SOME INEQUALITIES FOR TRACE CLASS ENTROPIC
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the entropic P-determinant of the positive invertible operator A by

np (A) :=exp [—tr (PAln A)].

In this paper we show among others that

Ll (PA)~ (P4 - tr (PA2?) — [tr (PA))?
- np (A) B tr (PA)
and
L < np (A) < exp |:tr (PA?) — [tr (PA))?

tr (PA)

= [tr(PA)}_tr(PA) |:tr(PA2) :|—tr(PA) =

[tr(PA)]?

1. INTRODUCTION

In 1952, in the paper [7], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / AE (X)),
Sp(T)

where F ()) is a projection valued measure and Sp (T') is the spectrum of T. The
measure pp := 7 o EF becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp (/ lntd,uT) .
0

If T is invertible, then
Ark (T) :=exp (7 (In (|T7))),

where In (|7']) is defined by the use of functional calculus.
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Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [8], [9], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [10].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 * 2
(1.2) Do ledll® = NAL1 =147
i€l jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(13) JAll, = <2Aei|2>
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in 2 (1), one checks that By (H) is a vector space
and that ||-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)'/?

Because |||A| z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l,. From (1.2) we have that if A € By (H), then A* €
By (H) and [|All, = | A%],

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||ly) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y (B*Aei,e;)
i€l i€l
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

(1.5) [l < [| Al

iel’
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for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, [T Ally < 1T 1Al

(#ii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) 1Al =) (|Al iy i) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei},cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[A]l,
for any A€ By (H);

(i1) By (H) is an operator ideal in B (H), i.e.

B(H)Bi (H)B(H) < Bi (H);
(iti) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup {(A, B), | BBy (H), |Bl,<1};

(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Ae;,e;),

i€l

where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A") = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2TP'Y/? > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T —— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H) > T+ tr (PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [5] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) = exptr (P1/2 (InA) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [6]:

(i) continuity: the map A — Ap(A) is norm continuous;

(i) power equality: Ap(A') = Ap(A)* for all t > 0;

(ili) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all ¢ > 0;

(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).

In [6], we presented some fundamental properties of this determinant. Among
others we showed that

tr (PA
(1.13) 1< TP e [ (PA) & (PAY) — 1]
Ap (A)
and
Ap (A
(1.14) 1< #)_1 < exp [tr (PA_l) tr (PA) — 1] ,
[tr (PA=1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function n(t) = —tlnt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) = exp [ tr (PAIn A)] = exp {tx [Py (A)]} = exp {tr [P/2n (4) P2] |
Observe that the map A — np(A) is norm continuous and since
exp (—tr{P[tAln (tA)]})

=exp(—tr{P[tA(lnt+InA)]}) =exp(—tr{P (tAlnt+tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

— expln (ftr(PA)t) [exp (— tr (PAIn A))] 7",
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hence
(1.15) np(tA) =t~ D [, (4)) 7
fort >0 and A > 0.
Observe also that
(1.16) np(I) =1and np(tl) =t~"

for t > 0.
Motivated by the above results, in this paper we provide various upper bounds
for the quantities

[tr (PA)]” (P
Np (A)

np (A)

—tr(PA r(PA2
fbr (PA)]~ P [ A

and

} —tr(PA)

under various assumptions for the operators A > 0, where P > 0 with P € By (H)
and tr (P) = 1.
2. MAIN RESULTS
We start with the following main result:

Theorem 4. Assume that A >0, P >0 with P € By (H) and tr (P) = 1, then

[tr (PA)]” EY tr (PA?) — [tr (PA)]?
(2.1) 1< BV < exp  (PA)
and
1 (PA?) — [tr (PA)]?
(2.2) 1< np (4) < exp tr (P
e (PA)] P [ty ] 7 = (P4)

Proof. Consider @ := %, then @ >0, tr (Q) = 1 and for B = A1,

B A1/2PA1/2 B
AQ (B) = AAlt/rZ(};j:)l/z (A 1) = eXptr <M lnA 1)

