BOUNDS FOR THE GEOMETRIC MEAN OF TRACE CLASS
ENTROPIC P-DETERMINANTS OF POSITIVE OPERATORS IN
HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the entropic P-determinant of the positive invertible operator A by

np (A) :=exp [—tr (PAln A)].

Assume that P; € By (H) with P; > 0 and tr (P;) =
this paper we show, among others, that, if 0 < m <
J€{l,...,n} with 357 ; p; =1, then

) — (1w (P Ay))

1forj € {1,...,n}. In
A; < M, p; > 0 for

1<

(Z?:l pj tr (PjAj)
1

H [Tlpj (Aj)]pj

J

M=37y p; tr(Pj A7) (o1 v tr(PA;) —m)

1
M\ M—m
< | =

1. INTRODUCTION

In 1952, in the paper [9], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T'| := (T*T)"/? its modulus. By the spectral theorem
one can represent 1" as an integral

T = / AE (),
Sp(T)

where F ()) is a projection valued measure and Sp (T') is the spectrum of T. The
measure jp := 7 o EZ becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apk (T) :=exp </ lntd,uT> .
0
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2 S.S. DRAGOMIR

If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [10], [11], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [12].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) [A]l < [|All

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Aec By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [l = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) Bz (H) = By (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:
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Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(1)) If A€ By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, ||T]|;

(i) tr (+) s a bounded linear functional on By (H) with |tr|| = 1;
(i) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TP? € By (H),
hence PY/2TPY/? and TPY2PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2TP'Y2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [7] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [8]:
(i) continuity: the map A — Ap(A) is norm continuous;
(i) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
[8

In [8], we presented some fundamental properties of this determinant. Among
others we showed that
tr (PA) _
1< < exp [tr (PA)tr (PA™Y) —1
< Ap(a) S el P (PAT) —1]
and A (A
< L),l < exp [tr (PA_l) tr (PA) — 1] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function 7 (¢f) = —tlnt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr{P [tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp (—tlnttr (PA))exp (—ttr (PAln A))

—expln (rtr(PA)t) lexp (— tr (PAIn A))] ",
hence
(1.13) np(tA) = £ P [, (A)]

for ¢t >0 and A > 0.
Observe also that
(1.14) np(I) =1and np(tl) =t~"

for t > 0.

Assume that P; € By (H) with P; > 0 and tr (P;) = 1 for j € {1,...,n}. In this
paper we show, among others, that, if 0 <m < A; < M, p; > 0 for j € {1,...,n}
with 377, pj = 1, then

) —(Zjoi v tr(PAy))

(Z?:l pj tr (PjA;)

[np; (A7)]"

1<

j=1
1

M\ T=m M=3"_ p;tr(P;A;)) (X0, pj tr(P; Aj)—m)
()

< )i(M—m)

2. MAIN RESULTS
We use the following result that was obtained in [1]:

IA

A
SIE

Lemma 1. If f : [a,b] — R is a convex function on [a,b], then

(b—t)f(agirit—a)f(b) o

)
P - fi@ 1
4

21)  0<

<S@O-t(t-a) =<

— (b—a) [1- ) = [ (@]

for any t € [a,b].
If the lateral derivatives f' (b) and f! (a) are finite, then the second inequality
and the constant 1/4 are sharp.

We have the following reverse for the Jensen’s trace inequality:

Lemma 2. Assume that f is differentiable convex on the interior I of an interval.
Let Q; > 0 with Q; € By (H) for j € {1,...,n} and 377_, tr (Q;) > 0, then for all
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B, with the spectra Sp (B;) C [m, M] C I forj e {1,...,n}, we have

S tr[Qif (B))] > i tr(Q;By)
(2.2) 0< ST (@) —f (z;;ltr(cgj) )
o SLM) = f (m)
- M—-—m
y (M— Doy tr (Qij)> <Z;’Z_1 tr (Q; B;) _m>
Z;‘L:1 tr (Q;) Z;‘l:1 tr (Q;)

< i(M—m) [/ (M) = f} (m)] .

Proof. Utilizing the continuous functional calculus for a selfadjoint operator 1" with
0 < T <1 and the convexity of f on [m, M], we have

(2.3) fm(A=T)+MT) < f(m)Q-T)+f(M)T

in the operator order.
If we take in (2.3)

B;—m
0<T==-2 <1
— M—m_,
then we get
B,—m B:—m
2.4 1-— =2 M=
@) (e (=3 )

Observe that

m(l—Bj_m>+MBj_m

M—-—m M—-—m
~ m(M — B;j)+ M (Bj —m) _B
- M—-—m Y
and
B; —m m

pom (1= =) + 00 P

_ f(m) (M — Bj) + f (M) (B; —m)
M —m

and by (2.4) we get the following inequality of interest

f(m) (M — Bj)+ f(M)(Bj —m)
M—-—m

(2.5) f(Bj) <

for all j € {1,...,n}.
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If we multiply (2.5) both sides with Q}/* we get

S QP (B)QY?
j=1

"~ 12 [ f(m) (M — B; M) (Bj —m)] .12
SCH [f( ) = B;) + 1 () >}Q/

Fm) Y0 QF* (M —B) QY + (M), QY (B; —m) Q)

M—m
1 n n
“M-m [f (m) (Mg Qi -»_0Q;/°B,Q) 2)

j=1
o (z 025,01 —mZQ-fﬂ |
j=1

j=1

which implies, by taking the trace and using its properties, that

Ztr [Q;f (B;)]
< Ml_ [f (m) (Mztr (@) =Y tr (Qij))
j=1 j=1

which gives that
Z;’L:I tr [Q_}f (B])]
21t (@)
> tr(Q;By) 2= tr(QiB5)
A (M- 5ewes) + 4 00 (S5t - m)
= M—m ’

(2.6) 0<

i tr[Qif (By)] F 21t (QB))
Z;‘I:I tr (Q;) Z?:l tr (Q;)

271 tr(Q; By) 2iatr(QiBy)
) (- R ) + 100 (S - m)

- M—-m
_f (Z?_l tr (Qij)>
Z?:l tr(Q;) )
Here the first inequality is Jensen’s inequality.
Using the inequality (2.1) for
Yo tr(Q;B))
Z?:l tr (Q;)

t = € [m, M],
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a=m and b = M we have

f(m )(M %%ﬁ(m(%_m)

(2.7) =
_f Z?:1 tr (Q; B;)
Y= tr(Qy)
LA fm) (L i (@B (X tr(@5)) -
- M —m > tr(Qy) 2= tr(Qy)
< 3 (M —m) [£2. () ~ 7L (m)]
By making use of (2.6) and (2.7) we derive (2.2). O

Theorem 4. Assume that P; € By (H) with P; > 0 and tr(P;) = 1 for j €
{1,..,n}. IfO<m < A; <M, p; >0 for j € {1,...,n} with 2?21173‘ =1, then

n —(Zjoi ps tr(PsA))
(Zj—l pjtr (PjAj)>

n
H nP]

1

(2.8) 1<

1\4 m
<(w)
m
M L(M—m)
(W)
m

Proof. If we write the inequality (2.2) for the convex function f (¢) = tlnt, t > 0,
Qj = ijj and B] = Aj, j € {1, ...,n}, then we get

j
(M= py (P A;)) (7, ps tr(P3 Aj)—m)

(2.9) Z r(P;jAjInAj) ij tr (P;A;) | In ij tr (P;A;)

j=1
M ]\4—

e
m

S (M=-7_ p; tr(PjAj))(E;L=1 pj tr(P;A;)—m)

By taking the exponential in (2.9), we get

(2.10)
1 <exp ijtr (PjAjInAj) ijtr P;Aj) Z itr (PjA;j)
Jj=1 Jj=1
M s (M=, p; tr(PjAj))(Ej=1 pj tr(P;A;)—m) M $(M—m)
< | — < |[— .
< (%) . (m>
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Observe that

exp [Zp] tr (PJAJ lnAj) — (ij tr (PJAJ)) 111 (Zp] tr (P]AJ))]

Jj=1 j=1
_oxp [— (Z}Ll p; tr (PjAj)) In (Z;.lzl p; tr (PjAj))}
B exp > iy pj [ tr (PrA; In Aj)]

" — (71 ps tr(PAy))
exp [ln (ijl pj tr (PjAj)) }
exp Yy pj [~ tr (PjA;In Aj)]

n —(Zrypytr(PA))
(Zj:lpj tr (PjAj)) ’

