BOUNDS FOR THE ENTROPIC TRACE CLASS P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES VIA KANTOROVICH'S CONSTANT

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \geq 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and $\operatorname{tr}(P) = 1$, we define the *entropic P-determinant* of the positive invertible operator A by

$$\eta_P(A) := \exp[-\operatorname{tr}(PA \ln A)].$$

In this paper we show, among others that, if A is an operator satisfying the condition $0 < m \le A \le M,$ then

$$\begin{split} &1 \geq K \left(\frac{M}{m}\right)^{-\left[\frac{1}{2}\operatorname{tr}(PA) - \frac{1}{(M-m)}\operatorname{tr}\left(PA\big|A - \frac{1}{2}(m+M)\big|\right)\right]} \\ &\geq \frac{\eta_P\left(A\right)}{m^{\frac{\operatorname{tr}\left(PA^2\right) - M\operatorname{tr}\left(PA\right)}{M-m}}M^{\frac{m\operatorname{tr}\left(PA\right) - \operatorname{tr}\left(PA^2\right)}{M-m}} \\ &\geq K \left(\frac{M}{m}\right)^{-\left[\frac{1}{2}\operatorname{tr}\left(PA\right) + \frac{1}{(M-m)}\operatorname{tr}\left(PA\big|A - \frac{1}{2}(m+M)\big|\right)\right]} \\ &\geq \left[K \left(\frac{M}{m}\right)\right]^{-\operatorname{tr}\left(PA\right)} \geq \left[K \left(\frac{M}{m}\right)\right]^{-M}, \end{split}$$

where $K(\cdot)$ is Kantorovich's constant.

1. Introduction

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda),$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (FK-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \geq 0$) if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. In particular, A > 0 means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp \langle \ln Ax, x \rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [8].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

$$(1.1) \sum_{i \in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ are orthonormal bases for H and $A\in\mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{i \in I} \|A^*f_i\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}\left(H\right)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}\left(H\right)$. For $A\in\mathcal{B}_{2}\left(H\right)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i\in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}\left(H\right)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_{2}(H), \|\cdot\|_{2})$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$; (ii) We have the inequalities

$$||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_2(H)$ and, if $A \in \mathcal{B}_2(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_2(H)$ with

$$(1.6) $||AT||_2, ||TA||_2 \le ||T|| \, ||A||_2$$$

(iii) $\mathcal{B}_2(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_{2}(H)\mathcal{B}(H)\subseteq\mathcal{B}_{2}(H)$$
.

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}\left(H\right)$ is trace class if

(1.7)
$$||A||_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty.$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i\in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$. The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

- (i) $A \in \mathcal{B}_1(H)$;
- (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

$$||A||_1 = ||A^*||_1 \quad and \quad ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H)\mathcal{B}_1(H)\mathcal{B}(H)\subseteq\mathcal{B}_1(H)$$
;

(iii) We have

$$\mathcal{B}_{2}\left(H\right)\mathcal{B}_{2}\left(H\right)=\mathcal{B}_{1}\left(H\right);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle,$$

where $\{e_i\}_{i\in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If $A \in \mathcal{B}_1(H)$ then $A^* \in \mathcal{B}_1(H)$ and

$$(1.10) tr(A^*) = \overline{tr(A)};$$

(ii) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \ \ and \ |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

- (iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathcal{B}_1(H)$ with $\|\operatorname{tr}\| = 1$;
- (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \geq 0$, then $P^{1/2}TP^{1/2} \geq 0$, which implies that $\operatorname{tr}(PT) \geq 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n \to \infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [3] and the references therein.

Now, for a given $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the P-determinant of the positive invertible operator A by

$$(1.12) \quad \Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right).$$

Assume that $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties [4]:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_P(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \le B$ implies $\Delta_P(A) \le \Delta_P(B)$.

In [4], we presented some fundamental properties of this determinant. Among others we showed that

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right],$$

for A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

For the entropy function $\eta(t) = -t \ln t$, t > 0, the operator entropy has the following expression:

$$\eta(A) = -A \ln A$$

for positive A.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *entropic* P-determinant of the positive invertible operator A by

$$\eta_{P}\left(A\right):=\exp\left[-\operatorname{tr}\left(PA\ln A\right)\right]=\exp\left\{\operatorname{tr}\left[P\eta\left(A\right)\right]\right\}=\exp\left\{\operatorname{tr}\left[P^{1/2}\eta\left(A\right)P^{1/2}\right]\right\}.$$

Observe that the map $A \to \eta_P(A)$ is norm continuous and since

$$\begin{split} &\exp\left(-\operatorname{tr}\left\{P\left[tA\ln\left(tA\right)\right]\right\}\right) \\ &= \exp\left(-\operatorname{tr}\left\{P\left[tA\left(\ln t + \ln A\right)\right]\right\}\right) = \exp\left(-\operatorname{tr}\left\{P\left(tA\ln t + tA\ln A\right)\right\}\right) \\ &= \exp\left(-t\ln t\operatorname{tr}\left(PA\right)\right)\exp\left(-t\operatorname{tr}\left(PA\ln A\right)\right) \\ &= \exp\ln\left(t^{-\operatorname{tr}\left(PA\right)t}\right)\left[\exp\left(-\operatorname{tr}\left(PA\ln A\right)\right)\right]^{-t}, \end{split}$$

hence

(1.13)
$$\eta_P(tA) = t^{-t \operatorname{tr}(PA)} \left[\eta_P(A) \right]^{-t}$$

for t > 0 and A > 0.

Observe also that

(1.14)
$$\eta_P(I) = 1 \text{ and } \eta_P(tI) = t^{-t}$$

for t > 0.

We consider the Kantorovich's constant defined by

(1.15)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$

The function K is decreasing on (0,1) and increasing on $[1,\infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K(\frac{1}{h})$ for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds

$$(1.16) \qquad \left(a^{1-\nu}b^{\nu} \le \right) K^{r}\left(\frac{a}{b}\right) a^{1-\nu}b^{\nu} \le \left(1-\nu\right) a + \nu b \le K^{R}\left(\frac{a}{b}\right) a^{1-\nu}b^{\nu}$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\} \text{ and } R = \max\{1 - \nu, \nu\}.$

The first inequality in (1.16) was obtained by Zou et al. in [10] while the second by Liao et al. [9].

Motivated by the above results, in this paper we provided several upper and lower bounds for the quantity

$$\frac{\eta_P(A)}{m^{\frac{\operatorname{tr}(PA^2) - M\operatorname{tr}(PA)}{M - m}}M^{\frac{m\operatorname{tr}(PA) - \operatorname{tr}(PA^2)}{M - m}}}$$

where $P \geq 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$ and $0 < m \leq A \leq M$ for some constants m, M.

2. Main Results

We start to the following main result:

Theorem 4. Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If $0 < m \le A \le M$ for some constants m, M, then

$$(2.1) 1 \ge K \left(\frac{M}{m}\right)^{-\left[\frac{1}{2}\operatorname{tr}(PA) - \frac{1}{(M-m)}\operatorname{tr}\left(PA\left|A - \frac{1}{2}(m+M)\right|\right)\right]}$$

$$\geq \frac{\eta_{P}\left(A\right)}{m^{\frac{\operatorname{tr}\left(PA^{2}\right)-M}{M-m}\operatorname{tr}\left(PA\right)}M^{\frac{m\operatorname{tr}\left(PA\right)-\operatorname{tr}\left(PA^{2}\right)}{M-m}}} \\ \geq K\left(\frac{M}{m}\right)^{-\left[\frac{1}{2}\operatorname{tr}\left(PA\right)+\frac{1}{(M-m)}\operatorname{tr}\left(PA\left|A-\frac{1}{2}(m+M)\right|\right)\right]} \\ \geq \left[K\left(\frac{M}{m}\right)\right]^{-\operatorname{tr}\left(PA\right)} \geq \left[K\left(\frac{M}{m}\right)\right]^{-M}.$$

Proof. Assume that $t \in [m, M]$ and consider $\nu = \frac{t-m}{M-m} \in [0, 1]$. Then

$$\min \{1 - \nu, \nu\} = \frac{1}{2} - \left|\nu - \frac{1}{2}\right| = \frac{1}{2} - \left|\frac{t - m}{M - m} - \frac{1}{2}\right|$$

$$= \frac{1}{2} - \frac{1}{M - m}\left|t - \frac{1}{2}\left(m + M\right)\right|,$$

$$\max \{1 - \nu, \nu\} = \frac{1}{2} + \left|\nu - \frac{1}{2}\right| = \frac{1}{2} + \left|\frac{t - m}{M - m} - \frac{1}{2}\right|$$

$$= \frac{1}{2} + \frac{1}{M - m}\left|t - \frac{1}{2}\left(m + M\right)\right|,$$

$$(1 - \nu)m + \nu M = \frac{M - t}{M - m}m + \frac{t - m}{M - m}M = t$$

and

$$m^{1-\nu}M^{\nu} = m^{\frac{M-t}{M-m}}M^{\frac{t-m}{M-m}}$$

By using (1.16) we get

$$(2.2) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} \le \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} - \frac{1}{M-m} \left| t - \frac{1}{2} (m+M) \right|} m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}}$$

$$\le t \le \left[K \left(\frac{M}{m} \right) \right]^{\frac{1}{2} + \frac{1}{M-m} \left| t - \frac{1}{2} (m+M) \right|} m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} M$$

for $t \in [m, M]$.

By taking the log in (2.2) we get

$$(2.3) \qquad \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \left[\frac{1}{2} - \frac{1}{M-m}\left|t - \frac{1}{2}\left(m+M\right)\right|\right]\ln K\left(\frac{M}{m}\right)$$

$$+ \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \ln t \leq \left[\frac{1}{2} + \frac{1}{M-m}\left|t - \frac{1}{2}\left(m+M\right)\right|\right]\ln K\left(\frac{M}{m}\right)$$

$$+ \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

$$\leq \ln K\left(\frac{M}{m}\right) + \frac{M-t}{M-m}\ln m + \frac{t-m}{M-m}\ln M$$

for $t \in [m, M]$.

If $0 < m \le A \le M$, then by using the continuous functional calculus for selfadjoint operators we get from (2.3) that

$$(2.4) \qquad \ln m \frac{M-A}{M-m} + \ln M \frac{A-m}{M-m}$$

$$\leq \left[\frac{1}{2} - \frac{1}{M-m} \left| A - \frac{1}{2} (m+M) \right| \right] \ln K \left(\frac{M}{m} \right)$$

$$+ \ln m \frac{M-A}{M-m} + \ln M \frac{A-m}{M-m}$$

$$\leq \ln A \leq \left[\frac{1}{2} + \frac{1}{M-m} \left| A - \frac{1}{2} (m+M) \right| \right] \ln K \left(\frac{M}{m} \right)$$

$$+ \ln m \frac{M-A}{M-m} + \ln M \frac{A-m}{M-m}$$

$$\leq \ln K \left(\frac{M}{m} \right) + \ln m \frac{M-A}{M-m} + \ln M \frac{A-m}{M-m}.$$

Assume that $Q \ge 0$ with $Q \in \mathcal{B}_1(H)$ and $\operatorname{tr}(Q) = 1$. If we multiply the inequality (2.4) both sides by $Q^{1/2}$ we get

(2.5)
$$\ln m \frac{MQ - Q^{1/2}AQ^{1/2}}{M - m} + \ln M \frac{Q^{1/2}AQ^{1/2} - mQ}{M - m}$$
$$\leq \left[\frac{1}{2}Q - \frac{1}{M - m}Q^{1/2} \middle| A - \frac{1}{2}(m + M) \middle| Q^{1/2} \right] \ln K\left(\frac{M}{m}\right)$$
$$+ \ln m \frac{MQ - Q^{1/2}AQ^{1/2}}{M - m} + \ln M \frac{Q^{1/2}AQ^{1/2} - mQ}{M - m}$$

$$\leq Q^{1/2} \left(\ln A \right) Q^{1/2}$$

$$\leq \left[\frac{1}{2} Q + \frac{1}{M - m} Q^{1/2} \left| A - \frac{1}{2} \left(m + M \right) \right| Q^{1/2} \right] \ln K \left(\frac{M}{m} \right)$$

$$+ \ln m \frac{MQ - Q^{1/2} A Q^{1/2}}{M - m} + \ln M \frac{Q^{1/2} A Q^{1/2} - mQ}{M - m}$$

$$\leq \ln K \left(\frac{M}{m} \right) Q + \ln m \frac{MQ - Q^{1/2} A Q^{1/2}}{M - m} + \ln M \frac{Q^{1/2} A Q^{1/2} - mQ}{M - m} .$$