_ tr (Al/?PAl/2 lnA_l)]

= exp

= exp

ok (PAY2 (At AW)]

-1
L tr (PA)
= [np (A)] 50 |

which gives the follow identity of interest

= exp tr (PAln A)} = (exp [tr (—PAln A)])ﬁ

)

tr(PA)
(2.3) np(A) = |:AA1/2PA1/2 (Al)}

tr(PA)

which holds for A >0, P > 0 with P € By (H) and tr (P) = 1.
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1/2 pg1/2

From (1.13) written for Atr(PA) and A~ we derive

tr (Al/QPAl/QAA)
1<

tr(PA)
T A 1204172 (A_l)
tr(PA)
Al/2pAL/2 Al/2ppl/2
< | Sy
= o H tr (PA) )t( tr (PA) ) ]
namely
WA tr (PA?) — [tr (PA)]?
1< — S ex 5
Am(m;/z (A7) [tr (PA)]

If we take the power tr (PA) > 0, then we get

—te(PA) PA2) — [tr (PA))?
Lo lir(Pa) < oxp | B (PAY) —r (PAT*]
tr(PA) tr(PA)
AAl/i};ﬁ;/Q (A_l):l

By utilizing (2.3) we derive (2.1).
From (1.14) for % and A~ we derive
AA1/2PA1/2 (A_l)

2
1 < T (PA) < exp tr (PAZ) — [tr (PA)]

- 1/2 1/2 -1 = tr (PA 2 ’
[m«(%A)] [tr (PA)]
namely
-1
Agipzpaz (A7) tr (PA2) — [t (PA))
L= 1 [ wpan 11 P [tr (PA)]?
(P

By taking the power tr (PA) > 0, we obtain

tr(PA)
-1
By (4] tr (PA?) - [tx (PA))
1< “a(pA) = OXP tr (PA)
—tr(PA) [ tr(PA2) t
[ex (PA)] [[tr(PA)]z}
and the inequality (2.2) is proved. O

Corollary 1. Let P > 0 with P € By (H) and tr(P) = 1. If A satisfies the
condition

(2.4) O<m<A<M
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for some constants 0 < m < M, then

tr (PA2) — [tr (PA)]2
tr (PA)

[tr (PA)]” "FD
(2.5) 1< @

< exp B (M —m)tr (P tr(A;DA) a l‘ﬂ
< L o (Pa?) 1/2
< exp (2 (M —m) (tr (PA))? 1] )

01— m?)| < exp [ (01 =]

< exp

—

and

(2.6) 1<

\_/

< exp Lm(lPA) (M — m)Q] < exp [

Proof. Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m,M] for some scalars m, M with m < M. If f is a continuously
differentiable convex function on [m, M| and P € By (H)\ {0}, P > 0 and tr (P) =

1, then we have [4]

(2.7) 0<tr(P
tr (P

(4)) — [ (tr (PA))
"(A) A) — tr (PA) tr (Pf' (A))

f
f
511 (M) = f (m)] or (P A = tr (PA)])
L(M —m)tr (P|f' (A) —tr (P (A))])
1

() - (m)] [ix (P2) — (ix (Pa))?]

<

{ 01— m) i (P17 () - (@ (pr ()7
1
i
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From (2.7) we have for f (t) = t? that

tr (PA?) — [tr (PA)]?

1

< (M —m)tr(P|A—tr(PA)])

DO = N

< 5 (M —m) [tr (PA%) = (r (PA)’] T <

which implies that

tr (PA2) — [tr (PA)]2
tr (PA)

(M —m) tr <p

i)

1

I (M —m)*.

By utilizing Theorem 4 we derive the desired inequalities (2.5) and (2.6).

Corollary 2. With the assumptions of Corollary 1 we have

[tr (PA)]~ (P4 tr (PA%) — [tr (PA)]
(2.8) 1< By < exp tx (PA)
< exp ﬁ (1 + %) (Jn\f — 1) tr (PAz)

< exp [i (M +m) <Anf —1)2]

and
(2.9) 1< np (A) o
—tr(PA) | tr(PA?)
[tr (PA)] [ra
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Proof. If we write the inequality (2.7) for f (t) =t~!, ¢t > 0, then we get for A with
Sp(A) C [m,M] and Q € By (H) \ {0}, @ > 0 with tr (Q) = 1, that

0<tr (QA_I) — @

< tr(QA) tr (QA™?) —tr (QA™Y)
LM 4 (Q|A — tr (QA)))

3 (M =m)tr QA2 — 1 (QA72)])

e [ir (@42) — (@7

1/2

which gives that

(2.10) 0<tr(QA™")tr(QA)—1
< tr(QA) [tr (QA) tr (QA_Q) —tr (QA_l)]

LM 11 (Q|A — tr (QA)))
<tr(QA) x
M —m)tr (@A~ - (QA7%)])
1 M?—m? [tr (QAQ) — (tI‘ (QA))21| i
2 m2M?2
<tr(QA) x

L1 e (@47 — (i (@42

SHEHICEE

Now, if we take Q = Alt/j(gﬁ;m in (2.10), then we get

< tr (PA2)2 3

T [tr (PA)]

< tr (PAQ) tr (PAQ) tr (PA_l) —tr (PA)
~ tr(PA) [tr (PA)]
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tr (PA?)

= tr (PA)

LM>—m® 1 tr(PA?)
2 m2M? tr(PA) tr (PA ’A ~ tr(PA)

)

X

_ tr(PA™L
% (M —m) tr(]lDA) tr (PA ‘A ? - t(r(PA)) >
tr (PAQ)
~ tr(PA)
971/2
1 M2_m?2 tr(PA3) tr(PAz)
2 m2M?2 tr(PA) tr(PA)
X
() (a(ra)]"
tr(PA™ tr(PA™Y
3 (M —m) l tr(PA) < tr(PA) ) ]
m M 2 tr (PAQ)
<—(1+—=)(=-1) —=2.
< +M>< ) tr (PA)

If we multiply this by tr (PA) > 0 we get

tr (PA?) — [tr (PA)]?

<
0= tr (PA)
tr (PA2) tr (PA™Y) —tr (PA
<t (paz) | A (PAT) = (PA)
[tr (PA)]
2_p2 tr(PA?
%]\74712M2 tr(]lDA) tr (PA ‘A - tr((PA)) >
< tr (PA?) x
_ tr(PA™?Y
%(M —m) tr(]lJA) tr (PA ‘A P - t(r(PA)) )
971/2
1 M2 _m? | tr(PA%) tr(PA?)
2 m2M? tr(PA) tr(PA)
< tr (PA?) x
() (u(ea)]"
tr(PA3 tr(PA™?!
é(M_m)[ tr(PA) ( tr(PA) ) 1

gﬁ(u%) (%—1>2tr(PA2) gi(M—&—m) (%-1)2.

By utilizing Theorem 4 we derive the desired inequalities (2.8) and (2.9).
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Corollary 3. With the assumptions of Corollary 1 we have

—tr(PA) 2 2
a2 )
< exp ; Mo o (pa) e (PA%) — (i (P2)?] 2}
< exp im tr (PA)| < exp [4(Mmm)1
and
(2.12) I < e (4) “w(PA)
e ]
< exp tr (PA2 (_JDEZr(PA)]2
< exp %%tr PA A-M)
< exp ; Mo e (P Ay (PA?) - (1 (Pa?))?]” 2}
< exp thr(PA) < exp iw_mm)gl

11

Proof. In [3] we proved among others that, if Sp(S) C [m, M] C (0,00) and @ €

Bi (H) and @ > 0, then

tr (QS) tr (QS™1)

0 < 5 -1
[tr (Q)]
IM=m 1 (g 0r(@5)
= 2 mM tr(Q)t (’S tr (Q) ‘Q>
1M —-—m tr(QSQ)_ tr (QS) 2]'/?
= 2w [w(@) (tr(@))}
< L -m)?
- 4 mM
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By taking S = A and Q = AVPPAYZ o obtain

tr(PA)
2
< tr (PA )2 B
or (PA)
IM-m 1 tr (PA?)
<z v - B S
S0 M w(PA) " (P A=

<1M—m 1 1/2
— 2 mM tr(PA)
SlM—m)?
-4 mM

[ir (Pt (PA) — (1 (P42))]

namely

tr (PA?) — [tr (PA)]?

tr (PA)
< %Mm;wmtr (PA A— m >
< P [ (P (PA7) — (i (Pa2))"]
< im tr (PA).

By utilizing Theorem 4 we derive the desired inequalities (2.11) and (2.12).

Finally, we also have:

Corollary 4. With the assumptions of Corollary 1 we have

[tr (PA)] A tr (PA?) — [tr (PA)]
(2.13) 1< W < exp tr (PA)
(i —vm) M 2
< exp m—Mtr(PA ) < exp {m (\/M—\/ﬁ) ]
and
AT d o
I
[tr (PA?%) — [tr (PA)?
< exp tr (PA)
(/- vm)
—Jm ) M 5
< exp Ttr(PA) < exp [m (\/M—\/E) }

Proof. If t € [m, M] C (0,00), then obviously
(M —t)(m™' —t7') >0,
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which is equivalent to
m4+M>mMt™' +t

for all t € [m, M].
Using the functional calculus for selfadjoint operators, we then get

(m+M)I>mMA '+ A

for0O<mlI <A< MI.
If we multiply both sides with Q'/? we get

(m—l—M)Q > mMQ1/2A71Q1/2 + Q1/2AQ1/2
and is we take the trace, then we get
m+ M >mMtr (QA™!) +tr (QA),

namely

m+ M
mM

>tr(QA™Y) + %LMA).

This gives

IN

which implies, by multiplying with tr (QA) that

) (VAT - i)’ (VAT - yim)”
(215)  tr(QAT)tr(QA)—1< ——2tr(QA) < —
If we take in (2.15) Q = %, then we get
w(paz) (VM- Vi) o (par) (VAT - i)
[tr (PA)]? - mM tr (PA) — m ’

which gives that

tr (PA?) - [ (PAY? (VM - ﬁ)2

oy o M 2
tr (PA) = mM tr (PA%) < m (\/M B m) '

By utilizing Theorem 4 we derive the desired inequalities (2.11) and (2.12).

O

13
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3. RELATED RESULTS

We also have the related results:

Theorem 5. Let P > 0 with P € By (H) and tr (P) = 1. If A satisfies the condition
(2.4), then

_ lepa)mth
N np (4)
<M) % tr(P|A—tr(PA)|)

(3.1) 1

IA

<

(M) Ler(PA%)—(tx(PA)?]?

m

M F(M—m)
(%)

Proof. Now, if we use the inequality (2.7) for the function f(t) = tlnt and A a
selfadjoint operator on the Hilbert space H such that Sp(4) C [m, M| for some
scalars m, M with 0 < m < M. then for P € Bf (H)\ {0} with tr (P) = 1,

m

0<tr(PAlnA)—tr(PA)ln(tr (PA))
<tr(PAln(eA)) — tr (PA) tr (Pln(eA))
1In (&) tr (P|A - tr (PA)|)
2 (M —m)tr (P|ln(eA) — tr (Pln(eA))|)

Sin () [or (PA2) — (o (Pa))?]