J

B (Z;-Ll pj tr (PjA;)
I1 [, (4]
j=1

and by (2.10) we deduce (2.8). O

(exp [~ tr (P;jA;In A;)])P

) —(Zry py tr(PA))

Remark 1. The case of one operator is as follows:
tr (PA)~ "4 M\ T (M —tx(PA)) (tx(PA)=m)
(2.11) e i B ( )
np (A)

M T (M—m)
S (> )
m

provided that P € By (H) with P >0 and tr (P) =1 while 0 <m < A < M.
Ifo<m< A B< Mandt € [0,1], then for P € By (H) with P > 0 and
tr (P) =1,

m

(tr(P[(1—-t)A+ tB]))*tr(P[(lft)AthB])

np (A0 np (B)]
( >Mlm(]M—tr(P[(1—t)A—i—tB]))(tr(P[(1—t)A+tB])—m)

( >i(Mm)

We also have [1]:
Lemma 3. Assume that f : [a,b] — R is absolutely continuous on [a,b]. If f' is
K -Lipschitzian on [a,b], then
1
(2.13) (A=1) fla) +tf (0) = fF (L —t)a+th)| < SK(b—1)(t~a)

1
S gK(b_ G/)Q

(2.12) 1<

IN

IA
Iz 3=
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for all t € 0,1].
The constants 1/2 and 1/8 are the best possible in (2.13).
Remark 2. If f : [a,b] — R is twice differentiable and f" € Ly [a,b], then

(2.14) \(1—t)f(a)+tf(b)—f((1—t)a+tb)|S*Ilf”ll[ab] (b—1)(t—a)

2
< g ||f”||[a,b],oo (b - a) s

where || f"||(44,00 = €8SUPse(qp) |f” (t)| < 00. The constants 1/2 and 1/8 are the
best possible in (2.14).

Lemma 4. Assume that f is twice diﬁerentiablga convex on the interior I of the
interval I and the derivative f" is bounded on I. Let Q; > 0 with Q; € By (H)
forje{l,...,n} and Z;;l tr (Q;) > 0, then for all B; with the spectra Sp (B;) C
[m, M] C I forje{l,..,n}, we have
Y tr[Qif (Bl F (Z?—l tr (Qij)>

Z?:l tr (Q;) Z;L:1 tr (Q;)

1,., Xt (@QiBy) )\ (it (QiB;)
2 1/ i o (M S (@) )( i (@) m)

1 2
g”f//”[m,M],oo (M_m) .
Proof. From (2.14) and the continuous functional calculus, we get

f(m) (M — By) + f (M) (B; —m)
T —m — f(Bj)
1

1
18 e O = )2

where B; are selfadjoint operators with the spectra Sp (B;) C [m, M],j € {1,...,n}.
Now, by employing a similar argument to the one in the proof of Lemma 2 we
derive the desired result (2.15). O

(215) 0<

IN

IA

(2.16) 0<

IN

IN

We also have:

Theorem 5. Assume that P; € By (H) with P; > 0 and tr(P;) = 1 for j €
{1,.,n}. If0<m < A; <M, p; >0 forje{l,..,n} wzthz _,pj =1, then

n —(Zp_ipi tr(PyAy))
(ijl pj tr (P'A~)>

n

H nPJ

Jj=1

(2.17) 1<

n n
< exp Zp]tr (PjAj) ijtr(PjAj)—m

ol
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Proof. If we write the inequality (2.2) for the convex function f (t) = tInt¢, ¢ > 0,
Q; =p;jP; and B; = A, j € {1,...,n}, then we get

0<ijtr PjA;InAj) Zp]tr P;jA;) | In ijtr (PjA;j)

j=1 j=1
1 n n
< 5 M—Zpatr(PjAj) ijtr(PJAJ) m
j=1 j=1
1 2
(M-
If we take the exponential, then we get the desired result (2.17). O

Remark 3. The case of one operator is as follows:

tr (PA)f tr(PA)
np (A)

< exp [an (o — m)ﬂ ,

(2.18) 1< < exp {27171 (M —tr (PA)) (tr (PA) —m)

provided that P € By (H) with P >0 and tr (P) =1 while 0 <m < A < M.
If0o<m< A, B<Mandt € [0,1], then for P € By (H) with P > 0 and
tr (P) =1,

(tr (P[(1 —t) A + ¢B]))” "(FlA-OA+tE])

2.19 1<
(219 1= e (A [np (B)]'

< exp [;n (M = tr(P[(1 =) A+ tB]) (tr (P[(1 = t) A+ tB]) — m)
< exp [8; (M — m)ﬂ .

3. RELATED RESULTS

We also have the following scalar inequality of interest:

Lemma 5. Let f: [a,b] — R be a convex function on [a,b] and t € [0,1], then
(3.1) 2min {t,1 — }[ ()+f() f(a;bﬂ
<@ —t)f(a)+tf(b )*f((lft)a“b)

< 2max {t,1 — }{(Hf() f(a;rbﬂ.

The proof follows, for instance, by Corollary 1 from [2] for n = 2, p; = 1 — ¢,
pe=t,t€[0,1] and 1 = a, x5 = .

Lemma 6. Assume that f is convex on the interior 1 of an interval I. Let Q; > 0
with Q; € By (H) for j € {1,....,n} and 3°7_, tr (Q;) > 0, then for all B; with the
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spectra Sp (B;) C [m, M] C I forj e {1,...,n}, we have

(3.2) 0<

2 [Lenes0n _(meary)
X(l . _Z?—ltT(Q1|Bj—$(m+M)|)>
i1 tr (@)

27 tr(Q; By) 2ratr(QiB5)
f(m) (Mfw) +f (M) (W m)

- M —m
Yo tr(Qif (By))
22;1 tr (Q;)

2 th;fwﬂ_f(m;M>]

<
—M-m

X(;MmHEjAL@ﬂg?%%
colLmtIOn _ (medy]

B ;(m+M)D>

2

Proof. We have from (3.1) that

(3.3) OSQG‘tl') [f(m)+f(M)f<m+M)]

2 2
<@ =) f(m)+tf (M) = f((1—t)m+tM)

x5

for all t € [0,1].
Utilizing the continuous functional calculus for a selfadjoint operator T" with
0 <T <1 we get from (3.3) that

(3.4) OSQ{f(m)J;f(M) m+M>] (1 ‘le

<SA=T)f(m)+Tf(M)—=f((L=T)m+TM)
Q[Lm 100y (med) (3 )y

—
Y

IN

in the operator order.
If we take in (3.4)
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then we get

(3.5) 0<M2m{

f(m);f(M) _f(mJ;Mﬂ

v (;(M—m)— Bj—;(m—kM)D

IOV =B DB =m)

_Mim {f(m);f(M) ‘f(m;Mﬂ

Bj;(erM)D.

x@(MmH

If we multiply both sides by Q;/ % we derive

2 f@0+fwﬂ_f<m+M>}

0<
M—m[ 2 2

1

< (G0r-ma, -} o)
_Im (=@ B,0)) + 1 0n) (@810} - m)
- M —m
- Q18,0

2 [fm)+fOD) _ (me
< —m 5 :

(300 -ma, ey a)"").

Now, by taking the trace and summing over j from 1 to n, we derive

2 [f(m);f(M)_f(mv;M”
Bj;(erM)D)

< Mi f(m) (MZtF(Qj) -y (Qij))
j=1 =1

1

<
O_M—m

x (; (M —m) tr(Q5) =3 tr (Qj

+f (M) ( tr (Q;B;) —mztf(Qg‘)>] =) tr(Qif (B)))
i=1 i=1

j=1
c b [fmeron (i)
x 2<M—m>iltr<c2j>+iltr (@ Bj—§<m+M>D>.

13
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This proves (3.2). O

Theorem 6. Assume that P; € By (H) with P; > 0 and tr(P;) = 1 for j €
{1,..,n}. IfO<m < A; <M, p; >0 forj € {1,...,n} with Z?lej =1, then

— M%m(%(M—m)—zg;lpj tr(Pj|Aj—%(m+M)D)
mmM

(=54)

= M—-"_, pjtr(PjAj) T pytr(PjA;)—m
M

M—m

w2 (3 (M —m)+ 37, pj tr(P;|A;— L (m+M))))

=
~|

|
3
—~
|

Proof. If we write the inequality (3.2) for the convex function f (t) = tInt, ¢ > 0,
Q; =p;jP; and B; = A;, j € {1,...,n}, then we get

mm MM
0 S ln m+M
(m-‘rM 2z
2

1

X i(M—m)—;pjtr P;

Aj—;(m+M)D

I (M=o p; tr(P A7) 4 ppM (o py tr(P Ag)—m)

- M —-—m
n
— ij tr (PJAJ hlAj)
j=1
2
M—m
mm MM
S In T T maM
(m+M)T
2

1 n
X 2(Mm)+2pjtr<Pj

j=1

Aj;(m+M)D

mmMM ?
<1 _
> (m+M) m2M )

2
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namely

(3 (M—m)=57_, pj tr( P A;— L (m+M))|))
mmMM
0 S ln 7n+M

(=5%)

(M Z] 1”7 ” 7)) M<E?:1 Pj ”(PJ'AJ')*"’)
M —
M "

- ij tr (PjAj In AJ)
Jj=1
Mgm(%(M*m)JFZ;L:1Pjtr(P.7‘|A.7‘*%(m+M)|))
m™ MM
<In PPN
(m541) ™
2
mmMM
<In PN
(7n+M)

If we take the exponential, then we get
ﬁ(%(M_m)_Z}L=1 pj t1"(Pj |Aj _%("H‘M) D)
mmMM

m + M

(=54)

M-%"_pjtx(PjAy) M Ti_qpjtr(PjA;)—m
m M—m M—m
m M
<

exp (Z?:l pj tr (PJAJ In AJ))

JWEWL (%(Mim)+2;:1 pPj tr(Pj ‘Aiié(m+M)|))

mm MM
2
2
mm MM
( m+M ) Tn+IW 9
which is equivalent to the desired result (3.6). O

Remark 4. The case of one operator is as follows:

ﬁ(%(M*m)ftr(P|A7%(m+M)D)

mTYLMM
(3.7) 1< S
(=5%)
< np (A)
TR M ()
Jemgpr | T e rPlas kD) i\
m™M R
(a5 = VNS B
(W) 2 (m+M)

provided that P € By (H) with P > 0 and tr (P) =1 while 0 <m < A < M.
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We also have:

Lemma 7. With the assumptions of Lemma 6 we have

Yo tr[@if (B (Xt (QsB))
(3.8) 0< ST (Q)) f <Z?=1tr(Qj) >
2 f(m)+ f(M) m+ M
< T (M5Y)

jo1 tr(Q; By
x(é(M—m)—l— M—;WH—M)D
oL eI (me Y]

2

Proof. From (2.6) we derive

S tr(Qif (B))] > i tr(Q;By)
GO V=T R@) <z71tr<czj>)
£ (m) (M - BR20BD) o p ) (BRte) )
M—m

<

_f 22:1 tr (Q;B;)
Z;'L:1 tr (Q;) .

From the second part of the scalar version of (3.5) we also have the scalar inequality

o) (34~ S 5020) o (4520 )
M —-m

_f 22;1 tr (Q; B;)
Z;’L:1 tr (Q;)

< 2 [f<m>+f<M> f<m+M)]

(3.10)

2 2
SO L))

Z;L 1t (Q5) §(m

%(M—m)—&-
[f(m)Jrf(M) _f(m+M>}_

By utilizing (3.9) and (3.10) we obtain the desired result (3.8). O

Finally, by the use of Lemma 7 we have



BOUNDS FOR THE GEOMETRIC MEAN 17

Theorem 7. With the assumptions of Theorem 6,

" — ()1 Py tr(PyAy))
(Zj:l pj tr (PjAj))

(3.11) 1< _
1 [e, (40))"
j=1
2 (lopr— n . P lAa,—L M
7 M—m(z( 7”)+Ej=1p1tr( J| i—5(m+ )|))
m"™ M
(m+M 7n~§1VI
2
2
mmMM
MmN
()

Remark 5. If P € By (H) with P > 0 and tr (P) =1 while 0 <m < A < M, then

tI' (PA)—tr(PA)
3.12 1< 2
(3.12) e (A)

mmMM
(m+M) mia
2

ﬁ(%(M*M)+tr(P|A7%(m+M)|))

mmMM
m+M mJEM
(=54)

IN
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