
INEQUALITIES FOR TRACE CLASS ENTROPIC
P -DETERMINANT OF POSITIVE OPERATORS IN HILBERT

SPACES VIA µCEBY�EV�S TYPE RESULTS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a complex Hilbert space. For a given operator P � 0

with P 2 B1 (H) ; the trace class associated to B (H) and tr (P ) = 1; we de�ne
the P -determinant and the entropic P -determinant of the positive invertible
operator A by

�P (A) := exp [tr (P lnA)]

and
�P (A) := exp [� tr (PA lnA)] ;

respectively.
In this paper we show among others that, if A; B > 0, P; Q 2 B1 (H) n f0g

with P;Q � 0 and tr (P ) = tr (Q) = 1; then for r > 0

[�P (A
r)]1=r

�
�Q (B

r)
�1=r � ��Q (B)�� tr(PAr)

[�P (A)]
� tr(QBr) :

In particular, we have

�P (A) �Q (B) �
�
�Q (B)

�� tr(PA)
[�P (A)]

� tr(QB) :

1. Introduction

In 1952, in the paper [8], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a �nite von Neumann algebra (M; �) with a faithful normal trace.
Let T 2M be normal and jT j := (T �T )1=2 its modulus. By the spectral theorem

one can represent T as an integral

T =

Z
Sp(T )

�dE (�) ;

where E (�) is a projection valued measure and Sp (T ) is the spectrum of T: The
measure �T := � �E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T ) :
For any T 2 M the Fuglede-Kadison determinant (FK-determinant) is de�ned

by

�FK (T ) := exp

�Z 1

0

ln td�jT j

�
:

If T is invertible, then

�FK (T ) := exp (� (ln (jT j))) ;
where ln (jT j) is de�ned by the use of functional calculus.
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Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [9], [10], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by

�x(A) := exp hlnAx; xi
and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [11].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H; h�; �i) be a complex Hilbert space and feigi2I an orthonormal basis of H:

We say that A 2 B (H) is a Hilbert-Schmidt operator if

(1.1)
X
i2I

kAeik2 <1:

It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.2)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.3) kAk2 :=
 X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H:
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)1=2 :
Because kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-

Schmidt and kAk2 = kjAjk2 : From (1.2) we have that if A 2 B2 (H) ; then A� 2
B2 (H) and kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 1. We have:
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.4) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii

and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
(ii) We have the inequalities

(1.5) kAk � kAk2



INEQUALITIES FOR TRACE CLASS ENTROPIC P -DETERMINANT 3

for any A 2 B2 (H) and, if A 2 B2 (H) and T 2 B (H) ; then AT; TA 2 B2 (H)
with

(1.6) kATk2 ; kTAk2 � kTk kAk2
(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) :
If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.7) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) :
The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;
(iii) We have

B2 (H)B2 (H) = B1 (H) ;
(iv) We have

kAk1 = sup fhA;Bi2 j B 2 B2 (H) ; kBk2 � 1g ;
(v) (B1 (H) ; k�k1) is a Banach space.
We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.9) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.10) tr (A�) = tr (A);

(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H),
(1.11) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;
(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) :
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Now, if we assume that P � 0 and P 2 B1 (H) ; then for all T 2 B (H) ; PT;
TP 2 B1 (H) and tr (PT ) = tr (TP ) : Also, since P 1=2 2 B2 (H) ; TP 1=2 2 B2 (H),
hence P 1=2TP 1=2 and TP 1=2P 1=2 = TP 2 B1 (H) with tr

�
P 1=2TP 1=2

�
= tr (TP ) :

Therefore, if P � 0 and P 2 B1 (H) ;

tr (PT ) = tr (TP ) = tr
�
P 1=2TP 1=2

�
for all T 2 B (H) :
If T � 0; then P 1=2TP 1=2 � 0; which implies that tr (PT ) � 0 that shows that

the functional B (H) 3 T 7�! tr (PT ) is linear and isotonic functional. Also, by
(1.11), if Tn ! T for n ! 1 in B (H) then limn!1 tr (PTn) = tr (PT ) ; namely
B (H) 3 T 7�! tr (PT ) is also continuous in the norm topology.
For a survey on recent trace inequalities see [6] and the references therein.
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the P -

determinant of the positive invertible operator A by

(1.12) �P (A) := exp tr (P lnA) = exp tr ((lnA)P ) = exp tr
�
P 1=2 (lnA)P 1=2

�
:

Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: We observe that we have
the following elementary properties [7]:

(i) continuity : the map A! �P (A) is norm continuous;
(ii) power equality: �P (At) = �P (A)t for all t > 0;
(iii) homogeneity : �P (tA) = t�P (A) and �P (tI) = t for all t > 0;
(iv) monotonicity : 0 < A � B implies �P (A) � �P (B).
In [7], we presented some fundamental properties of this determinant. Among

others we showed that

1 � tr (PA)

�P (A)
� exp

�
tr (PA) tr

�
PA�1

�
� 1
�

and

1 � �P (A)

[tr (PA�1)]
�1 � exp

�
tr
�
PA�1

�
tr (PA)� 1

�
;

for A > 0 and P � 0 with P 2 B1 (H) and tr (P ) = 1:
For the entropy function � (t) = �t ln t; t > 0; the operator entropy has the

following expression:
� (A) = �A lnA

for positive A:
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the entropic

P -determinant of the positive invertible operator A by

�P (A) := exp [� tr (PA lnA)] = exp ftr [P� (A)]g = exp
n
tr
h
P 1=2� (A)P 1=2

io
:

Observe that the map A! �P (A) is norm continuous and since

exp (� tr fP [tA ln (tA)]g)
= exp (� tr fP [tA (ln t+ lnA)]g) = exp (� tr fP (tA ln t+ tA lnA)g)
= exp (�t ln t tr (PA)) exp (�t tr (PA lnA))

= exp ln
�
t� tr(PA)t

�
[exp (� tr (PA lnA))]�t ;



INEQUALITIES FOR TRACE CLASS ENTROPIC P -DETERMINANT 5

hence

(1.13) �P (tA) = t
�t tr(PA) [�P (A)]

�t

for t > 0 and A > 0:
Observe also that

(1.14) �P (I) = 1 and �P (tI) = t
�t

for t > 0:
Motivated by the above results, in this paper we show among others that, if A;

B > 0, P; Q 2 B1 (H) n f0g with P;Q � 0 and tr (P ) = tr (Q) = 1; then for r > 0

[�P (A
r)]

1=r �
�Q (B

r)
�1=r � [�Q (B)]� tr(PAr)

[�P (A)]
� tr(QBr)

:

In particular, we have

�P (A) �Q (B) � [�Q (B)]
� tr(PA)

[�P (A)]
� tr(QB)

:

2. Main Results

We say that the functions f; g : [a; b] �! R are synchronous (asynchronous) on
the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :
It is obvious that, if f; g are monotonic and have the same monotonicity on

the interval [a; b] ; then they are synchronous on [a; b] while if they have opposite
monotonicity, they are asynchronous.
In [4] we obtained the following µCeby�ev�s type result:

Lemma 1. Let A be a selfadjoint operator on the Hilbert space H with Sp (A) � J
and assume that the continuous functions f; g : J ! R are synchronous on J: If
P 2 B1 (H) n f0g with P � 0; then

tr [Pf (A) g (A)]

tr (P )
� tr [Pf (A)]

tr (P )

tr [Pg (A)]

tr (P )
(2.1)

�
�
tr [Pf (A)]

tr (P )
� f

�
tr (PA)

tr (P )

���
g

�
tr (PA)

tr (P )

�
� tr [Pg (A)]

tr (P )

�
:

In particular, we have:

Corollary 1. With the assumptions of Lemma 1 and if one of the functions f and
g is convex while the other is concave, then we have

tr [Pf (A) g (A)]

tr (P )
� tr [Pf (A)]

tr (P )

tr [Pg (A)]

tr (P )
(2.2)

�
�
tr [Pf (A)]

tr (P )
� f

�
tr (PA)

tr (P )

���
g

�
tr (PA)

tr (P )

�
� tr [Pg (A)]

tr (P )

�
� 0:

By utilizing these inequalities, we can state the following main result:

Theorem 4. Let A > 0, P 2 B1 (H) n f0g with P � 0 and tr (P ) = 1; then for
p 2 (�1; 0) [ [1;1) we have

[�P (A
p)]

1=p � [�P (A)]�[tr(PA)]
p

[tr (PA)]
[tr(PA)]p�tr(PAp)(2.3)

� [�P (A)]� tr(PA
p)
:



6 S. S. DRAGOMIR

In particular, we have

(2.4) �P (A) � [�P (A)]
� tr(PA)

and �
�P (A

2)
�1=2 � [�P (A)]�[tr(PA)]2 [tr (PA)][tr(PA)]2�tr(PA2)(2.5)

� [�P (A)]� tr(PA
2) :

Also

�P (A
�1) � [�P (A)]

[tr(PA)]�1
[tr (PA)]

tr(PA�1)�[tr(PA)]�1(2.6)

� [�P (A)]
tr(PA�1) :

Proof. If we take f (t) = tp; p 2 (�1; 0) [ [1;1) and g (t) = ln t; t > 0 in (2.2),
then we get

tr (PAp lnA)� tr (PAp) tr (P lnA)
� (tr (PAp)� [tr (PA)]p) (ln (tr (PA))� tr (P lnA))
� 0;

namely
1

p
tr (PAp lnAp)� tr (PAp) tr (P lnA)

� (tr (PAp)� [tr (PA)]p) (ln (tr (PA))� tr (P lnA))
� 0:

If we take the exponential, then we get

exp [� tr (PAp) tr (P lnA)]
exp

h
� 1
p tr (PA

p lnAp)
i(2.7)

� exp [(tr (PAp)� [tr (PA)]p) (ln (tr (PA))� tr (P lnA))]
� 1:

Observe that

exp [� tr (PAp) tr (P lnA)] = (exp [tr (P lnA)])� tr(PA
p)

= [�P (A)]
� tr(PAp)

;

exp

�
�1
p
tr (PAp lnAp)

�
= (exp [� tr (PAp lnAp)])1=p

= [�P (A
p)]

1=p

and

exp [(tr (PAp)� [tr (PA)]p) (ln (tr (PA))� tr [P lnA])]

= [exp (ln (tr (PA))� tr (P lnA))]tr(PA
p)�[tr(PA)]p

=

�
exp ln (tr (PA))

exp tr (P lnA)

�tr(PAp)�[tr(PA)]p

=

�
tr (PA)

�P (A)

�tr(PAp)�[tr(PA)]p

:
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Then by (2.7) we get

[�P (A)]
� tr(PAp)

[�P (A
p)]

1=p
�
�
tr (PA)

�P (A)

�tr(PAp)�[tr(PA)]p

� 1:

Now, if we multiply this inequality by [�P (A)]
tr(PAp)

; then we get (2.3). �

Corollary 2. With the assumptions of Theorem 4 and p 6= 2; we have

(2.8)
�
�P
�
A2�p

�� 1
2�p �

�
�P
�
A2
�� tr(PA2�p)

2 tr(PA) :

In particular, for p = 1; we get

(2.9) [�P (A)]
2 � �P

�
A2
�
:

Proof. If we write the inequality (2.4) for APA
tr(PA) instead of P and A�1 instead of

A; then we get

(2.10)
1h

� APA
tr(PA)

(A�p)
i1=p � h� APA

tr(PA)
(A)
itr( APA

tr(PA)
A�p)

:

Observe that

� APA
tr(PA)

(A�p) = exp

�
� tr

�
APA

tr (PA)
A�p lnA�p

��
= exp

�
� 1

tr (PA)
tr
�
PA2�p lnA�p

��
= exp

�
p

tr (PA)
tr
�
PA2�p lnA

��
= exp

�
p

(2� p) tr (PA) tr
�
PA2�p lnA2�p

��
= exp

�
p

(p� 2) tr (PA) tr
�
�PA2�p lnA2�p

��
=
�
�P
�
A2�p

�� p
(p�2) tr(PA)

and

� APA
tr(PA)

�
A�1

�
= exp

�
tr

�
APA

tr (PA)
lnA�1

��
= exp

�
1

tr (PA)
tr
�
PA2 lnA�1

��
= exp

�
1

tr (PA)
tr

�
�1
2
PA2 lnA2

��
=
�
�P
�
A2
�� 1

2 tr(PA)

and by (2.10) we get

1h
[�P (A

2�p)]
p

(p�2) tr(PA)
i1=p � h��P �A2�� 1

2 tr(PA)

i tr(PA2�p)
tr(PA)

;



8 S. S. DRAGOMIR

namely

1

[�P (A
2�p)]

1
(p�2) tr(PA)

�
�
�P
�
A2
�� tr(PA2�p)

2[tr(PA)]2 :

If we take the power tr (PA) ; then we get (2.8). �

Theorem 5. Let A > 0, P 2 B1 (H) n f0g with P � 0 and tr (P ) = 1; then for
q 2 (0; 1) we have

(2.11)
�
�P
�
Aq+1

�� 1
q+1 � (tr (PA))

(tr(PA))q�tr(PAq)

[�P (A)]
�(tr(PA))q � [�P (A)]

tr(PAq)
:

Proof. If we take f (t) = t ln t; g (t) = tq; q 2 (0; 1) ; t > 0 in (2.2), then we get
tr
�
PAq+1 lnA

�
� tr (PA lnA) tr (PAq)

� (tr (PA lnA)� ln (tr (PA))) ((tr (PA))q � tr (PAq))
� 0

namely

1

q + 1
tr
�
PAq+1 lnAq+1

�
� tr (PA lnA) tr (PAq)

� (tr (PA lnA)� ln (tr (PA))) ((tr (PA))q � tr (PAq))
� 0:

If we take the exponential, then we get

exp

�
1

q + 1
tr
�
PAq+1 lnAq+1

�
� tr (PA lnA) tr (PAq)

�
(2.12)

� exp [(tr (PA lnA)� ln (tr (PA))) ((tr (PA))q � tr (PAq))]
� 1:

Observe that

exp

�
1

q + 1
tr
�
PAq+1 lnAq+1

�
� tr (PA lnA) tr (PAq)

�
=

exp [� tr (PA lnA) tr (PAq)]
exp

h
� 1
q+1 tr (PA

q+1 lnAq+1)
i = (exp [� tr (PA lnA)])tr(PA

q)

(exp [� tr (PAq+1 lnAq+1)])
1

q+1

=
[�P (A)]

tr(PAq)

[�P (A
q+1)]

1
q+1

and

exp [(tr (PA lnA)� ln (tr (PA))) ((tr (PA))q � tr (PAq))]

= [exp [tr (PA lnA)� ln (tr (PA))]](tr(PA))
q�tr(PAq)

=

�
exp

h
ln (tr (PA))

�1
i�(tr(PA))q�tr(PAq)

[exp (� tr (PA lnA))](tr(PA))
q�tr(PAq)

=
(tr (PA))

tr(PAq)�(tr(PA))q

[�P (A)]
(tr(PA))q�tr(PAq)

:
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By (2.12) we get

[�P (A)]
tr(PAq)

[�P (A
q+1)]

1
q+1

� (tr (PA))
tr(PAq)�(tr(PA))q

[�P (A)]
(tr(PA))q�tr(PAq)

� 1:

If we divide by [�P (A)]
tr(PAq) we get the desired result (2.11). �

Corollary 3. With the assumptions of Theorem 5, we have

(2.13)
�
�P
�
A1�q

�� 1
1�q �

�
�P
�
A2
��� tr(PA2�q)

2 tr(PA) :

In particular, for q = 1=2; we get

(2.14)
h
�P

�
A1=2

�i2
�
�
�P
�
A2
��� tr(PA3=2)

2 tr(PA) :

Proof. If we write the inequality (2.11) for APA
tr(PA) instead of P and A

�1 instead of
A; then we get

(2.15)
1h

� APA
tr(PA)

�
A�(q+1)

�i 1
q+1

�
h
� APA
tr(PA)

�
A�1

�i� tr( APA
tr(PA)

A�q)
:

As above,

� APA
tr(PA)

(A�(q+1)) =
�
�P
�
A1�q

�� q+1
(q�1) tr(PA)

and

� APA
tr(PA)

�
A�1

�
=
�
�P
�
A2
�� 1

2 tr(PA)

and by (2.15) we obtain

1h
[�P (A

1�q)]
q+1

(q�1) tr(PA)
i 1
q+1

�
h�
�P
�
A2
�� 1

2 tr(PA)

i� tr(PA2�q)
tr(PA)

;

namely �
�P
�
A1�q

�� 1
(1�q) tr(PA) �

�
�P
�
A2
��� tr(PA2�q)

2[tr(PA)]2 :

If we take the power tr (PA) ; then we get (2.13). �

3. Related Results

In [4] we also obtained the following µCeby�ev�s type inequalities:

Lemma 2. Let A and B be two selfadjoint operators on the Hilbert space H with
Sp (A) ;Sp (B) � J and assume that the continuous functions f; g : J ! R are
synchronous on J: If P; Q 2 B1 (H) n f0g with P; Q � 0; then

tr [Pf (A) g (A)]

tr (P )
+
tr [Qf (B) g (B)]

tr (Q)
(3.1)

� tr [Pf (A)]

tr (P )

tr [Qg (B)]

tr (Q)
+
tr [Pg (A)]

tr (P )

tr [Qf (B)]

tr (Q)
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and, in particular,

tr [Pf (A) g (A)]

tr (P )
+
tr [Pf (B) g (B)]

tr (P )
(3.2)

� tr [Pf (A)]

tr (P )

tr [Pg (B)]

tr (P )
+
tr [Pg (A)]

tr (P )

tr [Pf (B)]

tr (P )
:

We also have:

Corollary 4. Let A be a selfadjoint operators on the Hilbert space H with Sp (A) �
J and assume that the continuous functions f; g : J ! R are synchronous on J: If
P; Q 2 B1 (H) n f0g with P; Q � 0; then

tr [Pf (A) g (A)]

tr (P )
+
tr [Qf (A) g (A)]

tr (Q)
(3.3)

� tr [Pf (A)]

tr (P )

tr [Qg (A)]

tr (Q)
+
tr [Pg (A)]

tr (P )

tr [Qf (A)]

tr (Q)

and, in particular,

(3.4)
tr [Pf (A) g (A)]

tr (P )
� tr [Pf (A)]

tr (P )

tr [Pg (A)]

tr (P )
:

Using the above inequalities we can also state:

Theorem 6. Let A; B > 0, P; Q 2 B1 (H) n f0g with P; Q � 0 and tr (P ) =
tr (Q) = 1; then for r > 0

(3.5) [�P (A
r)]

1=r �
�Q (B

r)
�1=r � [�Q (B)]� tr(PAr)

[�P (A)]
� tr(QBr)

:

In particular, we have

(3.6) �P (A) �Q (B) � [�Q (B)]
� tr(PA)

[�P (A)]
� tr(QB)

and

(3.7)
�
�P
�
A2
��1=2 �

�Q
�
B2
��1=2 � [�Q (B)]� tr(PA2) [�P (A)]

� tr(QB2) :

For r < 0; the inequality in (3.5) reverses.

Proof. If we write the inequality (3.1) for the functions f (t) = tr; r > 0 and
g (t) = ln t; t > 0 then we get

tr (PAr lnA) + tr (QBr lnB) � tr (PAr) tr (Q lnB) + tr (P lnA) tr (QBr) ;
namely

1

r
[tr (�PAr lnAr) + tr (�QBr lnBr)]

� � tr (PAr) tr (Q lnB)� tr (P lnA) tr (QBr) :
If we take the exponential, then we get

(exp [tr (�PAr lnAr)])
1
r (exp tr (�QBr lnBr))

1
r

� [exp (tr (Q lnB))]� tr(PA
r)
[exp tr (P lnA)]

� tr(QBr)
;

namely

(�P (A
r))

1=r �
�Q (B

r)
�1=r � [�Q (B)]� tr(PAr)

[�P (A)]
� tr(QBr)

and the inequality (3.5) is proved. �
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Corollary 5. With the assumptions of Theorem 6 we have

(3.8) [�P (A
r)]

1=r
[�P (B

r)]
1=r � [�P (B)]� tr(PA

r)
[�P (A)]

� tr(PBr)
;

(3.9) [�P (A
r)]

1=r �
�Q (A

r)
�1=r � [�Q (A)]� tr(PAr)

[�P (A)]
� tr(QAr)

and

(3.10) [�P (A
r)]

1=r � [�P (A)]� tr(PA
r)
:

Remark 1. For r = 1 we derive that

(3.11) �P (A) �P (B) � [�P (B)]
� tr(PA)

[�P (A)]
� tr(PB)

;

(3.12) �P (A) �Q (A) � [�Q (A)]
� tr(PA)

[�P (A)]
� tr(QA)

and

(3.13) �P (A) � [�P (A)]
� tr(PA)

:
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