FUNCTIONAL PROPERTIES FOR THE ENTROPIC TRACE
CLASS P-DETERMINANT OF SEQUENCES OF POSITIVE
OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the entropic trace P-determinant of the positive invertible operator A by

np (A) :=exp [—tr (PAln A)].

We define the entropic determinant functional
1
(m =15 tr (QA;)

[TZQ (Aj)} “

)T (@)

En(q;AQ). =

—.

1

k3

where A = (A1,..., Ay) is an n-tuple of selfadjoint positive operators, g epPt,
the set of positive n-tuple and Q € By (H), Q > 0 with tr@Q = 1.
In this paper we show among others that, if p, q EP,T, then we have
En(Pp+aAQ) 2 En(p;AQ) En (q;A,Q) 21
i.e., the functional Ey (-, @, A) is super-multiplicative on P;¥. For p, q €P;F
with p > q,
En (p;Q,A) > En (q;Q,A) > 1,
i.e., the functional E, (-, @, A) is monotonic non-decreasing on P

1. INTRODUCTION

In 1952, in the paper [5], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 7T as an integral

T = / AE (X)),
Sp(T)

where E (\) is a projection valued measure and Sp (T) is the spectrum of T. The
measure pp := 7o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (7).

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp </ lntd,uT> .
0
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If T is invertible, then
Apg (T) == exp (t (In([T7)))

where In (|7']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by

A, (A) :=exp(ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [8].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

2
(1.1) Z | Ae;||” < .
iel
It is well know that, if {e;};c; and {f;},.; are orthonormal bases for H and A €
B (H) then

2 2 w2
(1.2) D lAedl® =D 1AL =D 1Al
il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) Al = <ZAei| )
icl
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A] := (A*A)1/2.

Because |||A4|z|| = ||Az]|| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and || 4|, = [||A]||5. From (1.2) we have that if A € By (H), then A* €
By (H) and [[All, = A7)l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B), = (Ae;,Be;) =Y _(B"Aeie;)

i€l iel
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and the definition does not depend on the choice of the orthonormal basis {e;};c;;
(i) We have the inequalities
(1.5) 1Al < 1Al

for any A € By (H) and, if A € By (H) and T € B(H), then AT, TA € By (H)
with

(1.6) [ATly, T Ally < [IT[HAll,
(i1i) By (H) is an operator ideal in B(H), i.e.
B(H)By (H)B(H) C By (H).
If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if
(1.7) 1A =" (Al esse) < oo
iel

The definition of [|Al|; does not depend on the choice of the orthonormal basis
{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) Ac By (H);
(ii) |A|"? € By (H).

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) [Ally = 1A%, and [|A]l; < [[Ally

for any A€ By (H);
(i) By (H) is an operator ideal in B(H), i.e.

B(H)By (H)B(H) < By (H);
(11i) We have
By (H) By (H) = By (H);
(iv) We have
[Ally = sup {{(A, B), | B€Ba(H), |Bly <1};

(v) (B (H),||l;) is a Banach space.

We define the trace of a trace class operator A € By (H) to be
(1.9) tr(A) == (Aej,ei),

iel

where {e;},c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:



4 S.S. DRAGOMIR

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A%) = tr (A);
(1)) If A€ By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (T'A) and |tr (AT)| < ||A|l, ||T]|;

(i) tr (+) s a bounded linear functional on By (H) with |tr|| = 1;
(i) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € By (H) and tr (PT) = tr (TP). Also, since P'/2 € By (H), TP? € By (H),
hence PY/2TPY/? and TPY2PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € By (H),

tr (PT) = tr (TP) = tr <P1/2TP1/2>

forall T € B(H).

If T > 0, then PY/2TP'Y2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [3] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [4]:
(i) continuity: the map A — Ap(A) is norm continuous;
(i) power equality: Ap(A') = Ap(A)* for all t > 0;
(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all ¢t > 0;
(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
[4

In [4], we presented some fundamental properties of this determinant. Among
others we showed that
tr (PA) _
1< < exp [tr (PA)tr (PA™Y) —1
< Ap(a) S el P (PAT) —1]
and A (A
< L),l < exp [tr (PA_l) tr (PA) — 1] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function 7 (¢f) = —tlnt, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA
for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since

exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp(—tlnttr (PA))exp (—ttr (PAln A))

=expln (t7 tr(PA)t) [exp (— tr (PAIn A))] ™
hence
(1.13) Dp(tA) = 1P [ )]

for ¢t >0 and A > 0.
Observe also that

(1.14) np(I)=1and np(tl) =t""
for ¢ > 0.

2. PRELIMINARY FACTS
Consider a convex function f on the interval I. We define
Bt (H):={Q € Bi(H)| Q >0}
and consider the n-tuples
Q= (Q1,....Qn) € [Bf T (H)]" =B " (H) x ... x B * (H)

and A := (Ai,...,A,) with Sp(4;) € I, j € {1,...,n}. We have the following
Jensen type trace inequality for convex function f,

D tr(QA;)\ X tr[Q;f (4y)]
2.1 J J
2 d ( S (@) ) STy e@)
and can introduce the Jensen’s gap functional
2?21 tr(Q;A;)
QA Ztr @l Ztr “ ( S w(Q) )

We have the following functional properties:

Theorem 4. Assume that f is convex on the interval I and A := (A4, ..., A,) with
Sp(A4;) C 1, j € {1,...n}.
(i) For adllP, Q€ [Bf‘ (H)]" we have

(22) JTL (P + Q7 A7f) Z J7l (P7Aaf) + ‘]" (Q7 A7.f) Z Oa

i.e., the functional J, (-, A,f) is superadditive on [Bf‘L (H)]n,
(ii) For all P, Q € [Bf (H)}n with P > Q, namely P; > Q; for j € {1,...,n},

(2.3) Jn (P, ALf) = Jn (Q,A,f) 20,

i.e., the functional J,, (-, A,f) is monotonic non-decreasing on [Bf“" (H)]n .
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Proof. (i). f P, Q € [Bf (H)]", then we have

(2.4) Jn (P +Q, A, f)
=St (P +Q)) £ (45)]
j=1
) S tr (P + Q) A))
_jz:ltr(Pj'l-Qj)f( > tr (P + Q) >

—Ztr Pif(A +Ztr Q,f(

Zj:l tr (P;A;) + 22:1 tr (Q;4;)
‘Z” )@l ( S o (P) + (@) >

By the convexity of f we obtain

s D1 tr(PAy) + 300 tr(Qj4))
Z?:1 [tr (Pj) + tr (Q;)]

2o tr(P5Aj)

tr(QJA )
_ (Z?—l tr (P)) Semy + 2= (@) M)

2= [tr (Py) + tr (Q5)]

21 tr(P)) ; 21 tr(PjA;)
B Z] L [t (Py) + tr (Qy)] Z?:1 tr (P;)
Zj:l tr (Q;) Z?:1 tr (QjAj)>
A

" Z?:l [tr (P;) + tr (Q;)] / < Z?:1 tr (Q;

Therefore

Z?:1 tr (P;A;) + 22:1 tr (Q;4;)
‘Z” )+ (@l ( S [ (P) + 1 (Qy) )

>_Z}Z:1[ (P)) +tr Q)] 25—y tr (By) (305, tr (P A))
- 2= [or (Py) + tr (Q5)] > tr ()

B Z?:l [tr (P5) + tr (Q;)] Z;‘L:1 tr (Q;) f Z?:1 tr (Q;A;)
> [t (Py) + 1 (Qy)] 21 tr(Qy)

. n Z?thr(PjAj) B n , Z?thl"(QjAj)
_—;tr(P])f< Z;z:ltr(Pj)> Ztr(Qﬂf( Z?zltr(Qj) >

Jj=1
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and by (2.4) we derive
Jn (P +Q,A.f)

>Ztr P;f (A —I—Ztr Qi f(

Zn 1tI‘(PA Zn 1131' (QJAJ)
_ztr(Pj)f<Ej Tt ( ) Zt (Q)) (Z" tr(Q;) >

Zj: tr(PjAj)
= Ztr [P f (A Ztr (W)

> jo1 17 (Q54)
+Ztr Qi f ( Ztr @) (W)

= Jn (P, A f) + Jn (Q7A,f) >

and the inequality (2.2) is proved.
(ii) f P > Q, then P =P — Q + Q and if we use the property (2.2), then we
get

Jn(PAf)=Jn (P-Q+Q,Af) 21, (P—-QAf)+Jn(QA,S),
which gives
Jn (P, Af) = Jn (QAf) > T (P—Q,A,f) >0
and the inequality (2.3) is proved. O

Corollary 1. With the assumptions of Theorem 4 and if we assume that there
exists the positive constants m < M such that

(2.5) mQ <P < MQ,
then

Proof. Observe that for @ > 0 we have J, (aQ,A) = aJ, (Q,A). Utilizing the
monotonicity property (2.3) we have

‘]n (mQ7 Avf) S ‘IVL (Pa A?f) S ‘]n (MQ7 Aaf) ’
which imply the desired result (2.6). O

We denote by P, the set of all n-tuples ¢= (g1, ...,qn), ¢; > 0 with j € {1,...,n}
and @, = Z;L:lqj > 0. For p, q €P,/ we denote p >q if p; > ¢; for any j €

{1,...,n}.

For Q € B ™ (H) with tr Q = 1, we define the functional

1 n
o (@Q,ALf) : qutr Qf (A)] = Quf Q—qutr<QAj> :
where @, := Zj:l g; > 0.
We observe that if we put Q; — ¢;Q, 7 € {1,....,n} then J,(q,Q,A,f) =
Jn (Q, A, f) and we can state the following result:
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Theorem 5. Assume that f is convex on the interval I, Q € BiH' (H) withtr@ =1
and A := (Aq, ..., Ay) with Sp(A;) C I, j€{l,..,n}.

(i) For all p, q €P;} we have
(2.7) Jn(P+ QA f) > Jn (P Q5 ALf) + Jn (P5Q,ALf) 20
i.e., the functional J,, (-,Q, A, f) is superadditive on P;I ;
(ii) Forp, q €P} withp > q
(2.8) In (P Q, AL f) > Jn (a;Q, AL f) >0,

i.e., the functional J, (-, Q, A,f) is monotonic non-decreasing on P;}.

Remark 1. We observe that if all g; > 0 then we have the inequality

29)  min {p} @D AS) < (0, ALP)

JE{l,...,n}

< max {p} n (P;Q,Af).

Jj€{l,...,n}

In particular, if q is the uniform distribution, i.e., g; = %,j e {1,....,n}, then
we have the inequalities

(2.10) njeﬁnn {pi} I (Q,A,f) < J0 (p;Q,A,f)

<n max i+ A,
<n max {p} . (QA)

where
(2.11) W (Q,ALf) : Ztr Qf (A Ztr QA;)

Forn =2 and by choosing p1 = «, ps = 1 —a with « € [0, 1], we get from (2.10)
the inequality

(2.12) 2min {e,1 — a}

QAL I B ([ (448)])]

<A -a)tr[Qf (A +atr[Qf (B)] - f(tr (Q[(1 - a) A+ aB))
< 2max{a,1— a}

; {tr QI ()4 wlQT (B) _ (tr {Q (A;B)m ’

where f : I — R is a convex function and A and B are two bounded selfadjoint
operators on the complex Hilbert space H with Sp (A), Sp (B) C I.

Let P (N) be the family of finite parts of the set of natural numbers N, A(H)
the linear space of all sequences of selfadjoint operators defined on the complex
Hilbert space, i.e.,

A(H) = {A =(Ak) ey | Ar are selfadjoint operators on H for all k € N}

and S} (Bt (H)) the family of positive sequences from By (H).
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Let f: I — R is a convex function on the interval I. We consider the functional
Yjex tr(Qi4;)
Kk (Q,A,[f): tr[Q; f tr(Q) f| ==~ | »
-2 e 2 @) )
where K € Py (N), Q €Sy (B (H)), A €A(H) and Sp(A;) C1,j€N.

Theorem 6. Let f : I — R be a convex function on the interval I and Q €S (lS’fJr (H)) ,
A cA(H) with Sp(A;) €I, 5 €N.

(i) If K, L € Py (N)\ {0} with KN L =0, then we have the inequality
(213) JKUL (QaAaf) ZJK (QaA,f)+JL (Q?Aaf) ZO,

ie., J (Q,A,f) is super-additive as an index set functional.
(ii) If0 # K C L, then we have

ie., J.(Q,A,f) is monotonic non-decreasing as an index set functional.
Proof. (i). If K, L € Py (N)\ {0} with K N L =, then we have
(215) JKUL (Q7Aaf)

] T A
- Y vl - Y w@) (Zﬁemt - )J)>

jEKUL JEKUL ZjeKuL tr (Q;
- Z tr[Q;f (A;)] + Ztr Q;f
JjEK JEL
- > w(@))
JjEKUL
“ deKtr (@) % + ZJGL tr (Q;) %
ZJGKUL tr(Q;)
> Z tr Qj + Ztr QJ
JjeEK jEL
B _ ZjeKtr<Qj) ZjeK tr (QjAj)
je;_JLtr (@) lzjeKuL tr (Qj)f ( ZjeKtr (Qy)
>jer tr(Qy) > jern tr(Qs4;)
ZjEKUL tr (Q;) ZjeL tr (Q;)
tr(Q;A,)
= tr [ tr ( LjER T A\RITTT)
Jg( @l ; @) ( > jex tr(@j) )
ZjeL tr(Q;4;)
tl" j tr i == - -7
+aez; @l Jez; @ ( > jer tr(Q) )

= JK (QaAvf) +JL(Q7Aaf) Z 07
which proves (2.13).
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(ii). If ) # K C L with L\ K # 0, then we have by (2.13) that

JL(Q, A, f) = Jrui~ k) (Q, A, f)
> JL (Q7Aaf) +JL\K (QvAvf) > ']K (Q7A7f)

and the inequality (2.14) is thus proved. a

Corollary 2. Assume that f is convex on the interval I and A := (A4, ..., Ay,) with
Sp(A4;) C I, je{l,..,n}. Then we have the inequality

for any k € {1,...,n} withn >k > 2.
We also have that

(217 L(QAN > max  {[Qf (4)] + tr[Quf (Ap)]

j.ke{l,...,n}
T A T A
—tr(Q; + Q) f (t (Qér (g;r_: Q(kQ)k k)>}
> 0.

Now, consider the weighted functional

k(G QAS) =Y ¢;tr[Qf (4; me( qutrQA)

JjeEK ]EK

where K € Py (N), Q € Bf " (H) with trQ = 1 and q €P;} with Q := Y, ¢ >
0. '

Proposition 2. If K, L € Py (N)\ {0} with KNL = 0, then we have the inequality

JKUL (an7A)f) Z JK (q7Q7Aaf> + JL (anaAaf) Z Oa

5 J(q,Q, A, f) is super-additive as an index set functional.
If # K C L, then we have

i.e., J.(Q,A,f) is monotonic non-decreasing as an index set functional.
We have the inequality

Jk (quaAaf) 2 Jk—l (quaAvf) Z 0

for any k € {1,...,n} withn >k > 2.
We also have the lower bound:

T (@@ A > max  {prQF (A7) + pe tr[QF (44)]

kel
(QA;) + p tr (QAk)) }
pj + Pk

—(pj +pr) f (pj b

> 0.
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3. ENTROPIC DETERMINANT INEQUALITIES

We define the entropic determinant functional

— 251 45 t1(QAy)

(3 0t (@4)))
T [0 (4,)]°

i=1

E,(q;AQ). =

where A =(Ay, ..., A,) is an n-tuple of selfadjoint positive operators p €P;} and
Q € Bt (H) with trQ = 1.

Theorem 7. Let Q € By T (H) withtrQ =1 and A := (A4,.
I,je{l,...n}.

., Ap) with Sp (A;) C
(i) For all p, q €P;5 we have

(3.1) E,.(p+qAQ) >E,(p;AQ) E, (1;AQ)>1

i.e., the functional J, (-,Q, A) is super-multiplicative on P} ;
(ii) Forp, q €P} withp > q

(3.2) E.(p;Q,A) > E, (q;Q,A) > 1,

i.e., the functional J, (-,Q, A) is monotonic non-decreasing on P,.

Proof. (i) Consider the convex function f(t) = tIlnt, ¢ > 0. Observe that for
A = (A4, ..., A,) an n-tuple of selfadjoint positive operators p €P; and Q € B (H)
with tr @ = 1, then

=> qitr(QA;In A))

j=1

Qu [ 2 qtr (@A) | n | -3 g tr(@4))
Q. Q&

—2i=1 95 t1(QAy)
—qutr QA;InA;) +1n qutr QA;)

j=1
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If we take the exponential, then we get

expJ, (q;Q, A, -In(-))

Jj=1

— 20145 tr(QAy)
n 1 n
= exp Z Qj tr (QAJ h’l AJ) —+ ln @ Qj tr (QAJ)
j=1

" — 21 45 t1(QA)
exp In (& dim1 4 tr (QAj)> !

exp (Z;‘Lzl qJ‘ tr (—QAj hl A]))
- Z;:1 5 tr(QA; )
(& Sriatr@4ay) 7
1T [nq (45"

i=1

= En (q; A,Q) :

Therefore, by the properties of J,, (q; @, A, - In(+)),

E,(p+a;AQ)=expJ, (p+q,Q,A, In())
>exp[Jn (P, QA - In() + Jn (4, Q, A, - In ()]
=expJy (P, @A, -In(-))expJy (q,Q, A, - In())
=E, (p;AQ) E, (q; A»Q) .

(ii) The monotonicity of F,, (+; A,Q) follows by the monotonicity of J,, (-, Q, A, - In (+)).
O

Corollary 3. Let Q € By T (H) withtrQ = 1 and A := (Ay, ..., A,) with Sp (A;) C
I,j€{1,...,n}. Then

(33)  [Ea(qQA)" {8} < B, (pAQ)

< [En (q;Q’A)]maxjeu _____ n}{%‘}

and
(34) E, (Q7A)nminje{1 ..... ny{p;} <E, (p;A,Q)

< B (QA)" et st
where

- % ;lzl tr(QA;)

(35 tr(Q4y)
En (AvQ) = n 1
g (A)]""

1

7
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For n = 2 and by choosing p; = «, po = 1 — @ with « € [0, 1], we get from (3.7)
the inequality for two positive operators A, B

[tr (QA-s-TB)] —tr(QAEE) 2 min{a,1—a}

[ng ()] [ (B)]
< [tr(Q (1 — o) A+ aB))]” tr(Q((1—a)A+aB))
[no (A)]' ™ [no (B)]”

2 max{a,1—a}

(3.5) 1< o

[ (Q452)) ")

[ng ()] [ng (B)]

IN

1/2

We also consider

) o [tr (Q% ZjeK quAj>:|7tr(ZjEKQjQAJ)
1% (Q: Q7A) = H [77Q (A])] qi R
jeK

where K € Py (N).
Proposition 3. If K, L € Py (N)\ {0} with KNL = 0, then we have the inequality
(3.6) Exur (p+a;AQ) > Ex (p3AQ) B (4;A,Q) > 1

i.e., E.(q;Q,A) is super-multiplicative as an index set functional.
If ) # K C L, then we have

i.e., E.(q;Q,A) is monotonic non-decreasing as an index set functional.
We have the inequality

(3.8) Ey(q;AQ) > Ery1 (p;AQ) > 1

for any k € {1,...,n} withn >k > 2.
We also have that

_tr(QM)

q]-AjJquAk aj+ag

{tr (Q q;+qk )]

(3.9) E,(q;Q,A)> max J 7 - > 1.
Jke{Ly e} (g (A47)]™ [ng (Av)]

4. OTHER PROPERTIES

We define C; (B (H)) the class of non-negative operators Q from B; (H) with
tr(Q) = 1. We observe that, if @1, Q2 € C; (B’l+ (H)) then for all ¢ € [0,1],
(1-1)Q1 +tQ2 € Ci (Bf (H)) showing that C; (B (H)) is a convex subset of
By (H). Also, if @, € 1 (Bf (H)) and @, — @ in the operator norm topology,
then also Q € Cy (B; (H)) .

Proposition 4. The mapping n. (A) is convex on C; (Bi" (H)) for all positive in-
vertible operator A.
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Proof. Let Q1, Q2 € Cy (B (H)) then for all t € [0,1],

N1—t)Q1+tQ, (A) = exp[—tr (((1 —1) Q1 +tQ2) Aln A)]
=exp{—[(1-t)tr (Q1Aln A) + ttr (Q2A41In A)|}

= (exp[— tr (Q1 AT A~ (exp [~ tr (Q2 In A)))’
<(1—t)exp[—tr(Q1AInA)] +texp[—tr (Q2AIn A)]
=1 =1t)ng, (A) +1tng, (A),

which proves the convexity of . (A). O

Using Jensen’s inequality we have

(4'1) s prQr (A) S Zpank (A)
k=1

for all Q, € C1 (B (H)), pr >0, k € {1,...,n} with >7_, pr = 1.
By Hermite-Hadamard integral inequalities we also have

1
1
42 nze 2 [ magpie(A)d < g e (4) g (4)]
for all P, Q € C1 (B (H)).
Since

1
/O Na-t)P+tQ (A)dt
1
- / exp[(1— ) tr (—PAIn A) + ttr (—QAln A)] di
0
A)—np(A .
;1‘512_22% if tr((Q—P)AlnA)#0

exp [tr (—PAIn A)] if tr((Q — P)Aln A) =0,
hence

A)—np(A
(4.3) nrse (4) < t:(Q(;) _> Q)UZ l(n ,21) < % [ (A) +1g (4)]

provided tr ((Q — P) Aln A) # 0.

Theorem 8. For all P, Q € C; (Bf‘ (H)) and positive invertible operator A such
that tr ((Q — P) Aln A) # 0 we have

g (A) —np (4)
(44) 0= tr (?P - Q) Zln A)

étr (P—Q) Al A) [g (A) — np (A)]

—nrsa (A)
<

g (A) —np (A)
tr(P—Q)AInA)
(

tr (P~ Q) AlnA) [ng (A) —np (4)].

(4.5) 0< 3 [np (A) +ng (A)] -

<

| = N =
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Proof. For P, Q € C; (Bf (H)), we consider the function ¢opq:[0,1] — (0,00),
epq (1) ==na_tprq(A), t €[0,1].
Observe that
opo(t) =exp[(1 —t)tr (~PAInA) +ttr (—QAIn A)],

for all ¢ € [0,1]. Obviously, the function ¢p ¢ is also a convex function on [0, 1].
The function ¢p ( is differentiable on (0,1) and

©po(t) =tr(—(Q—P)AInA)exp[(1 —t)tr (~PAInA) + ttr (—QAIn A)].
The lateral derivatives ¢, p 5 (0) and ¢’ p, (1) also exist,
¢\ pg(0)=tr(—(Q—P)AlnA)np (A)
and
¢ po(l)=tr(—(Q—P)AInA)ng, (A).

In [1] we obtained the following reverse of first Hermite-Hadamard inequality for
the convex function f : [a,b] — R,

v [reas -1 () <fo-w o £ @),

with % the best possible constant.
Therefore

OS/O ‘pP,Q(t)dt <PPQ<1) Sé[‘f’ PQ(l)_‘PlJrP,Q(O)]>

namely
1
0 < /0 N—t)piiq (A) dt — Neie (4)

< (=@ P) Al A) [ng (4) 1 ()]

which gives (4.4).
In [2] we also obtained the reverse of the second Hermite-Hadamard inequality
for the convex function f : a, b] — R,

fla)+f(b
o< LX) L i< lo-a (o) - £ @),
X(?Vit}; % the best possible constant. Applymg this inequality, we derive the inequality
4.5). O
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