INEQUALITIES FOR TRACE CLASS ENTROPIC
P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES VIA CEBYSEV’S TYPE RESULTS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the P-determinant and the entropic P-determinant of the positive invertible
operator A by
Ap (A) := exp [tr (Pln A)]
and
np (A) :=exp[—tr (PAln A)],

respectively.

In this paper we show among others that, if A, B >0, P, Q € B1 (H)\ {0}
with P,@ > 0 and tr (P) = tr (Q) = 1, then for r > 0

e (AN [ng (BN]Y" < [Ag (B)] ™ "7 [Ap (4))7#(@P).

In particular, we have

np (A)ng (B) < [Aq (B)] ™ "M [ap (4)~ @B

1. INTRODUCTION

In 1952, in the paper [8], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 7T as an integral

T = / AE (X)),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp (/ lntd,uT) .
0

Apr (T) = exp (1 (In(|T1))),

where In (|7']) is defined by the use of functional calculus.

If T is invertible, then
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Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [9], [10], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [11].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > e < oo

iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 * 2
(1.2) Do lAedll® = IAL1T =D 147
i€l jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
(13) JAll, = <2Aei|2>
iel
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in (2 (1), one checks that By (H) is a vector space
and that ||-||, is a norm on Bs (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)'/?

Because |||A| z|| = ||Az]| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]|l,. From (1.2) we have that if A € By (H), then A* €
By (H) and [|All, = A%,

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||ly) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y (B*Aeie;)
i€l i€l
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

(1.5) [A]l < [| Al

iel’
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for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, [T Ally < 1T 1Al

(#ii) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) 1Al =) (|Al iy i) < oo
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei},cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(1) A€ By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) 1Al = 1A%, and (Al < [[A]l,
for any A€ By (H);

(i1) By (H) is an operator ideal in B (H), i.e.

B(H)Bi (H)B(H) < Bi (H);
(iti) We have
By (H) By (H) =By (H);
(iv) We have
[Ally = sup {(A, B), | BBy (H), |Bl,<1};

(v) (B1 (H),||ly) s a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Ae;,e;),

i€l

where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A") = tr (A);
(it) If A€ By (H) and T € B(H), then AT, TA € B, (H),
(L.11) tr (AT) = tr (TA) and [tr (AT)| < || All, |T]]

(iii) tr () is a bounded linear functional on By (H) with ||tr]] = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).
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Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TPY? € By (H),
hence PY/2TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P> 0 and P € B, (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2T P2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) 3 T +— tr (PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT},) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [6] and the references therein.

Now, for a given P > 0 with P € B; (H) and tr(P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PlnA) =exptr((InA) P) =exptr (P1/2 (InA) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [7]:

(i) continuity: the map A — Ap(A) is norm continuous;

(ii) power equality: Ap(A?) = Ap(A)t for all t > 0;

(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all ¢ > 0;

(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).

In [7], we presented some fundamental properties of this determinant. Among
others we showed that

tr (PA) 1
1< <exp |tr (PA)tr (PA™) — 1
< Ap(a) <ol @A) (PATY) —1]
and
< LA)A <exp [tr (PA™) tr (PA) — 1],

[tr (PA~1)]

for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function 7 (¢f) = —tlnt, ¢ > 0, the operator entropy has the
following expression:
n(A)=—-AlnA

for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) :=exp[—tr (PAln A)] = exp {tr [Pn (A)]} = exp {tr [P1/277 (A) Pl/Z} } .
Observe that the map A — np(A) is norm continuous and since
exp (—tr{P[tAln (tA)]})

=exp(—tr{P[tA(lnt+InA)]}) =exp(—tr{P (tAlnt+tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

— expln (ftr(PA)t) [exp (—tr (PAIn A))] ™",
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hence
(1.13) np(tA) = 1PN [ (4)]7
for t > 0 and A > 0.

Observe also that
(1.14) np(I)=1and np(tl) =t""
for t > 0.

Motivated by the above results, in this paper we show among others that, if A,
B>0,P Qe B (H)\{0} with P,Q > 0 and tr (P) = tr (Q) = 1, then for r > 0
[np (A" [ng (BN < [8q (B)]” "7 [Ap ()] @57,

In particular, we have
np (A)1g (B) < [Ag (B)] " [ap (4)] @),
2. MAIN RESULTS

We say that the functions f, g : [a,b] — R are synchronous (asynchronous) on
the interval [a, b] if they satisfy the following condition:

(f (&) = f(s))(g(t) —g(s)) = (£)0 for each t, s € [a,b].

It is obvious that, if f, g are monotonic and have the same monotonicity on
the interval [a, ], then they are synchronous on [a,b] while if they have opposite
monotonicity, they are asynchronous.

In [4] we obtained the following Cebysev’s type result:

Lemma 1. Let A be a selfadjoint operator on the Hilbert space H with Sp (A) C J
and assume that the continuous functions f, g : J — R are synchronous on J. If
P e By (H)\ {0} with P >0, then

tr[Pf(A)g(A)] tr[Pf(A)]tr[Pg(A)]

(2.1) tr (P) tr (P) tr (P)
= (Mo () 6 () -t )

In particular, we have:

Corollary 1. With the assumptions of Lemma 1 and if one of the functions f and
g is convex while the other is concave, then we have

tr[Pf(A)g(A)]  tr[Pf(A)]tr[Pg(A)]

(2.2)

tr (P) tr (P) tr (P)
= (St (5m) O () et )
> 0.

By utilizing these inequalities, we can state the following main result:

Theorem 4. Let A > 0, P € By (H) \ {0} with P > 0 and tr (P) = 1, then for
p € (—00,0)U[l,00) we have

(2'3) [UP(AP)]l/p < [AP (A)]f[tr(PA)]p [tl“ (PA)][tr(PA)]Pftr(PAp)
< [AP (A)]ftr(PAT’) )
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In particular, we have

(24) np(A) < [Ap (4)] Y
and
(25) [p(4%)] 2 < [Ap (4) 7 IEOT for (pa) A (P4
< [Ap () ()
Also
(26)  mp(ATY) = [Ap (A)POT [ (pay(PAT) Tl (POT
> [Ap (4]

Proof. If we take f(t) = t?, p € (—00,0) U [1,00) and g (t) = Int, t > 0 in (2.2),
then we get

tr (PAPIn A) — tr (PAP)tr (Pln A)
> (tr (PAP) — [tr (PA)]?) (In (tr (PA)) — tr (P1n A))
> Oa
namely
% tr (PAPIn AP) — tr (PAP) tr (Pln A)
> (tr (PAP) — [tr (PA)]”) (In (tr (PA)) — tr (Pn A))
> 0.
If we take the exponential, then we get
exp [—tr (PAP) tr (Pln A))
exp f% tr (PAPIn AP)}
> exp [(tr (PAP) — [tr (PA)]") (In (tr (PA)) — tr (Pln A))]
> 1.
Observe that
exp [— tr (PAP) tr (P1n A)] = (exp [tr (Pln A)])~ "(F4")
= [Ap (4)] A

(2.7)

exp fltr (PAPIn AP)| = (exp|—tr(PAP lnAp)Dl/p
p

= [np(an)]'"”
and
exp [(tr (PAP) — [tr (PA)]P) (In (tr (PA)) — tr [P1n A])]
= [exp (In (tr (PA)) — tr (Pln A))]tf(PA”)—[tr(PA)]P
B exp In (tr (PA)) tr(PAP)—[tr(PA)|P
- [expt(mnA)]

B |:tI' (PA) :| tr(PAP)—[tr(PA)]P
~LAr(4) '
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Then by (2.7) we get

[Ap (A)) 5@AD ey (pa)] ANl PAr
np (AP Z[APMJ

Now, if we multiply this inequality by [Ap (A)]tr(PAp) , then we get (2.3). O

> 1.

Corollary 2. With the assumptions of Theorem 4 and p # 2, we have

(2.8) ["7P (AQ—P)] =7 > [7713 (AQ)] 2t (PA)
In particular, for p =1, we get
(2.9) e (A))° > np (A7)

Proof. If we write the inequality (2.4) for % instead of P and A~! instead of
A, then we get

1 tr(ep A"
(2.10) > |A _apa (A) (i a™).
1/p w(PA)
|: APA (A p)}
tr(PA)
Observe that
APA
- -p) _ _ —p —p
a4 (A7P) exp( tr (tr(PA)A In A ))
_ _ 1 2—p —-p
—exp( tr (PA) tr(PA InA ))
_ p 2—p
= exp (tr(PA) tr (PA lnA))
p 2— 2—
= — tr (PA*"Pln A*"P
o0 (=g (P A)
p 9_ 9_
= — = tr (—PA*"PIln A“7P
eXp(<p2>tr<PA> = " )>

= [np (4277)] =7 P A

and

Il
e
[
o
7~ N 7 N -7 N
—
-+
=
—~
I
b
[ V)
=
N
L
~
N———

and by (2.10) we get

tr(PAZ—P

I <A2‘p)}<1pa>‘“mmr/p > [[np (43)]770Fm] T
p
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namely
1 cr(PA2*P)

> [n (47)) 2

[np (A2-7)]| T
If we take the power tr (PA), then we get (2.8). O
Theorem 5. Let A > 0, P € By (H) \ {0} with P > 0 and tr (P) = 1, then for
q € (0,1) we have

(tr(PA))?—tr(PA?)
1y T o (tr(PA))
(2'11) [77P (Aq )] < (A)]—(tr(PA))q

< [np (A))"74Y.
[77P

Proof. If we take f (t) =tlnt, g(t) =9, g € (0,1), ¢ > 0 in (2.2), then we get
tr (PA‘H'1 In A) —tr (PAln A) tr (PAY)
> (tr (PAIn A) —In (tr (PA))) ((tr (PA))? — tr (PA?))
>0

namely

i 1 tr (PAYT In A7) — tr (PAln A) tr (PAY)
q

> (tr (PAn A) — In (tr (PA))) ((tr (PA))? — tr (PA?))
> 0.

If we take the exponential, then we get

(2.12) exp [q Jlr 1 tr (PAT ! In A%T1) — tr (PAln A) tr (PAQ)]
> exp [(tr (PAIn A) — In (tr (PA))) ((tr (PA))? — tr (PAY))]
> 1.

Observe that

exp { i T tr (PAYT In A7) — tr (PAln A) tr (PAq)}
q

_ oxpl-tr(PAA) tr(PAY)] _ (exp[—tr (PAImA))""A

exp [—ﬁ tr (PAI*11n Aq“)} (exp [— tr (PAI*!1n A‘H‘l)])qul

_ e (A"
[np (ATt

and
exp [(tr (PAIn A) — In (tr (PA))) ((tr (PA))? — tr (PA?))]
= [exp[tr (PAIn A) — In (tr (PA))]](“(PA))L]*“(PAQ)

_ (eXp {ln (tr (PA))—I})(tr(PA))Q,tr(PAq)

" Jexp (— tr (PAIn A))BrPAN 6 (PAD
(tr (PA))PAD = (P A"
(A)](tr(PA))qftr(PAq) .

np



INEQUALITIES FOR TRACE CLASS ENTROPIC P-DETERMINANT 9
By (2.12) we get

[np (A)" 47 > >1
[np (Aq+1)]qT11  [np (A)}(tr(PA))Ltr(PAq) =+

(tr (PA))tr(PAq)f(tr(PA))q

If we divide by [np (4)]"F4") we get the desired result (2.11). O

Corollary 3. With the assumptions of Theorem 5, we have

S tr(PA2—4
(2.13) [p (A7) 77 = [np (A47)] 2700
In particular, for ¢ = 1/2, we get
9 tr(PA3/2
R A
Proof. If we write the inequality (2.11) for % instead of P and A~ instead of
A, then we get
1 —tr c?PA A9
(2.15) > [naps (A7) (b a™)
- q+1 tr
[reagay (4]
As above,
q+1
0 ana (A~(atD)y = [np (A7) T erD
and

A ara (A7) = [np (42)] 770D

and by (2.15) we obtain

tr(PA2—4

T L

1

namely

tr(PA2—4

[np (A1) TTHCD > [, (A2)] FwEar
If we take the power tr (PA), then we get (2.13). O

3. RELATED RESULTS
In [4] we also obtained the following Cebysev’s type inequalities:

Lemma 2. Let A and B be two selfadjoint operators on the Hilbert space H with
Sp(A),Sp(B) C J and assume that the continuous functions f, g : J — R are
synchronous on J. If P, Q € By (H) \ {0} with P, @ > 0, then

wIPf(A)g(A)] | Q) (B)(B)]
w (P) =@
S r[PF(A)]tr[Qg(B)] | tr[Pg(
tr (P) tr (Q) tr (P) tr (Q)

(3.1)
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and, in particular,
tr[Pf(A)g(A)]  tr[Pf(B)g(B)]

(32) w(P) T w(p
tr[Pf(A)] tr[Pg(B)] | tr[Pg(A)]tr[Pf(B)]
tr (P) tr (P) tr (P) tr (P)

We also have:

Corollary 4. Let A be a selfadjoint operators on the Hilbert space H with Sp (A) C
J and assume that the continuous functions f, g : J — R are synchronous on J. If
P, Q€ By (H)\ {0} with P, Q >0, then
tr[Pf(A)g(A)] | r[Qf(4)g(A)]

o (P) Q)
S w[PF(A)]tr[Qg(A)] | tr[Pg(A)]tr[QF (A)]
S TaP) w@ | wP)  w@

(3.3)

and, in particular,

tr[Pf(A)g(A)] _ tr[Pf(A)] tr[Pg(A)]
tr (P) - tr(P) tr(P)

Using the above inequalities we can also state:

Theorem 6. Let A, B > 0, P, Q € By (H) \ {0} with P, Q@ > 0 and tr (P) =
tr (@) =1, then forr >0

(35) I (AN [ng (BN]" < [8g )" [ap (4) 7@

In particular, we have

(3.4)

(3.6) np (A)ng (B) < [Aq (B)]ftr(PA) [Ap (A)}*tr(QB)
and
(1) [np (43)]" [ng (B)]* < [aq (B) ") [ap (4)) (@R,

For r <0, the inequality in (3.5) reverses.

Proof. If we write the inequality (3.1) for the functions f(¢) = t", » > 0 and
g (t) =Int, t > 0 then we get

tr (PA"InA) +tr (QB"InB) > tr (PA") tr (QIn B) + tr (PIn A) tr (QB"),
namely
L tr (—PAT I AT + tr (—QB" In BT)]
rg —tr (PA")tr (QInB) —tr (Pln A)tr (QB").
If we take the exponential, then we get
(exp [tr (—PA" In AT)])% (exptr (—QB" In BT))%
< [exp (tr (QIn B))]” "4 [exp tr (PIn A)]~ (@B
namely
(1 (A" (g (BN)"" < [Aq (B)]” 747 [ap (4))7 %)
and the inequality (3.5) is proved. O
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Corollary 5. With the assumptions of Theorem 6 we have
(38) e (AN Inp (BT < [Ap (BT (AR ()P

(39)  [np (AN [ng (AN]" < [Ag (A)] AT [ap ()] @A)

and

(310) [77]3 (Ar)]l/r < [AP (A)]—tr(PAr) .

Remark 1. For r =1 we derive that

(3.11) np (A)np (B) < [Ap (B)]” " [Ap (4)) =P

(3.12) e (A)ng (A) < [Ag ()] "V [Ap (4))7 O

and

(3.13) np (A) < [Ap (4)] Y.
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