Now, if we take the trace and use the fact that tr(Q) = 1, then we get

$$\begin{split} & \ln m \frac{M - \operatorname{tr}\left(QA\right)}{M - m} + \ln M \frac{\operatorname{tr}\left(QA\right) - m}{M - m} \\ & \leq \left[\frac{1}{2} - \frac{1}{M - m} \operatorname{tr}\left(Q \left|A - \frac{1}{2}\left(m + M\right)\right|\right)\right] \ln K\left(\frac{M}{m}\right) \\ & + \ln m \frac{M - \operatorname{tr}\left(QA\right)}{M - m} + \ln M \frac{\operatorname{tr}\left(QA\right) - m}{M - m} \\ & \leq \operatorname{tr}\left[Q\left(\ln A\right)\right] \end{split}$$

$$\leq \left[\frac{1}{2} + \frac{1}{M-m} \operatorname{tr} \left(Q \left| A - \frac{1}{2} \left(m + M \right) \right| \right) \right] \ln K \left(\frac{M}{m} \right)$$

$$+ \ln m \frac{M - \operatorname{tr} \left(QA \right)}{M-m} + \ln M \frac{\operatorname{tr} \left(QA \right) - m}{M-m}$$

$$\leq \ln K \left(\frac{M}{m} \right) + \ln m \frac{M - Q \operatorname{tr} \left(QA \right)}{M-m} + \ln M \frac{\operatorname{tr} \left(QA \right) - m}{M-m},$$

namely

$$(2.6) \qquad \ln\left(m^{\frac{M-\operatorname{tr}(QA)}{M-m}}M^{\frac{\operatorname{tr}(QA)-m}{M-m}}\right)$$

$$\leq \ln\left(m^{\frac{M-\operatorname{tr}(QA)}{M-m}}M^{\frac{\operatorname{tr}(QA)-m}{M-m}}K\left(\frac{M}{m}\right)^{\left[\frac{1}{2}-\frac{1}{M-m}\operatorname{tr}\left(Q\left|A-\frac{1}{2}(m+M)\right|\right)\right]}\right)$$

$$\leq \operatorname{tr}\left[Q\left(\ln A\right)\right]$$

$$\leq \ln\left(m^{\frac{M-\operatorname{tr}(QA)}{M-m}}M^{\frac{\operatorname{tr}(QA)-m}{M-m}}K\left(\frac{M}{m}\right)^{\left[\frac{1}{2}+\frac{1}{M-m}\operatorname{tr}\left(Q\left|A-\frac{1}{2}(m+M)\right|\right)\right]}\right)$$

$$\leq \ln\left[m^{\frac{M-\operatorname{tr}(QA)}{M-m}}M^{\frac{\operatorname{tr}(QA)-m}{M-m}}K\left(\frac{M}{m}\right)\right].$$

If we take $Q = \frac{A^{1/2}PA^{1/2}}{\operatorname{tr}(PA)} \ge 0$, then $\operatorname{tr}(Q) = 1$ and by (2.6) we derive, by taking the exponential, that

$$m^{\frac{M-\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}(PA)}}{M-m}}M^{\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}(PA)}-m}$$

$$\leq m^{\frac{M-\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}(PA)}}{M-m}}M^{\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}(PA)}-m}K\left(\frac{M}{m}\right)^{\left[\frac{1}{2}-\frac{1}{M-m}\operatorname{tr}\left(\frac{A^{1/2}PA^{1/2}}{\operatorname{tr}(PA)}\left|A-\frac{1}{2}(m+M)\right|\right)\right]}$$

$$\leq \exp\left(\operatorname{tr}\left[\frac{A^{1/2}PA^{1/2}}{\operatorname{tr}\left(PA\right)}\left(\ln A\right)\right]\right)$$

$$\leq m^{\frac{M-\frac{\operatorname{tr}\left(PA^{2}\right)}{M-m}}{\operatorname{tr}\left(PA^{2}\right)}}M^{\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}(PA)}-m}K\left(\frac{M}{m}\right)^{\left[\frac{1}{2}+\frac{1}{M-m}\operatorname{tr}\left(\frac{A^{1/2}PA^{1/2}}{\operatorname{tr}(PA)}\left|A-\frac{1}{2}(m+M)\right|\right)\right]}$$

$$\leq m^{\frac{M-\frac{\operatorname{tr}\left(PA^{2}\right)}{M-m}}{M-m}}M^{\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}(PA)}-m}K\left(\frac{M}{m}\right),$$

namely

$$\begin{split} &1 \leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} - \frac{1}{(M-m)\operatorname{tr}(PA)}\operatorname{tr}\left(PA\big|A - \frac{1}{2}(m+M)\big|\right)\right]} \\ &\leq \frac{\left[\eta_P\left(A\right)\right]^{-1/\operatorname{tr}(PA)}}{m^{\frac{M - \operatorname{tr}\left(PA^2\right)}{\operatorname{tr}(PA)}} M^{\frac{\operatorname{tr}\left(PA^2\right)}{\operatorname{tr}(PA)} - m}} \\ &\leq K \left(\frac{M}{m}\right)^{\left[\frac{1}{2} + \frac{1}{(M-m)\operatorname{tr}(PA)}\operatorname{tr}\left(PA\big|A - \frac{1}{2}(m+M)\big|\right)\right]} \\ &\leq K \left(\frac{M}{m}\right). \end{split}$$

Now, by taking the power $-\operatorname{tr}(PA) < 0$, we get the desired result (2.1).

The second result is as follows:

Theorem 5. Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. If $0 < m \le A \le M$ for some constants m, M, then

$$(2.7) 1 \ge \frac{\eta_{P}(A)}{m^{\frac{\operatorname{tr}(PA^{2}) - M\operatorname{tr}(PA)}{M - m}} M^{\frac{\operatorname{tr}(PA) - \operatorname{tr}(PA^{2})}{M - m}}$$

$$\ge \exp\left[-\frac{1}{Mm}\operatorname{tr}\left[PA\left(M - A\right)\left(A - m\right)\right]\right]$$

$$\ge \exp\left[-\frac{\left(\left(M\operatorname{tr}\left(PA\right) - \operatorname{tr}\left(PA^{2}\right)\right)\left(\operatorname{tr}\left(PA^{2}\right) - m\operatorname{tr}\left(PA\right)\right)\right)}{Mm\left[\operatorname{tr}\left(PA\right)\right]}\right]$$

$$\ge \exp\left[-\frac{1}{4Mm}\left(M - m\right)^{2}\operatorname{tr}\left(PA\right)\right] \ge \exp\left[-\frac{1}{4m}\left(M - m\right)^{2}\right].$$

Proof. In [1] we obtained the following reverses of Young's inequality:

$$1 \leq \frac{\left(1-\nu\right)a+\nu b}{a^{1-\nu}b^{\nu}} \leq \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{a}{b}\right)-1\right)\right],$$

where $a, b > 0, \nu \in [0, 1]$.

This is equivalent, by taking the logarithm, with

$$0 \le \ln((1 - \nu) a + \nu b) - (1 - \nu) \ln a - \nu \ln b \le \nu (1 - \nu) \frac{(b - a)^2}{ba}$$

where $a, b > 0, \nu \in [0, 1]$.

If we take $a=m,\,b=M,\,t\in[m,M]$ and $\nu=\frac{t-m}{M-m}\in[0,1]$, then we get

$$0 \le \ln t - \frac{M - t}{M - m} \ln m - \frac{t - m}{M - m} \ln M \le \frac{(M - t)(t - m)}{(M - m)^2} \frac{(M - m)^2}{Mm}$$
$$= \frac{(M - t)(t - m)}{Mm}.$$

Using the continuous functional calculus for selfadjoint operators, we have

$$0 \le \ln A - \frac{M-A}{M-m} \ln m - \frac{AQ^{1/2}-m}{M-m} \ln M \le \frac{(M-A)(A-m)}{Mm}.$$

If we multiply both sides by $Q^{1/2}$ we get

$$0 \leq Q^{1/2} (\ln A) Q^{1/2} - \frac{MQ - Q^{1/2}AQ^{1/2}}{M - m} \ln m - \frac{Q^{1/2}AQ^{1/2} - mQ}{M - m} \ln M$$
$$\leq \frac{Q^{1/2} (M - A) (A - m) Q^{1/2}}{Mm}.$$

If we take the trace and use the fact that tr(Q) = 1, then we obtain

$$0 \le \operatorname{tr}(Q \ln A) - \frac{M - \operatorname{tr}(QA)}{M - m} \ln m - \frac{\operatorname{tr}(QA) - m}{M - m} \ln M$$
$$\le \frac{1}{Mm} \operatorname{tr}[Q(M - A)(A - m)].$$

The function g(t) = (M-t)(t-m) is concave on [m,M] and by Jensen's inequality for trace

$$\operatorname{tr}(Qg(A)) \leq g(\operatorname{tr}(QA)),$$

for $Q \geq 0$ with $Q \in \mathcal{B}_1(H)$ and $\operatorname{tr}(Q) = 1$, we have

$$\operatorname{tr}\left[\left(M-A\right)\left(A-m\right)\right] \leq \left(\left(M-\operatorname{tr}\left(QA\right)\right)\left(\operatorname{tr}\left(QA\right)-m\right)\right).$$

If we take the exponential, then we get

$$(2.8) 1 \leq \frac{\exp\left[\operatorname{tr}\left(Q\ln A\right)\right]}{\exp\left[\frac{M - \operatorname{tr}\left(QA\right)}{M - m}\ln m + \frac{\operatorname{tr}\left(QA\right) - m}{M - m}\ln M\right]}$$

$$\leq \exp\left[\frac{1}{Mm}\operatorname{tr}\left[Q\left(M - A\right)\left(A - m\right)\right]\right]$$

$$\leq \exp\left[\frac{1}{Mm}\left(\left(M - \operatorname{tr}\left(QA\right)\right)\left(\operatorname{tr}\left(QA\right) - m\right)\right)\right].$$

Observe that

$$\exp\left[\frac{M - \operatorname{tr}(QA)}{M - m} \ln m + \frac{\operatorname{tr}(QA) - m}{M - m} \ln M\right] = \exp\left[\ln\left(m^{\frac{M - \operatorname{tr}(QA)}{M - m}} M^{\frac{\operatorname{tr}(QA) - m}{M - m}}\right)\right]$$
$$= m^{\frac{M - \operatorname{tr}(QA)}{M - m}} M^{\frac{\operatorname{tr}(QA) - m}{M - m}}$$

and by (2.8) we obtain

$$(2.9) 1 \leq \frac{\exp\left[\operatorname{tr}\left(Q\ln A\right)\right]}{m^{\frac{M-\operatorname{tr}\left(QA\right)}{M-m}}M^{\frac{\operatorname{tr}\left(QA\right)-m}{M-m}}} \\ \leq \exp\left[\frac{1}{Mm}\operatorname{tr}\left[Q\left(M-A\right)\left(A-m\right)\right]\right] \\ \leq \exp\left[\frac{1}{Mm}\left(\left(M-\operatorname{tr}\left(QA\right)\right)\left(\operatorname{tr}\left(QA\right)-m\right)\right)\right].$$

If we take $Q = \frac{A^{1/2}PA^{1/2}}{\operatorname{tr}(PA)} \geq 0$, then $\operatorname{tr}(Q) = 1$ and by (2.9) we derive

$$1 \leq \frac{\left(\exp\left[\operatorname{tr}\left(PA\ln A\right)\right]\right)^{1/\operatorname{tr}\left(PA\right)}}{m^{\frac{M-\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}\left(PA\right)}}{M-m}}M^{\frac{\operatorname{tr}\left(PA^{2}\right)-m}{\operatorname{tr}\left(PA\right)-m}}}$$

$$\leq \exp\left[\frac{1}{Mm\operatorname{tr}\left(PA\right)}\operatorname{tr}\left[PA\left(M-A\right)\left(A-m\right)\right]\right]$$

$$\leq \exp\left[\frac{1}{Mm\left[\operatorname{tr}\left(PA\right)\right]^{2}}\left(\left(M\operatorname{tr}\left(PA\right)-\operatorname{tr}\left(PA^{2}\right)\right)\left(\operatorname{tr}\left(PA^{2}\right)-m\operatorname{tr}\left(PA\right)\right)\right)\right]$$

$$\leq \exp\left[\frac{1}{4Mm}\left(M-m\right)^{2}\right].$$

Now, by taking the power $-\operatorname{tr}(PA) < 0$, we derive the desired result (2.7).

3. Related Results

In [2] we obtained the following refinement and reverse of Young's inequality:

$$(3.1) 1 \leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{\min\left\{a,b\right\}}{\max\left\{a,b\right\}}\right)^{2}\right]$$
$$\leq \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}}$$
$$\leq \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\max\left\{a,b\right\}}{\min\left\{a,b\right\}}-1\right)^{2}\right],$$

for any $a,\,b>0$ and $\nu\in[0,1]\,.$

Theorem 6. With the assumptions of Theorem,

$$(3.2) 1 \ge \frac{\eta_P(A)}{m^{\frac{\operatorname{tr}(PA^2) - M\operatorname{tr}(PA)}{M-m}} M^{\frac{\operatorname{tr}(PA) - \operatorname{tr}(PA^2)}{M-m}}}$$

$$\ge \exp\left[\frac{-1}{2m^2}\operatorname{tr}\left[PA(M-A)(A-m)\right]\right]$$

$$\ge \exp\left[-\frac{\left(\left(M\operatorname{tr}(PA) - \operatorname{tr}\left(PA^2\right)\right)\left(\operatorname{tr}\left(PA^2\right) - m\operatorname{tr}\left(PA\right)\right)\right)}{2m^2\operatorname{tr}(PA)}\right]$$

$$\ge \exp\left[-\frac{1}{8}\left(\frac{M}{m} - 1\right)^2\operatorname{tr}(PA)\right] \ge \exp\left[-\frac{1}{8}M\left(\frac{M}{m} - 1\right)^2\right].$$

Proof. From (3.1) we have

$$1 \le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(1-\frac{m}{M}\right)^{2}\right]$$

$$\le \frac{\left(1-\nu\right)m+\nu M}{m^{1-\nu}M^{\nu}} \le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{M}{m}-1\right)^{2}\right],$$

for $\nu \in [0, 1]$.

By taking the logarithm, we obtain

(3.3)
$$0 \le \frac{1}{2}\nu (1 - \nu) \left(1 - \frac{m}{M}\right)^{2} \\ \le \ln \left((1 - \nu) m + \nu M \right) - (1 - \nu) \ln m - \nu \ln M \\ \le \frac{1}{2}\nu (1 - \nu) \left(\frac{M}{m} - 1\right)^{2},$$

for $\nu \in [0, 1]$.

If we take $a=m,\,b=M,\,t\in[m,M]$ and $\nu=\frac{t-m}{M-m}\in[0,1]$, then we get

$$0 \le \frac{(M-t)(t-m)}{2M^2} \le \ln t - \frac{M-t}{M-m} \ln m - \frac{t-m}{M-m} \ln M$$
$$\le \frac{(M-t)(t-m)}{2m^2}$$

for $t \in [m, M]$.

As above, we get the trace inequality

$$0 \le \frac{1}{2M^2} \operatorname{tr} \left[Q \left(M - A \right) \left(A - m \right) \right]$$

$$\le \operatorname{tr} \left(Q \ln A \right) - \frac{M - \operatorname{tr} \left(Q A \right)}{M - m} \ln m - \frac{\operatorname{tr} \left(Q A \right) - m}{M - m} \ln M$$

$$\le \frac{1}{2m^2} \operatorname{tr} \left[Q \left(M - A \right) \left(A - m \right) \right].$$

If we take the exponential, then we derive

$$(3.4) 1 \leq \exp\left[\frac{1}{2M^2}\operatorname{tr}\left[Q\left(M-A\right)\left(A-m\right)\right]\right]$$

$$\leq \frac{\exp\left[\operatorname{tr}\left(Q\ln A\right)\right]}{\exp\left[\frac{M-\operatorname{tr}\left(QA\right)}{M-m}\ln m + \frac{\operatorname{tr}\left(QA\right)-m}{M-m}\ln M\right]}$$

$$\leq \exp\left[\frac{1}{2m^2}\operatorname{tr}\left[Q\left(M-A\right)\left(A-m\right)\right]\right]$$

$$\leq \exp\left[\frac{1}{2m^2}\left(\left(M-\operatorname{tr}\left(QA\right)\right)\left(\operatorname{tr}\left(QA\right)-m\right)\right)\right]$$

$$\leq \exp\left[\frac{1}{8}\left(\frac{M}{m}-1\right)^2\right].$$

If we take $Q = \frac{A^{1/2}PA^{1/2}}{\operatorname{tr}(PA)} \ge 0$, then $\operatorname{tr}(Q) = 1$ and by (3.4) we derive

$$1 \leq \exp\left[\frac{1}{2M^{2}\operatorname{tr}(PA)}\operatorname{tr}\left[PA\left(M-A\right)\left(A-m\right)\right]\right]$$

$$\leq \frac{\left(\exp\left[\operatorname{tr}\left(PA\ln A\right)\right]\right)^{1/\operatorname{tr}(PA)}}{m^{\frac{M-\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}\left(PA\right)}}{M-m}}M^{\frac{\operatorname{tr}\left(PA^{2}\right)}{\operatorname{tr}\left(PA\right)-m}}}$$

$$\leq \exp\left[\frac{1}{2m^{2}\operatorname{tr}\left(PA\right)}\operatorname{tr}\left[PA\left(M-A\right)\left(A-m\right)\right]\right]$$

$$\leq \exp\left[\frac{1}{2m^{2}\left[\operatorname{tr}\left(PA\right)\right]^{2}}\left(\left(M\operatorname{tr}\left(PA\right)-\operatorname{tr}\left(PA^{2}\right)\right)\left(\operatorname{tr}\left(PA^{2}\right)-m\operatorname{tr}\left(PA\right)\right)\right)\right]$$

$$\leq \exp\left[\frac{1}{8}\left(\frac{M}{m}-1\right)^{2}\right],$$

which is equivalent to (3.2).

Remark 1. Consider the quantities

$$B_1(m, M) := -\frac{1}{4m} (M - m)^2 \text{ and } B_2(m, M) := -\frac{1}{8} M \left(\frac{M}{m} - 1\right)^2$$

defined for 0 < m < M.

Observe that

$$B_{1}(m, M) - B_{2}(m, M) = -\frac{1}{4m} (M - m)^{2} + \frac{1}{8} \frac{M}{m^{2}} (M - m)^{2}$$
$$= \frac{1}{4m} (M - m)^{2} \left(\frac{M}{2m} - 1 \right),$$

which shows that $B_1(m, M) < B_2(m, M)$ for m < M < 2m and $B_1(m, M) > B_2(m, M)$ for M > 2m.

Therefore the lower bound from (2.7) is better than the one from (3.2) for M > 2m, while for m < M < 2m the conclusion is the other way around.

References

- S. S. Dragomir, A Note on Young's Inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas volume 111 (2017), pages 349-354. Preprint, RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [2] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Transylvanian J. Math. Mech. 8 (2016), No. 1, 45-49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
- [3] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [4] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 15, 14 pp. [Online https://rgmia.org/papers/v25/v25a16.pdf].
- [5] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530.
- [6] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [7] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [8] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645
- [9] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* **19** (2015), No. 2, pp. 467-479.
- [10] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa