BOUNDS FOR THE ENTROPIC TRACE CLASS
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES VIA KANTOROVICH’S CONSTANT

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the entropic P-determinant of the positive invertible operator A by

np (A) :=exp [—tr (PAln A)].

In this paper we show, among others that, if A is an operator satisfying the
condition 0 < m < A < M, then

- [% tr(PA)— iy tr(PA|A—%(m+M)|)]
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where K (-) is Kantorovich’s constant.

1. INTRODUCTION

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T'| := (T*T)"/? its modulus. By the spectral theorem
one can represent 1" as an integral

T:/ ME ()
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure jp := 7 o E/ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp </ lntduT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [8].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) 1Al < 1Al

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Aec By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [l = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(1)) If A€ By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, ||T]|;

(i) tr (+) s a bounded linear functional on By (H) with |tr|| = 1;
(i) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TP? € By (H),
hence PY/2TPY/? and TPY2PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2TP'Y2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [3] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [4]:
(i) continuity: the map A — Ap(A) is norm continuous;
(i) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
[4

In [4], we presented some fundamental properties of this determinant. Among
others we showed that
tr (PA) _
1< < exp [tr (PA)tr (PA™Y) —1
< Ap(a) S el P (PAT) —1]
and A (A
< L),l < exp [tr (PA_l) tr (PA) — 1] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function 7 (¢f) = —tlnt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr{P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr{P (tAlnt +tAIn A)})
=exp(—tlnttr (PA))exp (—ttr (PAln A))

— expln (ﬁr(PA)t) [exp (— tr (PAIn A))] 7",
hence
(1.13) np(tA) = A [ (A)]7

for ¢t >0 and A > 0.
Observe also that

(1.14) np(I)=1and np(tl) =t""
for t > 0.
We consider the Kantorovich’s constant defined by
h+1)°
(1.15) K (h) = %, h > 0.

The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1 for any
h>0and K (h) = K () for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

(1.16) (a' b <) K" (%) a7 < (1—v)a+vb< KR (%) R

where a,b >0, v € [0,1], r = min{l — v,v} and R = max {1 — v, v}.

The first inequality in (1.16) was obtained by Zou et al. in [10] while the second
by Liao et al. [9].

Motivated by the above results, in this paper we provided several upper and
lower bounds for the quantity

np (A)

tr(PA2)—M tr(PA) mtr(PA)—tr(PA?)
m M—m M—m

where P > 0 with P € By (H) and tr (P) = 1 and 0 < m < A < M for some
constants m, M.

2. MAIN RESULTS

We start to the following main result:

Theorem 4. Assume that P > 0 with P € B1 (H) andtr(P)=1. If0<m <A<
M for some constants m, M, then

) —[3 tr(PA)— iy tr(PA[A=§ (m+M)])]

(2.1) 1>K <m
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np (A)

= tr(PA2)—M tr(PA) mtr(PA)—tr(PA2)
m M—m M M—m

(M) —[% tr(PA)—&-(M%m) tr(PA|A—%(m+M)|)]
K

()]

Y

Proof. Assume that t € [m, M] and consider v = 72 € [0,1]. Then

min{l —v,v} =

1 ‘ 1' 1 t—m 1'
N Py

2 22 |[M-m 2
1 1 1
- -~z M
~ 2 M—m‘t g (m+ )'
1 1 1 t—m 1
max{l—l/,u}—§—|— 1/—2‘ 5 ‘M—m_Q’
1 1 1
- t— = (m+M
SR m‘ g (m+ )"
M — t—m
1-— M = M=t
1-v)ym+v = m+Mfm

and

vy M—t t—m
m MY = md—m N[ M—m ,
By using (1.16) we get

1

1
M I t—§(m+M)| M—t t—m
mM—m N M—m
m

(X)) L N e
m

IA
=

(2.2) . =k e [

<t<
for t € [m, M].
By taking the log in (2.2) we get

(2.3) ! lnm+ ]\Z_,m In M

T el (2
M__mlnm+ lnM

<Int< [;+M p- t—f m—&—M)H an<Anf>
+Aj\f:mlnm+ ——InM
<1nK(M> +]\Aj__7’; Inm + AZ__TnlnM

for t € [m, M].
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If 0 <m < A < M, then by using the continuous functional calculus for selfad-
joint operators we get from (2.3) that

—A A—m
In M
— +n Mfm

[ S e ()

M_
1 In M
Ry e ey

1 M
<InA< | A— M)||InK | —

M-A A—m
+lan_m+lnMM_m

M M-A A—
< -
an(m>+lan_m+lnMM

M
2.4 1
(2.4) an

Assume that Q > 0 with @ € By (H) and tr (Q) = 1. If we multiply the inequality
(2.4) both sides by Q'/? we get

MO — OY/2401/2 1/2 4n1/2 _
Q-QAQ* |\ QVPAQV2 —mQ
Mf M—-—m

Q— Q1/2 1(m+M)‘Q1/2} an<M>
2 m

Q _ Ql/QAQl/Q Q1/2AQ1/2 _ mQ
M—-m +inM M —m

(2.5) Inm

+Inm

< QY2 (InA) Q1/2
{ Q+ 7 Q1/2 1(m+M)‘Q1/2] an<M>
2 m

Q*QI/QAQ1/2 Q1/2AQ1/2*mQ
M—-—m +inM M—m
MQ _ Ql/ZAQl/Q Ql/QAQ1/2 _ mQ

<
an< )Q—i—l U —m +InM U

+1Inm

Now, if we take the trace and use the fact that tr (Q) = 1, then we get

M —tr(QA) tr (QA) —
Inm U —m +InM T

c[s- (ol e (2
M—tr(QA) , | ir(Q4) —m

M—-—m M—m
< tr[Q (In A)]

+Inm
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< [;+M1_mtr<Q‘A—;(m+M)mth<J‘nf)

+lnmw +]DMW
-m M—-m
<InK M +1nmw —l—lnM%,
namely
(26) In (mMz_»;i(SLA)M”(J?fﬁ)?:m)

< (m Al;/[tr_(y(y?LA) Mtr(Qﬁln m
< tr[Q (n A)]

M—tr(QA) tr(QA)—m
S 11’1 (m M—m M M—m K <

M—tr(QA) tr(QA)frn
<lIn |:m M—m N M-m (

/'\
S
\/

Q|A—(m+M)|)]>

) [§+M1mtr(QA—%(m+M>|)}>

If we take Q = % > 0, then tr (Q) = 1 and by (2.6) we derive, by taking

the exponential, that

35

3\§

tr(PA2 wr(PA2
tr(PA) tr(PA) "
m~ M-m N M-m

M —

r 2 r 2
M*tc&iix) tcribi)) - L (AR A= 3 (mt )] )]

<m M—m M M—m

AL/2pAL/2
< - -
< exp <tr { tx (PA) (In A)]

tr(PA2 tr(PA2)
tr(PA) Y eZ
<m M—m M~ M-m

=

=
7N TN ~— /N

3|z 3=

N———

IS

1
) [E_M—m r
Al/2pal/2

) [%+ gy s tr(w|A*%(m+M)D]

M —

n-(PAQ) tx-(PA2
wPAD | wPA "
<m~ M-m M M-m

M—

=

namely

M\ B ormers tr(PA[A=3 (mta)|)]
()
m

[ (A))H/

— tr(PA2) tr(PA2)
M- A w(PA) ™"
m M—m M—m
M [%‘*‘7(1\/1777;)%;(13/;) tr(PAJA—L(m+M)|)]
<K
m
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Now, by taking the power —tr (PA) < 0, we get the desired result (2.1). O
The second result is as follows:

Theorem 5. Assume that P > 0 with P € By (H) andtr (P)=1. If 0 <m < A<
M for some constants m, M, then

(2‘7) 1 Z tr(PAz)—Mtr(ZiD) (A)m tr(PA)—tr(PA2)
> exp _— ]\/llm tr [PA(M — A) (A — m)]}
S exn | ((Mtr (PA) —tr (PA?)) (tr (PA?) — mtr (PA)))
= Mm [tr (PA)]
> exp —ﬁ (M —m)® tr (PA)} > exp [—4:71 (M — m)2] .

Proof. In [1] we obtained the following reverses of Young’s inequality:
1-— b
1< d-vjatub aii)l?bj_ Y < exp [41/ (1-v) (K (%) — 1)} ,
where a, b > 0, v € [0, 1].
This is equivalent, by taking the logarithm, with
(b—a)’

0<In((l-v)a+vb)—(1—-—v)lna—vinb<v(l-v) A
a

where a, b > 0, v € [0, 1].
If we take a =m, b= M, t € [m,M] and v = ]\7_"7’” € [0,1], then we get

M —t t—m (M —t) (t —m) (M —m)?
0<Int— | ———InM <
<In MMy eM=< (M—m)2 W
(M —1t)(t—m)
=
Using the continuous functional calculus for selfadjoint operators, we have
M—-A AQY? —m (M —A)(A—m)
0<InA- 1 ————InM< .
= M—m o M —m = Mm

If we multiply both sides by Q/2? we get
MQ _ Q1/2AQ1/2 | Ql/QAQ1/2 _ mQ
m —

< 1/2 /2 _
0 < Q7"(n4)Q M —m n Y- In M
QY (M~ A)(A-m)Q"?
< WU .
If we take the trace and use the fact that tr (Q) = 1, then we obtain
0<tr(Q@InA)— ZW_Mtii(gA)lnm — %IHM
1
< - - .
< S [Q(M — A) (4 - m)]

The function g (t) = (M —t) (¢t — m) is concave on [m, M| and by Jensen’s in-
equality for trace

tr (Qg (A4)) < g (tr (QA)),
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for @ > 0 with Q € By (H) and tr (Q) = 1, we have
tr[(M — A) (A=m)] < (M — tr (QA)) (tr (QA) —m)).
If we take the exponential, then we get

exp [tr (Q1n A)]

exp {7Mﬁr_(7@n’4) lnm + 7“(5’3;7” In M}

(2.8) 1<

< exp | QM — ) (4= m)]
1
< exp | (O = 15 (QA) (1(Q4) = )]
Observe that
M — tr (QA) tr (QA) —m B A{J—wti(QA)
exp WlnerWIHM = exp [ln(m
M—tr(QA) tr(QA)—m
= m M—m M—m

and by (2.8) we obtain

exp [tr (Q1In A)]

(29) 1 S M—tr(QA) tr(QA)—m
m~ M—-m M—m
1
< _ _
< exp {Mm tr[@Q (M — A) (A m)]}

< exp | 7= (01 = tr(QA) (1 Q) - m))|.

If we take Q = A0EA2 > o then tr (Q) =1 and by (2.9) we derive

tr(PA)

| < (ep[tr(PAn A B

- tr(PA2) tr(PA2)
M—
tr(PA) tr(PA)
m- M-m M M-m

—m

< exp tr [PA(M — A) (A —m)]

1
| Mmtr (PA)
[ 1

| Mm [tr (PA)]?
M1

| 4Mm

< exp

< exp (M —m)?|.

Now, by taking the power — tr (PA) < 0, we derive the desired result (2.7).

((M tr (PA) — tr (PAQ)) (tr (PAZ) — mtr (PA)))

)

O
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3. RELATED RESULTS

In [2] we obtained the following refinement and reverse of Young’s inequality:

1 min {a, b} 7]
. < (- i S ke &
(3.1) 1 <exp 21/(1 v) (1 - {a,b})
< (I1-v)a+vd
— a-l—l/bl/ )
1 max {a, b} 2
< il _ junntienill St BN
< exp | v (1-v) (min (a0} 1) ,

for any a, b> 0 and v € [0,1].

Theorem 6. With the assumptions of Theorem ,

np (4)
(3‘2) 1> tr(PA2)— M tr(PA) mtr(PA)—tr(PA2)
m M—m M M—m

> exp b tr[PA(M — A) (A — m)]}

- ((M tr (PA) — tr (PAQ)) (tr (PAQ) —mtr (PA)))
= exp 2m?2tr (PA)

r 2 2
> exp ! <M—1) tr (PA)| > exp —EM (M—l) ] .
8 \'m 8 m

Proof. From (3.1) we have
1 m\2
< z _ _ -
1exp{21/(1 u)(l )]

LA=ymevd llyu_u) (%—QT

mi-vMv 2
for v € [0,1].
By taking the logarithm, we obtain
1 2
(3.3) 0< 51/(1 —v) (1 - %)

<In(l-v)ym+vM)—(1-v)lnm—vInM

loan (M)

for v € [0,1].
If we take a =m, b= M, t € [m, M] and v = {72 € [0,1], then we get
(M —1t)(t—m) M-t t—m
<————~<Int-— | — In M
Y 7y A Vi
<(M—t)(t—m)

2m?2

for t € [m, M].

11
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As above, we get the trace inequality

1
0 gy tr[Q (M — 4) (4~ m)]
<tr(QInA) - %ﬁmlnmf%lnM
< S QM — A) (A —m)].

If we take the exponential, then we derive

a7 QO — ) (4 - )]

exp [tr (Q1n A)]
exp [71\/[};1(2’4) Inm + 7“(13/3;7” In M}

(3.4) 1 <exp {

< exp _sz tr[@Q (M —A) (A - m)]}
< oxp | oy (M 11 (QA)) (@) ~ )]
< exp ;(%—1) ]

If we take Q = % > 0, then tr (Q) =1 and by (3.4) we derive

1<exp { tr [PA(M — A) (A— m)]}

1
2M2 tr (PA)
_ (exp[tr(PAIn A P

- tr(PA2) tr(PA2)
M- PA) wPA) "
M

< exp Szt (PA) tr [PA(M — A) (A — m)]}
< exp ! (M tr (PA) — tr (PA?)) (tr (PA2) — mtx (PA)))

| 2m2 [tr (PA))?

1/M N\
< exp 3 E_l ,

which is equivalent to (3.2).

Remark 1. Consider the quantities

1 1 (M 2
By (m, M) := —R(M—m)2 and By (m, M) := —gM ( — 1)

defined for 0 < m < M.
Observe that

By (m,M)—By(m,M) = —— (M—m)’+-— (M—m)?




wh
By
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ich shows that By (m, M) < B (m,M) for m < M < 2m and By (m,M) >
(m, M) for M > 2m.
Therefore the lower bound from (2.7) is better than the one from (3.2) for M >

2m, while for m < M < 2m the conclusion is the other way around.

(1]

2]

(3]

(4]

[10]

MEe

REFERENCES

S. S. Dragomir, A Note on Young’s Inequality, Revista de la Real Academia de Ciencias Exac-
tas, Fisicas y Naturales. Serie A. Matemdticas volume 111 (2017), pages 349-354. Preprint,
RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transylvanian
J. Math. Mech. 8 (2016), No. 1, 45-49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131.
[http://rgmia.org/papers/vi8/v18a131.pdf].

S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent
results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online
https://ajmaa.org/searchroot/files/pdf/vi9n1/v19i1pl.pdf].

S. S. Dragomir, Some properties of trace class P-determinant of positive operators in
Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 15, 14 pp. [Online
https://rgmia.org/papers/v25/v25a16.pdf] .

B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55
(1952), 520-530.

J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.

J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht’s Theorem,
Sci. Math., 1 (1998), 307-310.

S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim’s inequality, J.
Math. Inequal., Volume 15 (2021), Number 4, 1637-1645

W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with
the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.

G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math.
Inequal., 5 (2011), 551-556.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
LBOURNE CI1TY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,

ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA



