�
2m
p
1 + 4m

� "
2!1

�
f;
1

n�

�
+

kfk1
m (n1�� � 2)2m

#
=: �2 (f) ;

(73)
and
ii)

k2An (f)� fk1 � �2 (f) : (74)

We get that lim
n!1 2An (f) = f , pointwise and uniformly.

In the next we mention the high order neural network real valued approxi-
mation result by using the smoothness of f .

Theorem 58 ([21]) Let f 2 CN ([a; b]), n;N;m 2 N, 0 < � < 1, x 2 [a; b] and
n1�� > 2. Then
i)

j2An (f; x)� f (x)j �
�
2m
p
1 + 4m

�8<:
NX
j=1



f (j) (x)


j!

"
2

n�j
+

(b� a)j

2m (n1�� � 2)2m

#
+

(75)"
!1

�
f (N);

1

n�

�
2

n�NN !
+



f (N)

1 (b� a)N
N !m (n1�� � 2)2m

#)
=: 
21 (f; x) ;

ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

j2An (f; x0)� f (x0)j �
�
2m
p
1 + 4m

�
� (76)"

!1

�
f (N);

1

n�

�
2

n�NN !
+



f (N)

1 (b� a)N
N !m (n1�� � 2)2m

#
=: 
22 (f) ;

and
iii)

k2An (f)� fk1 �
�
2m
p
1 + 4m

�8<:
NX
j=1



f (j)

1
j!

"
2

n�j
+

(b� a)j

2m (n1�� � 2)2m

#
+

"
!1

�
f (N);

1

n�

�
2

n�NN !
+



f (N)

1 (b� a)N
N !m (n1�� � 2)2m

#)
=: 
23 (f) : (77)

We derive that lim
n!1 2An (f) = f , pointwise and uniformly.
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The corresponding fractional approximation result follows:

Theorem 59 ([21]) Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b]), 0 < � < 1,
m 2 N; x 2 [a; b], n 2 N : n1�� > 2: Then
i) ������2An (f; x)�

N�1X
j=1

f (j) (x)

j!
2An

�
(� � x)j

�
(x)� f (x)

������ �
2
�
2m
p
1 + 4m

�
� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

1

4m (n1�� � 2)2m
�

D�

x�f



1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

=: �21 (f; x) ;

(78)
ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

j2An (f; x)� f (x)j �
2
�
2m
p
1 + 4m

�
� (�+ 1)8<:

�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

1

4m (n1�� � 2)2m
�

D�

x�f



1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

=: �22 (f; x) ;

(79)
iii)

j2An (f; x)� f (x)j � 2
�
2m
p
1 + 4m

�
�8<:

N�1X
j=1



f (j) (x)


j!

(
1

n�j
+

(b� a)j

4m (n1�� � 2)2m

)
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

1

4m (n1�� � 2)2m
�

D�

x�f



1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�))

=: �23 (f; x) ;

(80)
8 x 2 [a; b] ;
and
iv)

k2Anf � fk1 � 2
�
2m
p
1 + 4m

�
�
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8<:
N�1X
j=1



f (j)

1
j!

(
1

n�j
+

(b� a)j

4m (n1�� � 2)2m

)
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

(b� a)�

4m (n1�� � 2)2m

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
=: �24 (f) :

(81)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain the real valued fractionally type pointwise and
uniform convergence with rates of 2An ! I the unit operator, as n!1:

3.3 About the Gudermannian activation function neural
networks

See also [22], [41].
Here we consider gd (x) the Gudermannian function [22], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (82)

Let the normalized generator sigmoid function

f (x) :=
4

�
� (x) =

4

�

Z x

0

dt

cosh t
=
8

�

Z x

0

1

et + e�t
dt; x 2 R: (83)

Here
f 0 (x) =

4

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

 3 (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (84)

By [22], we get that
 3 (x) =  3 (�x) ; 8 x 2 R; (85)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (86)
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an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain  3 (x) > 0, 8 x 2 R:
By [22], we have that

 3 (0) =
2

�
gd (1) �= 0:551: (87)

By [22]  3 is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and  03 (0) = 0.
Also we have that

lim
x!+1

 3 (x) = lim
x!�1

 3 (x) = 0; (88)

that is the x-axis is the horizontal asymptote for  3.
Conclusion,  3 is a bell shaped symmetric function with maximum  3 (0)

�=
0:551.
We mention

Theorem 60 ([22]) It holds that

1X
i=�1

 3 (x� i) = 1, 8 x 2 R: (89)

Theorem 61 ([22]) We have thatZ 1

�1
 3 (x) dx = 1: (90)

So  3 (x) is a density function.

Theorem 62 ([22]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 3 (nx� k) <
4

�e(n1���2)
=

4e2

�en1��
=: c3 (�; n) : (91)

Theorem 63 ([22]) Let [a; b] � R and n 2 N so that dnae � bnbc. It holds

1
bnbcP

k=dnae
 3 (nx� k)

< 2:412 =: �3; (92)

8 x 2 [a; b] :

We make
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Remark 64 ([22]) (1) We have that

lim
n!1

bnbcX
k=dnae

 3 (nx� k) 6= 1; for at least some x 2 [a; b] : (93)

(2) In general it holds

bnbcX
k=dnae

 3 (nx� k) � 1: (94)

De�nition 65 ([22]) Let f 2 C ([a; b]) and n 2 N : dnae � bnbc. We de�ne
the real positive valued linear neural network operator

3An (f; x) :=

bnbcP
k=dnae

f
�
k
n

�
 3 (nx� k)

bnbcP
k=dnae

 3 (nx� k)
, x 2 [a; b] : (95)

Clearly here 3An (f; x) 2 C ([a; b]).
We mention here about the pointwise and uniform convergence of 3An (f; x)

to f (x) with rates.

Theorem 66 ([22]) Let f 2 C ([a; b]), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b] :
Then
i)

j3An (f; x)� f (x)j � 2:412
�
!1

�
f;
1

n�

�
+

8 kfk1
�e(n1���2)

�
=: �3 (f) ; (96)

and
ii)

k3An (f)� fk1 � �3 (f) : (97)

We get that lim
n!1 3An (f) = f , pointwise and uniformly.

In the next we mention the high order neural network real valued approxi-
mation result by using the smoothness of f .

Theorem 67 ([22]) Let f 2 CN ([a; b]), n;N 2 N, 0 < � < 1, x 2 [a; b] and
n1�� > 2. Then
i)

j3An (f; x)� f (x)j � 2:412

8<:
NX
j=1

��f (j) (x)��
j!

"
1

n�j
+
4 (b� a)j

�e(n1���2)

#
+ (98)
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"
!1

�
f (N);

1

n�

�
1

n�NN !
+
8


f (N)

1 (b� a)N
N !�e(n1���2)

#)
=: 
31 (f; x) ;

ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

j3An (f; x0)� f (x0)j � 2:412�(
!1

�
f (N);

1

n�

�
1

n�NN !
+
8


f (N)

1 (b� a)N
N !�e(n1���2)

)
=: 
32 (f) ; (99)

and
iii)

k3An (f)� fk1 � 2:412

8<:
NX
j=1



f (j)

1
j!

"
1

n�j
+
4 (b� a)j

�e(n1���2)

#
+

"
!1

�
f (N);

1

n�

�
1

n�NN !
+
8


f (N)

1 (b� a)N
N !�e(n1���2)

#)
=: 
33 (f) : (100)

Again we obtain lim
n!1 3An (f) = f , pointwise and uniformly.

We also mention the following real valued fractional approximation result
by neural networks.

Theorem 68 ([22]) Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b]), 0 < � < 1,
x 2 [a; b], n 2 N : n1�� > 2: Then
i) ������3An (f; x)�

N�1X
j=1

f (j) (x)

j!
3An

�
(� � x)j

�
(x)� f (x)

������ �
2:412

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

4

�e(n1���2)

�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
��

=: �31 (f; x) ;

(101)
ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

j3An (f; x)� f (x)j �
2:412

� (�+ 1)8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+
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4

�2 (n1�� � 2)

�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
��

=: �32 (f; x) ;

(102)
iii)

j3An (f; x)� f (x)j � 2:412�8<:
N�1X
j=1

��f (j) (x)��
j!

�
1

n�j
+ (b� a)j 4

�e(n1���2)

�
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

4

�e(n1���2)

�

D�
x�f




1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
���

=: �33 (f; x) ;

(103)
8 x 2 [a; b] ;
and
iv)

k3Anf � fk1 � 2:412�8<:
N�1X
j=1



f (j)

1
j!

�
1

n�j
+ (b� a)j 4

�e(n1���2)

�
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

4

�e(n1���2)
(b� a)�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
=: �34 (f) :

(104)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain real valued fractionally type pointwise and uniform
convergence with rates of 3An ! I the unit operator, as n!1:

3.4 About the generalized symmetrical activation func-
tion neural networks

Here we consider the generalized symmetrical sigmoid function ([23], [30])

f1 (x) =
x

(1 + jxj�)
1
�

; � > 0, x 2 R. (105)
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This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.
The parameter � is a shape parameter controling how fast the curve ap-

proaches the asymptotes for a given slope at the in�ection point. When � = 1
f1 is the absolute sigmoid function, and when � = 2; f1 is the square root
sigmoid function. When � = 1:5 the function approximates the arctangent
function, when � = 2:9 it approximates the logistic function, and when � = 3:4
it approximates the error function. Parameter � is estimated in the likelihood
maximization ([30]). For more see [30].
Next we study the particular generator sigmoid function

f2 (x) =
x�

1 + jxj�
� 1
�

; � is an odd number, x 2 R: (106)

We have that f2 (0) = 0, and

f2 (�x) = �f2 (x) ; (107)

so f2 is symmetric with respect to zero.
When x � 0, we get that ([23])

f 02 (x) =
1

(1 + x�)
�+1
�

> 0; (108)

that is f2 is strictly increasing on [0;+1) and f2 is strictly increasing on (�1; 0].
Hence f2 is strictly increasing on R.
We also have f2 (+1) = f2 (�1) = 1:
Let us consider the activation function ([23]):

 4 (x) =
1

4
[f2 (x+ 1)� f2 (x� 1)] =

1

4

264 (x+ 1)�
1 + jx+ 1j�

� 1
�

� (x� 1)�
1 + jx� 1j�

� 1
�

375 : (109)

Clearly it holds ([23])

 4 (x) =  4 (�x) ; 8 x 2 R: (110)

and
 4 (0) =

1

2 �
p
2
; (111)

and  4 (x) > 0, 8 x 2 R.
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Following [23], we have that  4 is strictly decreasing over [0;+1), and  4
is strictly increasing on (�1; 0], by  4-symmetry with respect to y-axis, and
 04 (0) = 0:

Clearly it is
lim

x!+1
 4 (x) = lim

x!�1
 4 (x) = 0; (112)

therefore the x-axis is the horizontal asymptote of  4 (x) :
The value

 4 (0) =
1

2 �
p
2
; � is an odd number, (113)

is the maximum of  4, which is a bell shaped function.
We need

Theorem 69 ([23]) It holds

1X
i=�1

 4 (x� i) = 1, 8 x 2 R: (114)

Theorem 70 ([23]) We have thatZ 1

�1
 4 (x) dx = 1: (115)

So that  4 (x) is a density function on R:
We need

Theorem 71 ([23]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: j = �1
: jnx� jj � n1��

 4 (nx� j) <
1

2� (n1�� � 2)�
=: c4 (�; n) ; (116)

where � 2 N is an odd number.

Theorem 72 ([23]) Let [a; b] � R and n 2 N so that dnae � bnbc. Then

1
bnbcP

k=dnae
 4 (jnx� kj)

< 2
�
p
1 + 2� =: �4; (117)

where � is an odd number, 8 x 2 [a; b] :

We make
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Remark 73 ([23]) (1) We have that

lim
n!1

bnbcX
k=dnae

 4 (nx� k) 6= 1; for at least some x 2 [a; b] : (118)

(2) In general it holds

bnbcX
k=dnae

 4 (nx� k) � 1: (119)

We mention

De�nition 74 ([23]) Let f 2 C ([a; b]) and n 2 N : dnae � bnbc. We de�ne
the real positive valued linear neural network operator

4An (f; x) :=

bnbcP
k=dnae

f
�
k
n

�
 4 (nx� k)

bnbcP
k=dnae

 4 (nx� k)
, x 2 [a; b] : (120)

Clearly here 4An (f; x) 2 C ([a; b]).
We mention results about the pointwise and uniform convergence of 4An (f; x)

to f (x) with rates.

Theorem 75 ([23]) Let f 2 C ([a; b]), 0 < � < 1, n 2 N : n1�� > 2, x 2 [a; b],
� 2 N is odd: Then
i)

j4An (f; x)� f (x)j � 2 �
p
1 + 2�

"
!1

�
f;
1

n�

�
+

kfk1
� (n1�� � 2)�

#
=: �4 (f) ;

(121)
and
ii)

k4An (f)� fk1 � �4 (f) : (122)

We get that lim
n!1 4An (f) = f , pointwise and uniformly.

In the next we mention about the high order neural network real valued
approximation result by using the smoothness of f .

Theorem 76 ([23]) Let f 2 CN ([a; b]), n;N 2 N, � is odd, 0 < � < 1,
x 2 [a; b] and n1�� > 2. Then
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i)

j4An (f; x)� f (x)j � �
p
1 + 2�

8<:
NX
j=1

��f (j) (x)��
j!

"
2

n�j
+

(b� a)j

� (n1�� � 2)�

#
+

(123)"
!1

�
f (N);

1

n�

�
2

n�NN !
+
2


f (N)

1 (b� a)N
N !� (n1�� � 2)�

#)
=: 
41 (f; x) ;

ii) assume further f (j) (x0) = 0, j = 1; :::; N; for some x0 2 [a; b], it holds

j4An (f; x0)� f (x0)j � �
p
1 + 2��"

!1

�
f (N);

1

n�

�
2

n�NN !
+
2


f (N)

1 (b� a)N
N !� (n1�� � 2)�

#
=: 
42 (f) ; (124)

and
iii)

k4An (f)� fk1 � �
p
1 + 2�

8<:
NX
j=1



f (j)

1
j!

"
2

n�j
+

(b� a)j

� (n1�� � 2)�

#
+

"
!1

�
f (N);

1

n�

�
2

n�NN !
+
2


f (N)

1 (b� a)N
N !� (n1�� � 2)�

#)
=: 
43 (f) : (125)

We derive that lim
n!1 4An (f) = f , pointwise and uniformly.

Next we mention the corresponding real valued fractional approximation
result by neural networks.

Theorem 77 ([23]) Let � > 0, N = d�e, � =2 N, f 2 CN ([a; b]), 0 < � < 1, �
is odd; x 2 [a; b], n 2 N : n1�� > 2: Then
i) ������4An (f; x)�

N�1X
j=1

f (j) (x)

j!
4An

�
(� � x)j

�
(x)� f (x)

������ �
2 �
p
1 + 2�

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

1

2� (n1�� � 2)�
�

D�

x�f



1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

=: �41 (f; x) ;

(126)
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ii) if f (j) (x) = 0, for j = 1; :::; N � 1, we have

j4An (f; x)� f (x)j �
2 �
p
1 + 2�

� (�+ 1)8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

1

2� (n1�� � 2)�
�

D�

x�f



1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�)

=: �42 (f; x) ;

(127)
iii)

j4An (f; x)� f (x)j � 2 �
p
1 + 2��8<:

N�1X
j=1



f (j) (x)


j!

(
1

n�j
+

(b� a)j

2� (n1�� � 2)�

)
+

1

� (�+ 1)

8<:
�
!1
�
D�
x�f;

1
n�

�
[a;x]

+ !1
�
D�
�xf;

1
n�

�
[x;b]

�
n��

+

1

2� (n1�� � 2)�
�

D�

x�f



1;[a;x]

(x� a)� + kD�
�xfk1;[x;b] (b� x)

�
�))

=: �43 (f; x) ;

(128)
8 x 2 [a; b] ;
and
iv)

k4Anf � fk1 � 2 �
p
1 + 2��8<:

N�1X
j=1



f (j)

1
j!

(
1

n�j
+

(b� a)j

2� (n1�� � 2)�

)
+

1

� (�+ 1)

8>>>><>>>>:

 
sup
x2[a;b]

!1
�
D�
x�f;

1
n�

�
[a;x]

+ sup
x2[a;b]

!1
�
D�
�xf;

1
n�

�
[x;b]

!
n��

+

(b� a)�

2� (n1�� � 2)�

 
sup
x2[a;b]



D�
x�f




1;[a;x]

+ sup
x2[a;b]

kD�
�xfk1;[x;b]

!))
=: �44 (f) :

(129)
Above, when N = 1 the sum

PN�1
j=1 � = 0:

As we see here we obtain real valued fractionally type pointwise and uniform
convergence with rates of 4An ! I the unit operator, as n!1:

For further related results see [24]-[27].
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4 Main Results: Approximation by Fuzzy Quasi-
Interpolation Neural Network Operators with
respect to arctangent, algebraic, Gudermannian
and generalized symmetrical activation func-
tions

Let f 2 CF ([a; b]) (fuzzy continuous functions on [a; b] � R), n 2 N. We de�ne
the following Fuzzy Quasi-Interpolation Neural Network operators

jA
F
n (f; x) =

bnbc�X
k=dnae

f

�
k

n

�
�

 j (nx� k)
bnbcP

k=dnae
 j (nx� k)

; (130)

8 x 2 [a; b], see also (49), (72), (95) and (120); j = 1; 2; 3; 4:
The fuzzy sums in (130) are �nite.
Let r 2 [0; 1], we observe that

j

�
AFn (f; x)

�r
=

bnbcX
k=dnae

�
f

�
k

n

��r
0BBBB@  j (nx� k)

bnbcP
k=dnae

 j (nx� k)

1CCCCA =

bnbcX
k=dnae

�
f
(r)
�

�
k

n

�
; f
(r)
+

�
k

n

��0BBBB@  j (nx� k)
bnbcP

k=dnae
 j (nx� k)

1CCCCA =

266664
bnbcX

k=dnae

f
(r)
�

�
k

n

�0BBBB@  j (nx� k)
bnbcP

k=dnae
 j (nx� k)

1CCCCA ;

bnbcX
k=dnae

f
(r)
+

�
k

n

�0BBBB@  j (nx� k)
bnbcP

k=dnae
 j (nx� k)

1CCCCA
377775

(131)

=
h
jAn

�
f
(r)
� ; x

�
; jAn

�
f
(r)
+ ; x

�i
: (132)

We have proved that�
jA

F
n (f; x)

�(r)
� = jAn

�
f
(r)
� ; x

�
; j = 1; 2; 3; 4; (133)

respectively, 8 r 2 [0; 1], 8 x 2 [a; b] :
Therefore we get

D
�
jA

F
n (f; x) ; f (x)

�
=
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sup
r2[0;1]

max
n���jAn �f (r)� ; x

�
� f (r)� (x)

��� ; ���jAn �f (r)+ ; x
�
� f (r)+ (x)

���o ; (134)

8 x 2 [a; b]; j = 1; 2; 3; 4:
We present our �rst fuzzy neural network approximation result.

Theorem 78 Let f 2 CF ([a; b]) ; 0 < � < 1, x 2 [a; b] ; n 2 N with n1�� > 2;
j = 1; 2; 3; 4. Then
1)

D
�
jA

F
n (f; x) ; f (x)

�
� �j

�
!
(F)
1

�
f;
1

n�

�
+ 2cj (�; n)D

� (f; eo)� =: jT1n;

(135)
and
2)

D� �
jA

F
n (f) ; f

�
� jT1n: (136)

We notice that lim
n!1

�
jA

F
n (f)

�
(x)

D! f (x) ; lim
n!1 jA

F
n (f)

D�
! f , pointwise and

uniformly.
Above �j are as in (46), (69), (92), (117), and cj (�; n) are as in (45), (68),

(91), (116); j = 1; 2; 3; 4; respectively.

Proof. We have that f (r)� 2 C ([a; b]), 8 r 2 [0; 1]. Hence by (50), (73), (96)
and (121), we obtain (j = 1; 2; 3; 4)���jAn �f (r)� ; x

�
� f (r)� (x)

��� � �j

�
!1

�
f
(r)
� ;

1

n�

�
+ 2cj (�; n)




f (r)�





1

�
(137)

(by Proposition 7 and



f (r)�





1
� D� (f; eo))

� �j

�
!
(F)
1

�
f;
1

n�

�
+ 2cj (�; n)D

� (f; eo)� : (138)

Taking into account (134) the theorem is proved.
We also give

Theorem 79 Let f 2 CNF ([a; b]), N 2 N; 0 < � < 1, x 2 [a; b] ; n 2 N with
n1�� > 2; j = 1; 2; 3; 4. Then
1)

D
�
jA

F
n (f; x) ; f (x)

�
� �j8<:

NX
j�=1

D
�
f (j�) (x) ; eo�
j�!

�
1

n�j�
+ cj (�; n) (b� a)j�

�
+

"
!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+ 2cj (�; n)D

�
�
f (N); eo� (b� a)N

N !

#)
; (139)
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2) assume further that f (j�) (x0) = eo, j� = 1; :::; N , for some x0 2 [a; b], it
holds

D
�
jA

F
n (f; x0) ; f (x0)

�
�"

!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+ 2cj (�; n)D

�
�
f (N); eo� (b� a)N

N !

#
; (140)

notice here the extremely high rate of convergence n�(N+1)�;
3)

D� �
jA

F
n (f) ; f

�
� �j8<:

NX
j�=1

D� �f (j�); eo�
j�!

�
1

n�j�
+ cj (�; n) (b� a)j�

�
+

"
!
(F)
1

�
f (N);

1

n�

�
1

n�NN !
+ 2cj (�; n)D

�
�
f (N); eo� (b� a)N

N !

#)
: (141)

Proof. Since f 2 CNF ([a; b]), N � 1; we have that f (r)� 2 CN ([a; b]), 8
r 2 [0; 1]; j = 1; 2; 3; 4. Using (52), (75), (98), (123), we get���jAn �f (r)� ; x

�
� f (r)� (x)

��� � �j (74)
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(by Remark 12)
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by Proposition 7,



�f (N)�(r)� 


1 � D� �f (N); eo� and apply (134).

The theorem is proved.
Next we present

Theorem 80 Let � > 0, N = d�e, � =2 N; f 2 CNF ([a; b]), 0 < � < 1,
x 2 [a; b], n 2 N, n1�� > 2; j = 1; 2; 3; 4. Then
i)
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when � > 1 notice here the extremely high rate of convergence at n�(�+1)� ;
and
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above, when N = 1 the sum
PN�1

j=1 � = 0:
As we see here we obtain fractionally the fuzzy pointwise and uniform con-

vergence with rates of jAFn ! I the unit operator, as n!1:

Proof. Here f (r)� 2 CN ([a; b]), 8 r 2 [0; 1], and D�F
x� f , D

�F
�x f are fuzzy

continuous over [a; b], 8 x 2 [a; b], so that
�
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x� f

�(r)
� ,

�
D�F
�x f
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� 2 C ([a; b]), 8

r 2 [0; 1], 8 x 2 [a; b] :
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along with (134) proving all inequalities of theorem.
Here we notice that�
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that is
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x � t � b:

So we have 
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Similarly we observe
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So everything in the statements of the theorem makes sense.
The proof of the theorem is now completed.
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Corollary 81 (to Theorem 80, N = 1 case) Let 0 < �; � < 1; f 2 C1F ([a; b]),
n 2 N, n1�� > 2; j = 1; 2; 3; 4. Then

D� �
jA

F
n (f) ; f

�
�

�j
� (�+ 1)

8>>>><>>>>:

"
sup
x2[a;b]

!
(F)
1

��
D�F
x� f

�
; 1
n�

�
[a;x]

+ sup
x2[a;b]

!
(F)
1

��
D�F
�x f

�
; 1
n�

�
[x;b]

#
n��

+

(156)

cj (�; n) (b� a)�
"
sup
x2[a;b]

D� ��D�F
x� f

�
; eo�

[a;x]
+ sup
x2[a;b]

D� ��D�F
�x f

�
; eo�

[x;b]

#)
:

Proof. By (146).
Finally we specialize to � = 1

2 :

Corollary 82 (to Theorem 80) Let 0 < � < 1; f 2 C1F ([a; b]), n 2 N, n1�� >
2; j = 1; 2; 3; 4. Then
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Proof. By (156).

Conclusion 83 We have extended to the fuzzy setting all the main approxima-
tion theorems of section 3.
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