IN

(M —m) [tr (P [In (eA)]2> — (tr (PIn (eA))ﬂ v

si(M—m)ln<Z>,

which implies that

(3.2) 0 <tr(PAInA)—tr(PA)ln (tr (PA))

M L tr(P|A—tr(PA)|) M L[er(PA?)—(tr(PA))?]
()" ()
m m

M $(M—m)
<lIn () .
m

If we take the exponential, then we get

1/2

1 <expltr (PAIn A) — tr (PA)In (tr (PA))]

M 1 tr(P|A—tr(PA)|) M L[er(PA%)—(tx(PA))?]
<() <(w)
m

M %(M—m)
S <> )
m

1/2

m
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namely

expln (tr (PA))~ "4
exp (—tr (PAln A))

M 1 tr(P|A—tr(PA)|) M Lo (PA%)—(tr(PA))?]
< () <(%)

1<

1/2

m

M $(M—m)
< ()
m

and the inequality (3.1) is proved. O

m

From (3.1) we can obtain the following inequalities for the P-determinant of the
positive invertible operator A :

Corollary 5. With the assumptions of Theorem 5, we have

tr (PA) M sircpa tr(PlA—tr(PA)])
. 1< < (=
(33) _AP(A)_<m)
M @Ay e(Pamt) -] A\ Fm T =M (P A
< <)
m m

Proof. 10 <m < A < M, then 0 < M~ < A~ <! From (1.14) for 47547

and A~! we derive

Al/2pal/2 A’1>

e (o]
1<

N al/2pal/2 (A_l)

tr(PA)

M\ B (AR (A e (AR A ) )
<(%)

(M)é[tr ) - (a2 a)) ]
S -

namely

1<

[tr (PA)][tr PA)! _ (M) sy (PlA-t(PA))
- \m

T a1/2pa1/2 (A_l) m
tr(PA)

<

<M>2tr(lm[tr(PA)tr(PA1)—1]l/2 (M)i(ml_Ml)
< .

m
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Observe that

T A1/2pal/2 (A_l)

tr(PA)

A1/2PA1/2 . .
exp [_ tr <U~(P,@A InA >:|

e () o

If we take the power tr (PA) > 0, then we get
tr (PA) ( M> swiray H(PlA=tr(PA)])
(1 ey A

(M> %[tr(PA) tr(PA71)71]1/2

1<

IN

<

m

M T (M —m)
< (%)
m

m

(M> %(milfMil)tr(PA)

and the the inequality (3.3) is proved. O

REFERENCES

[1] S. S. Dragomir, Additive reverses of Schwarz and Griiss type trace inequalities for operators

in Hilbert spaces, J. Math. Tokushima Univ., 50 (2016), 15-42. Preprint RGMIA Res. Rep.
Coll., 17 (2014), Art. 119. [https://rgmia.org/papers/vi7/vi7al19.pdf].

[2] S.S. Dragomir, Hermite-Hadamard’s type inequalities for operator convex functions, Applied

Mathematics and Computation, 218 (2011), Issue 3, pp. 766-772.

[3] S. S. Dragomir, Some Griiss type inequalities for trace of operators in Hilbert spaces, Oper.

Matrices, 10 (2016), no. 4, 923-943. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 114.
[https://rgmia.org/papers/v17/vi7al14.pdf].

[4] S. S. Dragomir, Jensen’s type trace inequalities for convex functions of selfadjoint operators in

Hilbert spaces, Facta Univ. Ser. Math. Inform., 31 (2016), no. 5, 981-998. Preprint RGMIA
Res. Rep. Coll., 17 (2014), Art. 116. [ https://rgmia.org/papers/vi7/v17al16.pdf].

[5] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent

results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online
https://ajmaa.org/searchroot/files/pdf/v19n1/v19ilpl.pdf].

[6] S. S. Dragomir, Some properties of trace class P-determinant of positive operators

in Hilbert spaces, RGMIA Res. Rep. Coll. 25 (2022), Art. 15, 14 pp. [Online
https://rgmia.org/papers/v25/v25al6.pdf] .

[7] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55

(1952), 520-530.

[8] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.

] J. I Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht’s Theorem,

Sci. Math., 1 (1998), 307-310.

[10] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim’s inequality, J.

Math. Inequal., Volume 15 (2021), Number 4, 1637-1645

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,

MELBOURNE CiTty, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,

ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA



