INEQUALITIES FOR TRACE CLASS ENTROPIC P-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES VIA ČEBYŠEV'S TYPE RESULTS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \ge 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and tr(P) = 1, we define the *P*-determinant and the entropic *P*-determinant of the positive invertible operator A by

$$\Delta_P(A) := \exp\left[\operatorname{tr}\left(P\ln A\right)\right]$$

and

$$\eta_P(A) := \exp\left[-\operatorname{tr}\left(PA\ln A\right)\right],$$

respectively.

In this paper we show among others that, if $A, B > 0, P, Q \in \mathcal{B}_1(H) \setminus \{0\}$ with $P, Q \ge 0$ and tr (P) = tr(Q) = 1, then for r > 0

$$[\eta_P(A^r)]^{1/r} [\eta_Q(B^r)]^{1/r} \le [\Delta_Q(B)]^{-\operatorname{tr}(PA^r)} [\Delta_P(A)]^{-\operatorname{tr}(QB^r)}.$$

In particular, we have

$$\eta_P(A) \eta_Q(B) \le \left[\Delta_Q(B)\right]^{-\operatorname{tr}(PA)} \left[\Delta_P(A)\right]^{-\operatorname{tr}(QB)}$$

1. INTRODUCTION

In 1952, in the paper [8], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda) \,,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (*FK*-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_0^\infty \ln t d\mu_{|T|}\right).$$

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

where $\ln(|T|)$ is defined by the use of functional calculus.

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Trace class operators, Determinants, Inequalities.

S. S. DRAGOMIR

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, A > 0means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \ge B$ means as usual that A - B is positive.

In 1998, Fujii et al. [9], [10], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp\left\langle \ln Ax, x \right\rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [11].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

(1.1)
$$\sum_{i\in I} \|Ae_i\|^2 < \infty$$

It is well know that, if $\{e_i\}_{i \in I}$ and $\{f_j\}_{j \in J}$ are orthonormal bases for H and $A \in \mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}(H)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}(H)$. For $A \in \mathcal{B}_{2}(H)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i \in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because ||A|x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = ||A|||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_2(H), \|\cdot\|_2)$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$; (ii) We have the inequalities

$$(1.5) ||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_{2}(H)$ and, if $A \in \mathcal{B}_{2}(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_{2}(H)$ with

(1.6)
$$||AT||_2, ||TA||_2 \le ||T|| ||A||_2$$

(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H) \mathcal{B}_{2}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{2}(H).$$

If $\{e_i\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathcal{B}(H)$ is trace class if

(1.7)
$$\|A\|_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$.

The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

(i) $A \in \mathcal{B}_1(H)$; (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations: (i) We have

(1.8)
$$||A||_1 = ||A^*||_1 \text{ and } ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H) \mathcal{B}_{1}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{1}(H);$$

(iii) We have

$$\mathcal{B}_{2}\left(H
ight)\mathcal{B}_{2}\left(H
ight)=\mathcal{B}_{1}\left(H
ight);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle Ae_i, e_i \rangle$$

where $\{e_i\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have: (i) If $A \in \mathcal{B}_1(H)$ then $A^* \in \mathcal{B}_1(H)$ and (1.10) $\operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$ (ii) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$, (1.11) $\operatorname{tr}(AT) = \operatorname{tr}(TA)$ and $|\operatorname{tr}(AT)| \leq ||A||_1 ||T||;$

(iii) tr (·) is a bounded linear functional on $\mathcal{B}_1(H)$ with ||tr|| = 1; (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and tr (AB) = tr (BA). Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and tr (PT) = tr(TP). Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with tr $(P^{1/2}TP^{1/2}) = \text{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \ge 0$, then $P^{1/2}TP^{1/2} \ge 0$, which implies that $\operatorname{tr}(PT) \ge 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n\to\infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [6] and the references therein.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *P*-determinant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}(P^{1/2}(\ln A) P^{1/2}).$$

Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties [7]:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_P(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \leq B$ implies $\Delta_P(A) \leq \Delta_P(B)$.

In [7], we presented some fundamental properties of this determinant. Among others we showed that

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right],$$

for A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr(P) = 1.

For the entropy function $\eta(t) = -t \ln t$, t > 0, the operator entropy has the following expression:

$$\eta\left(A\right) = -A\ln A$$

for positive A.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr (P) = 1, we define the *entropic* P-determinant of the positive invertible operator A by

$$\eta_{P}\left(A\right) := \exp\left[-\operatorname{tr}\left(PA\ln A\right)\right] = \exp\left\{\operatorname{tr}\left[P\eta\left(A\right)\right]\right\} = \exp\left\{\operatorname{tr}\left[P^{1/2}\eta\left(A\right)P^{1/2}\right]\right\}.$$

Observe that the map $A \to \eta_P(A)$ is norm continuous and since

$$\exp\left(-\operatorname{tr}\left\{P\left[tA\ln\left(tA\right)\right]\right\}\right)$$

$$=\exp\left(-\operatorname{tr}\left\{P\left[tA\left(\ln t+\ln A\right)\right]\right\}\right)=\exp\left(-\operatorname{tr}\left\{P\left(tA\ln t+tA\ln A\right)\right\}\right)$$

$$=\exp\left(-t\ln t\operatorname{tr}\left(PA\right)\right)\exp\left(-t\operatorname{tr}\left(PA\ln A\right)\right)$$

$$=\exp\ln\left(t^{-\operatorname{tr}\left(PA\right)t}\right)\left[\exp\left(-\operatorname{tr}\left(PA\ln A\right)\right)\right]^{-t},$$

hence

(1.13)
$$\eta_P(tA) = t^{-t \operatorname{tr}(PA)} [\eta_P(A)]^{-t}$$

for t > 0 and A > 0.

Observe also that

(1.14)
$$\eta_P(I) = 1 \text{ and } \eta_P(tI) = t^{-t}$$

for t > 0.

Motivated by the above results, in this paper we show among others that, if A, $B > 0, P, Q \in \mathcal{B}_1(H) \setminus \{0\}$ with $P, Q \ge 0$ and tr (P) = tr(Q) = 1, then for r > 0

$$[\eta_P(A^r)]^{1/r} [\eta_Q(B^r)]^{1/r} \le [\Delta_Q(B)]^{-\operatorname{tr}(PA^r)} [\Delta_P(A)]^{-\operatorname{tr}(QB^r)}$$

In particular, we have

$$\eta_P(A) \eta_Q(B) \le \left[\Delta_Q(B)\right]^{-\operatorname{tr}(PA)} \left[\Delta_P(A)\right]^{-\operatorname{tr}(QB)}.$$

2. Main Results

We say that the functions $f, g: [a, b] \longrightarrow \mathbb{R}$ are synchronous (asynchronous) on the interval [a, b] if they satisfy the following condition:

$$\left(f\left(t\right)-f\left(s\right)\right)\left(g\left(t\right)-g\left(s\right)\right)\geq\left(\leq\right)0\text{ for each }t,\ s\in\left[a,b\right].$$

It is obvious that, if f, g are monotonic and have the same monotonicity on the interval [a, b], then they are synchronous on [a, b] while if they have opposite monotonicity, they are asynchronous.

In [4] we obtained the following Cebyšev's type result:

Lemma 1. Let A be a selfadjoint operator on the Hilbert space H with $\text{Sp}(A) \subseteq J$ and assume that the continuous functions $f, g: J \to \mathbb{R}$ are synchronous on J. If $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \ge 0$, then

(2.1)
$$\frac{\operatorname{tr}\left[Pf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(P\right)} - \frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \\ \geq \left(\frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} - f\left(\frac{\operatorname{tr}\left(PA\right)}{\operatorname{tr}\left(P\right)}\right)\right) \left(g\left(\frac{\operatorname{tr}\left(PA\right)}{\operatorname{tr}\left(P\right)}\right) - \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)}\right).$$

In particular, we have:

Corollary 1. With the assumptions of Lemma 1 and if one of the functions f and g is convex while the other is concave, then we have

(2.2)
$$\frac{\operatorname{tr}\left[Pf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(P\right)} - \frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \\ \ge \left(\frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} - f\left(\frac{\operatorname{tr}\left(PA\right)}{\operatorname{tr}\left(P\right)}\right)\right) \left(g\left(\frac{\operatorname{tr}\left(PA\right)}{\operatorname{tr}\left(P\right)}\right) - \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)}\right) \\ \ge 0.$$

By utilizing these inequalities, we can state the following main result:

Theorem 4. Let A > 0, $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \ge 0$ and $\operatorname{tr}(P) = 1$, then for $p \in (-\infty, 0) \cup [1, \infty)$ we have

(2.3)
$$[\eta_P(A^p)]^{1/p} \le [\Delta_P(A)]^{-[\operatorname{tr}(PA)]^p} [\operatorname{tr}(PA)]^{[\operatorname{tr}(PA)]^p - \operatorname{tr}(PA^p)} \\ \le [\Delta_P(A)]^{-\operatorname{tr}(PA^p)}.$$

In particular, we have

(2.4)
$$\eta_P(A) \le \left[\Delta_P(A)\right]^{-\operatorname{tr}(PA)}$$

and

(2.5)
$$\left[\eta_P(A^2) \right]^{1/2} \le \left[\Delta_P(A) \right]^{-[\operatorname{tr}(PA)]^2} \left[\operatorname{tr}(PA) \right]^{[\operatorname{tr}(PA)]^2 - \operatorname{tr}(PA^2)} \\ \le \left[\Delta_P(A) \right]^{-\operatorname{tr}(PA^2)} .$$

Also

(2.6)
$$\eta_P(A^{-1}) \geq [\Delta_P(A)]^{[\operatorname{tr}(PA)]^{-1}} [\operatorname{tr}(PA)]^{\operatorname{tr}(PA^{-1}) - [\operatorname{tr}(PA)]^{-1}} \\ \geq [\Delta_P(A)]^{\operatorname{tr}(PA^{-1})}.$$

Proof. If we take $f(t) = t^p$, $p \in (-\infty, 0) \cup [1, \infty)$ and $g(t) = \ln t$, t > 0 in (2.2), then we get

$$\operatorname{tr} (PA^{p} \ln A) - \operatorname{tr} (PA^{p}) \operatorname{tr} (P \ln A)$$

$$\geq (\operatorname{tr} (PA^{p}) - [\operatorname{tr} (PA)]^{p}) (\ln (\operatorname{tr} (PA)) - \operatorname{tr} (P \ln A))$$

$$\geq 0,$$

namely

$$\frac{1}{p} \operatorname{tr} (PA^{p} \ln A^{p}) - \operatorname{tr} (PA^{p}) \operatorname{tr} (P \ln A)$$

$$\geq (\operatorname{tr} (PA^{p}) - [\operatorname{tr} (PA)]^{p}) (\ln (\operatorname{tr} (PA)) - \operatorname{tr} (P \ln A))$$

$$\geq 0.$$

If we take the exponential, then we get

(2.7)
$$\frac{\exp\left[-\operatorname{tr}\left(PA^{p}\right)\operatorname{tr}\left(P\ln A\right)\right]}{\exp\left[-\frac{1}{p}\operatorname{tr}\left(PA^{p}\ln A^{p}\right)\right]}$$
$$\geq \exp\left[\left(\operatorname{tr}\left(PA^{p}\right) - \left[\operatorname{tr}\left(PA\right)\right]^{p}\right)\left(\ln\left(\operatorname{tr}\left(PA\right)\right) - \operatorname{tr}\left(P\ln A\right)\right)\right]$$
$$\geq 1.$$

Observe that

$$\exp\left[-\operatorname{tr}\left(PA^{p}\right)\operatorname{tr}\left(P\ln A\right)\right] = \left(\exp\left[\operatorname{tr}\left(P\ln A\right)\right]\right)^{-\operatorname{tr}\left(PA^{p}\right)}$$
$$= \left[\Delta_{P}\left(A\right)\right]^{-\operatorname{tr}\left(PA^{p}\right)},$$
$$\exp\left[-\frac{1}{p}\operatorname{tr}\left(PA^{p}\ln A^{p}\right)\right] = \left(\exp\left[-\operatorname{tr}\left(PA^{p}\ln A^{p}\right)\right]\right)^{1/p}$$
$$= \left[\eta_{P}(A^{p})\right]^{1/p}$$

and

$$\begin{split} &\exp\left[\left(\operatorname{tr}\left(PA^{p}\right)-\left[\operatorname{tr}\left(PA\right)\right]^{p}\right)\left(\ln\left(\operatorname{tr}\left(PA\right)\right)-\operatorname{tr}\left[P\ln A\right]\right)\right]\right] \\ &=\left[\exp\left(\ln\left(\operatorname{tr}\left(PA\right)\right)-\operatorname{tr}\left(P\ln A\right)\right)\right]^{\operatorname{tr}\left(PA^{p}\right)-\left[\operatorname{tr}\left(PA\right)\right]^{p}} \\ &=\left[\frac{\exp\ln\left(\operatorname{tr}\left(PA\right)\right)}{\exp\operatorname{tr}\left(P\ln A\right)}\right]^{\operatorname{tr}\left(PA^{p}\right)-\left[\operatorname{tr}\left(PA\right)\right]^{p}} \\ &=\left[\frac{\operatorname{tr}\left(PA\right)}{\Delta_{P}\left(A\right)}\right]^{\operatorname{tr}\left(PA^{p}\right)-\left[\operatorname{tr}\left(PA\right)\right]^{p}}. \end{split}$$

Then by (2.7) we get

$$\frac{\left[\Delta_P\left(A\right)\right]^{-\operatorname{tr}(PA^p)}}{\left[\eta_P(A^p)\right]^{1/p}} \ge \left[\frac{\operatorname{tr}\left(PA\right)}{\Delta_P\left(A\right)}\right]^{\operatorname{tr}(PA^p) - \left[\operatorname{tr}(PA)\right]^p} \ge 1.$$

Now, if we multiply this inequality by $\left[\Delta_{P}\left(A\right)\right]^{\operatorname{tr}\left(PA^{p}\right)}$, then we get (2.3).

Corollary 2. With the assumptions of Theorem 4 and $p \neq 2$, we have

(2.8)
$$\left[\eta_P\left(A^{2-p}\right)\right]^{\frac{1}{2-p}} \ge \left[\eta_P\left(A^2\right)\right]^{\frac{\operatorname{tr}\left(PA^{2-p}\right)}{2\operatorname{tr}(PA)}}.$$

In particular, for p = 1, we get

(2.9)
$$\left[\eta_P\left(A\right)\right]^2 \ge \eta_P\left(A^2\right).$$

Proof. If we write the inequality (2.4) for $\frac{APA}{\text{tr}(PA)}$ instead of P and A^{-1} instead of A, then we get

(2.10)
$$\frac{1}{\left[\eta_{\frac{APA}{\operatorname{tr}(PA)}}(A^{-p})\right]^{1/p}} \ge \left[\Delta_{\frac{APA}{\operatorname{tr}(PA)}}(A)\right]^{\operatorname{tr}\left(\frac{APA}{\operatorname{tr}(PA)}A^{-p}\right)}.$$

Observe that

$$\begin{split} \eta_{\frac{APA}{\operatorname{tr}(PA)}}(A^{-p}) &= \exp\left(-\operatorname{tr}\left(\frac{APA}{\operatorname{tr}(PA)}A^{-p}\ln A^{-p}\right)\right) \\ &= \exp\left(-\frac{1}{\operatorname{tr}(PA)}\operatorname{tr}\left(PA^{2-p}\ln A^{-p}\right)\right) \\ &= \exp\left(\frac{p}{\operatorname{tr}(PA)}\operatorname{tr}\left(PA^{2-p}\ln A\right)\right) \\ &= \exp\left(\frac{p}{(2-p)\operatorname{tr}(PA)}\operatorname{tr}\left(PA^{2-p}\ln A^{2-p}\right)\right) \\ &= \exp\left(\frac{p}{(p-2)\operatorname{tr}(PA)}\operatorname{tr}\left(-PA^{2-p}\ln A^{2-p}\right)\right) \\ &= \left[\eta_P\left(A^{2-p}\right)\right]^{\frac{p}{(p-2)\operatorname{tr}(PA)}} \end{split}$$

and

$$\Delta_{\frac{APA}{\operatorname{tr}(PA)}} (A^{-1}) = \exp\left(\operatorname{tr}\left(\frac{APA}{\operatorname{tr}(PA)}\ln A^{-1}\right)\right)$$
$$= \exp\left(\frac{1}{\operatorname{tr}(PA)}\operatorname{tr}\left(PA^{2}\ln A^{-1}\right)\right)$$
$$= \exp\left(\frac{1}{\operatorname{tr}(PA)}\operatorname{tr}\left(-\frac{1}{2}PA^{2}\ln A^{2}\right)\right)$$
$$= \left[\eta_{P}\left(A^{2}\right)\right]^{\frac{1}{2\operatorname{tr}(PA)}}$$

and by (2.10) we get

$$\frac{1}{\left[\left[\eta_{P}\left(A^{2-p}\right)\right]^{\frac{p}{(p-2)\operatorname{tr}(PA)}}\right]^{1/p}} \geq \left[\left[\eta_{P}\left(A^{2}\right)\right]^{\frac{1}{2\operatorname{tr}(PA)}}\right]^{\frac{\operatorname{tr}\left(PA^{2-p}\right)}{\operatorname{tr}(PA)}},$$

namely

$$\frac{1}{\left[\eta_{P}\left(A^{2-p}\right)\right]^{\frac{1}{\left(p-2\right)\operatorname{tr}\left(PA\right)}}} \geq \left[\eta_{P}\left(A^{2}\right)\right]^{\frac{\operatorname{tr}\left(PA^{2-p}\right)}{2\left[\operatorname{tr}\left(PA\right)\right]^{2}}}.$$

If we take the power $\operatorname{tr}(PA)$, then we get (2.8).

Theorem 5. Let A > 0, $P \in \mathcal{B}_1(H) \setminus \{0\}$ with $P \ge 0$ and $\operatorname{tr}(P) = 1$, then for $q \in (0,1)$ we have

(2.11)
$$\left[\eta_P \left(A^{q+1} \right) \right]^{\frac{1}{q+1}} \le \frac{\left(\operatorname{tr} \left(PA \right) \right)^{\left(\operatorname{tr} \left(PA \right) \right)^q - \operatorname{tr} \left(PA^q \right)}}{\left[\eta_P \left(A \right) \right]^{-\left(\operatorname{tr} \left(PA \right) \right)^q}} \le \left[\eta_P \left(A \right) \right]^{\operatorname{tr} \left(PA^q \right)}.$$

Proof. If we take $f(t) = t \ln t$, $g(t) = t^q$, $q \in (0, 1)$, t > 0 in (2.2), then we get

$$\operatorname{tr} (PA^{q+1} \ln A) - \operatorname{tr} (PA \ln A) \operatorname{tr} (PA^{q})$$

$$\geq (\operatorname{tr} (PA \ln A) - \ln (\operatorname{tr} (PA))) ((\operatorname{tr} (PA))^{q} - \operatorname{tr} (PA^{q}))$$

$$\geq 0$$

namely

$$\frac{1}{q+1}\operatorname{tr}\left(PA^{q+1}\ln A^{q+1}\right) - \operatorname{tr}\left(PA\ln A\right)\operatorname{tr}\left(PA^{q}\right)$$
$$\geq \left(\operatorname{tr}\left(PA\ln A\right) - \ln\left(\operatorname{tr}\left(PA\right)\right)\right)\left(\left(\operatorname{tr}\left(PA\right)\right)^{q} - \operatorname{tr}\left(PA^{q}\right)\right)$$
$$\geq 0.$$

If we take the exponential, then we get

(2.12)
$$\exp\left[\frac{1}{q+1}\operatorname{tr}\left(PA^{q+1}\ln A^{q+1}\right) - \operatorname{tr}\left(PA\ln A\right)\operatorname{tr}\left(PA^{q}\right)\right]$$
$$\geq \exp\left[\left(\operatorname{tr}\left(PA\ln A\right) - \ln\left(\operatorname{tr}\left(PA\right)\right)\right)\left(\left(\operatorname{tr}\left(PA\right)\right)^{q} - \operatorname{tr}\left(PA^{q}\right)\right)\right]$$
$$\geq 1.$$

Observe that

$$\begin{split} &\exp\left[\frac{1}{q+1}\operatorname{tr}\left(PA^{q+1}\ln A^{q+1}\right) - \operatorname{tr}\left(PA\ln A\right)\operatorname{tr}\left(PA^{q}\right)\right] \\ &= \frac{\exp\left[-\operatorname{tr}\left(PA\ln A\right)\operatorname{tr}\left(PA^{q}\right)\right]}{\exp\left[-\frac{1}{q+1}\operatorname{tr}\left(PA^{q+1}\ln A^{q+1}\right)\right]} = \frac{\left(\exp\left[-\operatorname{tr}\left(PA\ln A\right)\right]\right)^{\operatorname{tr}\left(PA^{q}\right)}}{\left(\exp\left[-\operatorname{tr}\left(PA^{q+1}\ln A^{q+1}\right)\right]\right)^{\frac{1}{q+1}}} \\ &= \frac{\left[\eta_{P}\left(A\right)\right]^{\operatorname{tr}\left(PA^{q}\right)}}{\left[\eta_{P}\left(A^{q+1}\right)\right]^{\frac{1}{q+1}}} \end{split}$$

and

$$\begin{split} &\exp\left[\left(\operatorname{tr}\left(PA\ln A\right) - \ln\left(\operatorname{tr}\left(PA\right)\right)\right)\left(\left(\operatorname{tr}\left(PA\right)\right)^{q} - \operatorname{tr}\left(PA^{q}\right)\right)\right]\right] \\ &= \left[\exp\left[\operatorname{tr}\left(PA\ln A\right) - \ln\left(\operatorname{tr}\left(PA\right)\right)\right]\right]^{(\operatorname{tr}(PA))^{q} - \operatorname{tr}(PA^{q})} \\ &= \frac{\left(\exp\left[\ln\left(\operatorname{tr}\left(PA\right)\right)^{-1}\right]\right)^{(\operatorname{tr}(PA))^{q} - \operatorname{tr}(PA^{q})}}{\left[\exp\left(-\operatorname{tr}\left(PA\ln A\right)\right)\right]^{(\operatorname{tr}(PA))^{q} - \operatorname{tr}(PA^{q})}} \\ &= \frac{\left(\operatorname{tr}\left(PA\right)\right)^{\operatorname{tr}(PA^{q}) - (\operatorname{tr}(PA))^{q}}}{\left[\eta_{P}\left(A\right)\right]^{(\operatorname{tr}(PA))^{q} - \operatorname{tr}(PA^{q})}}. \end{split}$$

By (2.12) we get

$$\frac{\left[\eta_{P}\left(A\right)\right]^{\operatorname{tr}(PA^{q})}}{\left[\eta_{P}\left(A^{q+1}\right)\right]^{\frac{1}{q+1}}} \geq \frac{\left(\operatorname{tr}\left(PA\right)\right)^{\operatorname{tr}(PA^{q}) - \left(\operatorname{tr}(PA)\right)^{q}}}{\left[\eta_{P}\left(A\right)\right]^{\left(\operatorname{tr}(PA)\right)^{q} - \operatorname{tr}(PA^{q})}} \geq 1.$$

If we divide by $\left[\eta_{P}\left(A\right)\right]^{\operatorname{tr}\left(PA^{q}\right)}$ we get the desired result (2.11).

Corollary 3. With the assumptions of Theorem 5, we have

(2.13)
$$\left[\eta_P \left(A^{1-q} \right) \right]^{\frac{1}{1-q}} \ge \left[\eta_P \left(A^2 \right) \right]^{-\frac{\operatorname{tr}\left(PA^{2-q} \right)}{2\operatorname{tr}(PA)}}$$

In particular, for q = 1/2, we get

(2.14)
$$\left[\eta_P\left(A^{1/2}\right)\right]^2 \ge \left[\eta_P\left(A^2\right)\right]^{-\frac{\operatorname{tr}\left(PA^{3/2}\right)}{2\operatorname{tr}(PA)}}$$

Proof. If we write the inequality (2.11) for $\frac{APA}{\operatorname{tr}(PA)}$ instead of P and A^{-1} instead of A, then we get

(2.15)
$$\frac{1}{\left[\eta_{\frac{APA}{\operatorname{tr}(PA)}}\left(A^{-(q+1)}\right)\right]^{\frac{1}{q+1}}} \ge \left[\eta_{\frac{APA}{\operatorname{tr}(PA)}}\left(A^{-1}\right)\right]^{-\operatorname{tr}\left(\frac{APA}{\operatorname{tr}(PA)}A^{-q}\right)}.$$

As above,

$$\eta_{\frac{APA}{\operatorname{tr}(PA)}}(A^{-(q+1)}) = \left[\eta_P\left(A^{1-q}\right)\right]^{\frac{q+1}{(q-1)\operatorname{tr}(PA)}}$$

and

$$\Delta_{\frac{APA}{\operatorname{tr}(PA)}}\left(A^{-1}\right) = \left[\eta_P\left(A^2\right)\right]^{\frac{1}{2\operatorname{tr}(PA)}}$$

and by (2.15) we obtain

$$\frac{1}{\left[\left[\eta_{P}\left(A^{1-q}\right)\right]^{\frac{q+1}{(q-1)\operatorname{tr}\left(PA\right)}}\right]^{\frac{1}{q+1}}} \ge \left[\left[\eta_{P}\left(A^{2}\right)\right]^{\frac{1}{2\operatorname{tr}\left(PA\right)}}\right]^{-\frac{\operatorname{tr}\left(PA^{2-q}\right)}{\operatorname{tr}\left(PA\right)}},$$

namely

$$\left[\eta_P\left(A^{1-q}\right)\right]^{\frac{1}{(1-q)\operatorname{tr}(PA)}} \ge \left[\eta_P\left(A^2\right)\right]^{-\frac{\operatorname{tr}\left(PA^{2-q}\right)}{2[\operatorname{tr}(PA)]^2}}$$

If we take the power tr(PA), then we get (2.13).

3. Related Results

In [4] we also obtained the following Čebyšev's type inequalities:

Lemma 2. Let A and B be two selfadjoint operators on the Hilbert space H with $\operatorname{Sp}(A), \operatorname{Sp}(B) \subseteq J$ and assume that the continuous functions $f, g: J \to \mathbb{R}$ are synchronous on J. If $P, Q \in \mathcal{B}_1(H) \setminus \{0\}$ with $P, Q \ge 0$, then

(3.1)
$$\frac{\operatorname{tr}\left[Pf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(P\right)} + \frac{\operatorname{tr}\left[Qf\left(B\right)g\left(B\right)\right]}{\operatorname{tr}\left(Q\right)} \\ \geq \frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Qg\left(B\right)\right]}{\operatorname{tr}\left(Q\right)} + \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Qf\left(B\right)\right]}{\operatorname{tr}\left(Q\right)}$$

9

and, in particular,

(3.2)
$$\frac{\operatorname{tr}\left[Pf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(P\right)} + \frac{\operatorname{tr}\left[Pf\left(B\right)g\left(B\right)\right]}{\operatorname{tr}\left(P\right)} \\ \geq \frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Pg\left(B\right)\right]}{\operatorname{tr}\left(P\right)} + \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Pf\left(B\right)\right]}{\operatorname{tr}\left(P\right)}.$$

We also have:

Corollary 4. Let A be a selfadjoint operators on the Hilbert space H with $\text{Sp}(A) \subseteq J$ and assume that the continuous functions $f, g: J \to \mathbb{R}$ are synchronous on J. If $P, Q \in \mathcal{B}_1(H) \setminus \{0\}$ with $P, Q \ge 0$, then

(3.3)
$$\frac{\operatorname{tr}\left[Pf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(P\right)} + \frac{\operatorname{tr}\left[Qf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(Q\right)}$$
$$\geq \frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Qg\left(A\right)\right]}{\operatorname{tr}\left(Q\right)} + \frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \frac{\operatorname{tr}\left[Qf\left(A\right)\right]}{\operatorname{tr}\left(Q\right)}$$

and, in particular,

(3.4)
$$\frac{\operatorname{tr}\left[Pf\left(A\right)g\left(A\right)\right]}{\operatorname{tr}\left(P\right)} \ge \frac{\operatorname{tr}\left[Pf\left(A\right)\right]}{\operatorname{tr}\left(P\right)}\frac{\operatorname{tr}\left[Pg\left(A\right)\right]}{\operatorname{tr}\left(P\right)}.$$

Using the above inequalities we can also state:

Theorem 6. Let A, B > 0, P, $Q \in \mathcal{B}_1(H) \setminus \{0\}$ with P, $Q \ge 0$ and tr (P) = tr (Q) = 1, then for r > 0

(3.5)
$$\left[\eta_P(A^r)\right]^{1/r} \left[\eta_Q(B^r)\right]^{1/r} \le \left[\Delta_Q(B)\right]^{-\operatorname{tr}(PA^r)} \left[\Delta_P(A)\right]^{-\operatorname{tr}(QB^r)}.$$

In particular, we have

(3.6)
$$\eta_P(A) \eta_Q(B) \le \left[\Delta_Q(B)\right]^{-\operatorname{tr}(PA)} \left[\Delta_P(A)\right]^{-\operatorname{tr}(QB)}$$

and

(3.7)
$$\left[\eta_P \left(A^2 \right) \right]^{1/2} \left[\eta_Q \left(B^2 \right) \right]^{1/2} \le \left[\Delta_Q \left(B \right) \right]^{-\operatorname{tr} \left(P A^2 \right)} \left[\Delta_P \left(A \right) \right]^{-\operatorname{tr} \left(Q B^2 \right)} .$$

For r < 0, the inequality in (3.5) reverses.

Proof. If we write the inequality (3.1) for the functions $f(t) = t^r$, r > 0 and $g(t) = \ln t$, t > 0 then we get

$$\operatorname{tr}\left(PA^r\ln A\right) + \operatorname{tr}\left(QB^r\ln B\right) \geq \operatorname{tr}\left(PA^r\right)\operatorname{tr}\left(Q\ln B\right) + \operatorname{tr}\left(P\ln A\right)\operatorname{tr}\left(QB^r\right),$$
namely

$$\frac{1}{r} \left[\operatorname{tr} \left(-PA^r \ln A^r \right) + \operatorname{tr} \left(-QB^r \ln B^r \right) \right] \\ \leq -\operatorname{tr} \left(PA^r \right) \operatorname{tr} \left(Q \ln B \right) - \operatorname{tr} \left(P \ln A \right) \operatorname{tr} \left(QB^r \right).$$

If we take the exponential, then we get

$$\begin{aligned} &\left(\exp\left[\operatorname{tr}\left(-PA^{r}\ln A^{r}\right)\right]\right)^{\frac{1}{r}}\left(\exp\operatorname{tr}\left(-QB^{r}\ln B^{r}\right)\right)^{\frac{1}{r}} \\ &\leq \left[\exp\left(\operatorname{tr}\left(Q\ln B\right)\right)\right]^{-\operatorname{tr}(PA^{r})}\left[\exp\operatorname{tr}\left(P\ln A\right)\right]^{-\operatorname{tr}(QB^{r})}, \end{aligned}$$

namely

$$\left(\eta_P\left(A^r\right)\right)^{1/r} \left(\eta_Q\left(B^r\right)\right)^{1/r} \le \left[\Delta_Q\left(B\right)\right]^{-\operatorname{tr}(PA^r)} \left[\Delta_P\left(A\right)\right]^{-\operatorname{tr}(QB^r)}$$

and the inequality (3.5) is proved.

Corollary 5. With the assumptions of Theorem 6 we have

(3.8)
$$[\eta_P(A^r)]^{1/r} [\eta_P(B^r)]^{1/r} \le [\Delta_P(B)]^{-\operatorname{tr}(PA^r)} [\Delta_P(A)]^{-\operatorname{tr}(PB^r)},$$

(3.9)
$$[\eta_P(A^r)]^{1/r} [\eta_Q(A^r)]^{1/r} \le [\Delta_Q(A)]^{-\operatorname{tr}(PA^r)} [\Delta_P(A)]^{-\operatorname{tr}(QA^r)}$$

and

(3.10)
$$[\eta_P(A^r)]^{1/r} \le [\Delta_P(A)]^{-\operatorname{tr}(PA^r)}.$$

Remark 1. For r = 1 we derive that

(3.11)
$$\eta_P(A) \eta_P(B) \le \left[\Delta_P(B)\right]^{-\operatorname{tr}(PA)} \left[\Delta_P(A)\right]^{-\operatorname{tr}(PB)},$$

(3.12)
$$\eta_P(A) \eta_Q(A) \le [\Delta_Q(A)]^{-\operatorname{tr}(PA)} [\Delta_P(A)]^{-\operatorname{tr}(QA)}$$

and

(3.13)
$$\eta_P(A) \le \left[\Delta_P(A)\right]^{-\operatorname{tr}(PA)}.$$

References

(DA)

- S. S. Dragomir, Some Grüss type inequalities for trace of operators in Hilbert spaces, Oper. Matrices, 10 (2016), no. 4, 923-943. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 114.
 [Online https://rgmia.org/papers/v17/v17a114.pdf].
- [2] S. S. Dragomir, Some trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, Korean J. Math., 24 (2016), no. 2, 273-296. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 115. [Online https://rgmia.org/papers/v17/v17a115.pdf].
- [3] S. S. Dragomir, Jensen's type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces, *Facta Univ. Ser. Math. Inform.*, **31** (2016), no. 5, 981–998. Preprint *RGMIA Res. Rep. Coll.*, **17** (2014), Art. 116. [Online https://rgmia.org/papers/v17/v17a116.pdf].
- [4] S. S. Dragomir, Some Čebyšev's type trace inequalities for functions of selfadjoint operators in Hilbert spaces, *Linear Multilinear Algebra*, **64** (2016), no. 9, 1800–1813. Preprint *RGMIA Res. Rep. Coll.* **17** (2014), Art. 111, 13 pp. [Online https://rgmia.org/papers/v17/v17a111.pdf].
- [5] S. S. Dragomir, Trace inequalities of Cassels and Grüss type for operators in Hilbert spaces, Acta Univ. Sapientiae Math., 9 (2017), no. 1, 74–93. Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 121. [Online https://rgmia.org/papers/v17/v17a121.pdf].
- [6] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [7] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 15, 14 pp. [Online https://rgmia.org/papers/v25/v25a16.pdf].
- [8] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530.
- [9] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [10] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [11] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA