SOME PROPERTIES OF TRACE CLASS ENTROPIC
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the entropic P-determinant of the positive invertible operator A by

np (A) :=exp [—tr (PAln A)].
In this paper we show among others that
w(Pa)] 7Y
tr2 (PA) T tr (PA)] A T
and if there exists the constants 0 < m < M such that m < A < M, then
(m + M)’QM B (m—i— M)’““PA) _ [ pan ] ?
2vVmM ~\2vVmM ~ | tr2 (PA)

np(A)

1. INTRODUCTION

In 1952, in the paper [8], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 1’ as an integral

T:/ ME (),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7o F becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp (/ lntd,uT) .
0

If T is invertible, then
Apg (T) = exp (t (In(|17))) ,
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where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [9], [10], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z| = 1, defined by

A (A) :=exp (ln Az, )

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [11].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > [l Aei|* < 0.

el
It is well know that, if {e;},.; and {f;},; are orthonormal bases for H and A €
B (H) then

(1.2) Do lAel® =D AL =D 1A f1?

i€l jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = (ZAeil )
i€l
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [ (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)"/?.

Because |||A| z|| = ||Az]| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A||, = |||A||l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4"l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),||||l5) is a Hilbert space with inner product

(1.4) (A,B)y =Y (Ae;,Be;) = > (B*Aeie;)
el el

and the definition does not depend on the choice of the orthonormal basis {e;};c;;
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(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, ([T Ally < 1T 1Al

(iti) Bo (H) is an operator ideal in B (H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) Al == (Al e, e:) < o0.
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) A€ Bi(H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have
(1.8) [A[ly = 1A%, and [|A]l; < [[Ally
for any A € By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C B (H);
(11i) We have
By (H)By (H) =B, (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};
(v) (Bi(H),||l;) is a Banach space.
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = > (Aei,e;),
icl
where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
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(ii) If A € By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (TA) and |tr (AT)| < || A, || ;

(#3) tr (+) is a bounded linear functional on By (H) with |tr|| = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € By (H),
hence PY/?TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € B; (H),

tr (PT) = tr (TP) = tr (PWTPW)

forall T € B(H).

If T > 0, then PY/2T P2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [6] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [7]:

(i) continuity: the map A — Ap(A) is norm continuous;

(ii) power equality: Ap(A') = Ap(A)* for all t > 0;

(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all t > 0;

(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
[7

In [7], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr(PA) <exp [tr (PA)tr (PA™") —1]

Ap (A)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function 7 (t) = —tln¢, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA

for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr{P[tAln (tA)]})
=exp(—tr{P[tA(Int+InA)]}) =exp(—tr{P (tAlnt+tAln A)})
=exp(—tlnttr (PA))exp(—ttr (PAln A))

=expln (t_ “(PA)t) [exp (—tr (PAln A))]ft ,
hence
(1.13) np(tA) =t~ D [, (4)) 7

for ¢t >0 and A > 0.
Observe also that

(1.14) np(I) =1and nptl) =t"
for t > 0.
Motivated by the above results, in this paper we show among others that
—tr(PA
w(Pa)] Y )
tr? (PA) = Jtr (PA)]T P T
and if there exists the constants 0 < m < M such that m < A < M, then
—tr(PA
(m+M>2M g <m+M>2tr(PA) ) tr (PAQ) tr(PA)
2vmM T \2vmM ~ | tr? (PA)

WP(A)
[tr (PA)]” TP~

N

2. MAIN RESULTS

We have the following fundamental facts:

Proposition 2. Let P > 0 with P € By (H) and tr (P) = 1. If A, B > 0, then we
have the Ky Fan type inequality

(2.1) np((L=t) A+tB) > [np (A" Inp (B)]'

for all t € [0,1].

Proof. Since entropy function 7 (+) is operator concave, then
(L= 1) A+tB) > (1 — )0 (4) + tn (B)

for all t € [0,1].
If we multiply both sides by P/2 > 0, then we get

PY2p((1 —t) A+tB) PY? > (1 —t) PY?y (A) PY/? +tPY/?y (B) PY/?
and by taking the tr we derive
tr [Py (L — ) A+ tB)] > (1— 1) tr [Py (A)] + t tr [Py (B)]
for all t € [0,1].
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If we take the exponential, then we derive that
np((1—t)A+tB) =exp (tr [Pn((1 —t) A+tB)])
> exp[(1 =) tr [Pn (A)] + ¢ tr [Pn (B)]]
= (exp (tr [P (A)])" ™ (exp (tr [Py (B)]))"
= [np (A" np (B,
which proves the desired inequality (2.1). a

We define the logarithmic mean of two positive numbers a, b by
In ll;:ilna if b 7é a,
L(a,b) :=
aif b= a.
The following Hermite-Hadamard type integral inequalities hold:

Corollary 1. With the assumptions of Proposition 2,

(22) [ nel =0 A Byt = Linp (4) e (B)
and
@3 e (“57) 2 [ (@0 4+ B A+ (-0 B a

Proof. If we take the integral over ¢ € [0,1] in (2.5), then we get

1

A np((1=0 A+ tB)it = [ lnp (4] lnp (B

= L(np(A),np(B))

for all A, B > 0, which proves (2.6).
We get from (2.5) for t = 1/2 that

e (F57) 2 b (AN I (B

If we replace A by (1 —t) A+ tB and B by tA + (1 —t) B we obtain

np (A;B> > Inp (1= ) A+ tB)]"? [np (tA + (1 — ) B))'/2.

By taking the integral, we derive the desired result (2.3). O

Theorem 4. Let P > 0 with P € By (H) and tr (P) = 1. If A > 0, then

WP(A)
T [tr(PA) TN =t

e (paz)] "

(24) tr? (PA)

Proof. The entropy function 7 (t) = —tInt, ¢ > 0 is operator concave. By utilizing
Jensen’s trace inequality for concave function g on (0,00), see [3], [4] or [6], we
have for B > 0, P > 0 with P € By (H) and tr (P) =1 that

tr[Pg(B)] < g[tr (PB)],
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implying that
np(A) = exp (tr [Pn (A)]) < exp[n (tr (PA))]
= exp (In [ir (PA)]~"4) = [ir (PA)] T,

which proves the second inequality in (2.4).
Observe that if Q := Alffz)7 then @ >0, trQ = 1 and for B = A~! we have

nQ(B):’r] APA (Ail)

le] i)
o (- ipg 1))
= €xp (tr T &13]?42) In AD
(tr PA?) APlnA)) = exp (tr(P1A2) tr (P (In A) A)>

_ <tr(PlAQ) tr (PAlnA)) — exp (tr(;’ip) tr(—PAlnA))

—1

= fexp (~ tr (PAIn A)] T4 = [ (4)] P47

= exp

for A>0, P >0 with P € By (H) and tr (P) = 1, which gives that
:| 7tr(PA2)

(2.5) np(A) = [n aea (A7)

tr(PA2)

for A>0, P >0 with P € By (H) and tr (P) = 1.

Now, using the second inequality in (2.4) for @ := trl(qlf ;142) and A~! we have
apa N\t )
—1y < -1
(26)  mopra (A7) < [“ <tr Pan” )]

v (at)] " <[

If we take the power — tr (PA?) < 0 in (2.6), then we get

7tr(PA2) M tr (PA tr(PA)
-1 S r (PA)
g (A7) o)
-tr (PAQ) —tr(PA)
tr (PA)
r —tr(PA)
tr (PAQ) 7tr(PA)
- trQ(PA)l [tr (PA)]

and by (2.5) we derive the first inequality in (2.4).
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Corollary 2. Let P > 0 with P € By (H) and tr (P) = 1. If there exists the
constants 0 < m < M such that m < A < M, then

—2M —2tr(PA) oy 7~ tr(PA)
(2.7) <m+M> < <m+M> < |=PL)
2vVmM 2vmM tr? (PA)

np(A)
T [tr(PA) A T
Proof. We use the following Kantorovich type inequality, see [5] or [6],
tr (PA?) _ <m—|—M>2
w2 (PA) = \ ot

that holds for A satisfying the condition m < A < M.
By employing the first inequality in (2.7) we derive the first part of (2.7). O

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1. If A > 0, then
(2.8) np(A) < a” P4 exp [~ tr (PA) + a]

for all a > 0.
In particular, for a = tr (PA) we get the second inequality in (2.4), which is the
best possible inequality from (2.8).

Proof. 1t is well know that, if f is differentiable convex on an interval I, then for
all u, v € I we have

(2.9) flu)—f@) < f(u)(u=-v).
Consider the convex function f (¢t) = tInt, ¢t > 0. Since f’ (¢) = Int+1, ¢t > 0, hence
by (2.9) we get

(2.10) ulnu —vlnw < (Inu+1) (u —v)

namely
—vlnv < —ulnu+ (Inu+ 1) (u—v)
giving that
—vhnv<u—v—vinu

for u, v > 0.
If we take u = a and use the functional calculus for v = A > 0, then we get

—AlnA<a—A—-Alna,
namely
(2.11) —AlnA<—-In(ea)A+a

for all a > 0 and A > 0.
Now, if we multiply both sides of (2.11) with P'/2 > 0, then we get

—PY2(Aln A) PY? < —In (ea) P/2APY? + aP
and by taking the trace, we obtain
—tr[P(AInA)] < —In(ea)tr(PA)+a
= —tr(PA)—Inatr(PA)+a.
Finally, if we take the exponential we derive
np(A) < a” P4 exp [—tr (PA) +a .
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For given A > 0, P > 0 with P € By (H) and tr (P) = 1, consider the function
)=t "FD exp[—tr (PA) +1], t > 0.
We have
F(8) = —tr (PAYE PO exp [t (PA) + 4
+ 7P oxp [~ tr (PA) 4 1
= exp [~ tr (PA) + ]t~ TP+ —tr (PA)).

We observe that the function f is decreasing on (0,tr (PA)) and increasing on
(tr (PA), 00) showing that

inf  f(t) = f (tr (PA)) = tr (PA)~"FD
t€(0,00)

Therefore the best inequality we can get from (2.8) is for a = tr (PA). d
Remark 1. Fora =1 in (2.8) we get the inequality

(2.12) np(A) < exp[1 — tr (PA)

for A>0, P>0 with P € By (H) and tr (P) = 1.

Corollary 3. With the assumptions of Theorem 5, we have

(2.13) np(A) > a™ P exp [tr (PA) — atr (PA?)].

In particular, for a = t?((lffz)) we get the first inequality in (2.4), which is the best

possible inequality from (2.13).

Proof. If we write the inequality (2.8) for A=! and %, then we get
4 —tr( ARAS- AT APA
np(A ) <a ( (Pa®) >exp —tr mz‘l +a

for all a > 0.

This is equivalent to

B _ tx(PA) tr (PA)
1 tr 2

(214) ’I]P(A ) S a (PA ) exp |:_U‘(_P,42) —+ a:|
for all a > 0.

Now, if we take the power — tr (PAQ) < 0in (2.14), then we get

np(A™h)] —u(P4?) > a'" P exp [tr (PA) — atr (PA?)]

for all @ > 0 and by (2.5) we get (2.13).
For given A > 0, P > 0 with P € By (H) and tr (P) = 1, consider the function

g(t) = "N exp [tr (PA) — ttr (PA?)], t > 0.
We have
g (t) = tr (PA) t" P exp [tr (PA) — ttr (PA?)]
— ¢tr(PA) gy (PA?) exp [tr (PA) —ttr (PAQ)}
= t"PA " exp [tr (PA) — ttr (PA?)] (tr (PA) — ttr (PA?)) .
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We observe that the function g is increasing on (0, ttrr(g;))) and decreasing on
(%, oo) showing that
—tr(PA
0= g (P [ Pa) 1Y [u(P4?) e
oy T I (PA%)) T e (PA2) ~ | e (PA)

and the statement is proved. (I
Remark 2. Fora=1in (2.13) we get
(2.15) np(A) > exp [tr (PA) — tr (PA?)].

for A>0, P>0 with P € By (H) and tr (P) = 1.

3. RELATED RESULTS

In [4] we obtained, among others, the following reverse of Jensen’s inequality:

Lemma 1. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M| for some scalars m, M with m < M. If f is a continuously

differentiable convex function on [m,M] and Q € By (H) \ {0}, Q > 0, then we
have

wQF(A) . (1r(QA)
(3.1) o< 1 (ha)
_wQF ()A) (QA) tr(QF (4)
S T (o) R (o) A (6)
tr 7”(QA)1H
LI (o) — g (m)) SO )
= ( )
s Qs (a)= @),
3 (M —m) ( tr(Q)( ) D

o on o [ 76550 - (5 ] )

<

- tr ! 2 tr ! 2 1/2
boor = |20 ()]

< 117 (M) = £/ (m)] (M —m).

By the use of this results we can obtain the following result:



SOME PROPERTIES OF TRACE CLASS ENTROPIC P-DETERMINANT 11

Theorem 6. Let P > 0 with P € By (H) and tr (P) = 1. If there exists the
constants 0 < m < M such that m < A < M, then

(3.2)

1<

IN

IN

IA

(

[tr (PA)]” TFD

|

p(A)
)%tr(P|A tr(PA)|)

iz =

(
exp [3 (M —m)tr (P|ln A — tr (Pln A)|)]

(21) Ler(PA%)—(tr(PA))?]?
m

M i(Mfm)
n)

Proof. If we write the inequality (3.1) for A satisfying the condition 0 < m < A <
M and @ = P, then we get

namely

IN

IN

IN

{ b (20) [ir (PA2) — (i (Pa)?]
1
i

0<tr(PAlnA)—tr(PA)ln (tr (PA))

<tr(P(InA+1)A) — tr (PA) tr (P (In A + 1))

Lin (A) tr (P A - tr (PA)))
(M —=m)tr(PllnA+1—tr(P(InA+1)))

511/2
S (3) [t (P2) = (1x (P4

tr (PAln A) — tr (PA) In (tr (PA))
1 (M) tr (PA -t (PA)))

(M —m)tr(P|lnA —tr(PlnA)|)

1/2
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If we take the exponential in this inequality, we get
< OXP [—tr (PA)In (tr (PA))]
- exp [—tr (PAln A)]

{ exp [3In (57) tr (P|A — tr (PA)])]

(M —m)tr (P[lnA—tr(PlnA)|)]

1
exp |4 1In () [tr (PA?) — (tr (PA))Q] 1/2}

IA

exp {5 (M = m) [tx (P (eA)]*) = (tx (PIn (eA)))?] 1/2}
<exp [i In (%) (M — m)}
and the inequality (3.1) is proved. _

Corollary 4. With the assumptions of Theorem 6, we have

|: tl'((}ijﬁ)) :| tl‘(PA)
tr 2
B 1=
oyt
>

exp {_% (m='— M) tr (APA )ln A7l —tr <tr’?11;2x42> In A7 )D]

(M) — 3 [ (PA%)—(tx(PA)?]?

3=

%

exp{—3 (m~'—M~1) 1/2
X {tr (PA?) tr (APA [In (eA—l)]Q) — (tr (APAIn (eA“)))Z} }
AL\~ Fmar (M—m) tx(PA%) M\~ dm (M=)
> (W) - () |

Proof. If 0 < m < A < M, then 0 < M~! < A=! < m~!. Now, using (3.2) for
Q:= tr‘(“]fo) and A~! we have

_tr( APA_ 4 )T“(traf/ﬁ)fll)

1 < tr(PA?)
- N e (A7)
(MﬁwQﬂﬁyVLt(ﬁﬁﬂ )

IN

exp |4 (m~t = M) (5

InA—1 — (tr‘(“;fz)lnAfl)D]
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(%)%M%f‘ SRCE )H/

IN
@D
»

T
—~—
=
—

3
L

|

|
-
~

namely

tr(PA)
tr(PA) }*n(mﬂ)
tr(PA?)
7_APA (Ail)

tr(PA2)

(3.4) 1< [

APA

(e

s CeD)

exp {% (m_l - M_l) tr (tr?]fj? nA™ - (% lnA_l) D]

(M) 3 [m* (&f:;))j 1/2

m

<

IN

exp{i(m™t—-M1)

- [tr (tr(PA2 [In (eA™1)] ) B (tr( P n (¢4 )>)2] 1/2}

M 47711\4 (M m)
<)
m

Now, if we take the power — tr (PAQ) < 0in (2.14), then we get

- [ff(ffzﬂtr(PA)
(%)’%“@“’”1’“(%)‘)
) exp [~4 (m1 = M)t (APA|n AT — tr (A m A1) )]

x [tr (PA%) tr (APA[In (eA™)]) = (tr (APAIn (eA™1)))?] 1/2}

(M)_%[“(PAQ)—(tr(PA))2]1/2
29\ exp{-%(mt-M1)

M —ﬁ(M—m) tr(PAQ)
") ~

13
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(3]
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is proves the desired result (3.3). O
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