A SUB-MULIPLICATIVE PROPERTY FOR THE ENTROPIC TRACE CLASS *P*-DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let H be a complex Hilbert space. For a given operator $P \ge 0$ with $P \in \mathcal{B}_1(H)$, the trace class associated to $\mathcal{B}(H)$ and tr(P) = 1, we define the *entropic trace* P-determinant of the positive invertible operator A by

$$\eta_P(A) := \exp\left[-\operatorname{tr}\left(PA\ln A\right)\right]$$

In this paper we show among others that, if $A,\,B>0$ are such that $AB+BA\geq 0,$ then

 $\eta_P(A)\eta_P(B) \ge \eta_P(A+B).$

If $0 < m \le A \le M$ and $0 < n \le B \le N$, then we have the reverse inequality $\eta_P(A)\eta_P(B) = (M+N)$

$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \le \exp\left(\frac{m+N}{m+n}\right).$$

Moreover, if $2mn \ge \frac{1}{4}(M-m)(N-n)$, then

$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \ge \exp\left[\frac{2mn - \frac{1}{4}\left(M - m\right)\left(N - n\right)}{M + N}\right] \ge 1$$

1. INTRODUCTION

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the determinant of a (invertible) operator and established its fundamental properties. The notion generalizes the usual determinant and can be considered for any operator in a finite von Neumann algebra (M, τ) with a faithful normal trace.

Let $T \in M$ be normal and $|T| := (T^*T)^{1/2}$ its modulus. By the spectral theorem one can represent T as an integral

$$T = \int_{\mathrm{Sp}(T)} \lambda dE(\lambda) \,,$$

where $E(\lambda)$ is a projection valued measure and $\operatorname{Sp}(T)$ is the spectrum of T. The measure $\mu_T := \tau \circ E$ becomes a probability measure on the complex plane and has the support in the spectrum $\operatorname{Sp}(T)$.

For any $T \in M$ the Fuglede-Kadison determinant (*FK*-determinant) is defined by

$$\Delta_{FK}(T) := \exp\left(\int_{0}^{\infty} \ln t d\mu_{|T|}\right).$$

If T is invertible, then

$$\Delta_{FK}(T) := \exp\left(\tau\left(\ln\left(|T|\right)\right)\right),\,$$

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Normalized determinants, Inequalities.

where $\ln(|T|)$ is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, A > 0means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \ge B$ means as usual that A - B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by

$$\Delta_x(A) := \exp\left\langle \ln Ax, x \right\rangle$$

and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. For some recent results, see [7].

We need now some preparations for trace of operators in Hilbert spaces.

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\{e_i\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if

(1.1)
$$\sum_{i\in I} \|Ae_i\|^2 < \infty.$$

It is well know that, if $\{e_i\}_{i \in I}$ and $\{f_j\}_{j \in J}$ are orthonormal bases for H and $A \in \mathcal{B}(H)$ then

(1.2)
$$\sum_{i \in I} \|Ae_i\|^2 = \sum_{j \in I} \|Af_j\|^2 = \sum_{j \in I} \|A^*f_j\|^2$$

showing that the definition (1.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^* is a Hilbert-Schmidt operator.

Let $\mathcal{B}_{2}(H)$ the set of *Hilbert-Schmidt operators* in $\mathcal{B}(H)$. For $A \in \mathcal{B}_{2}(H)$ we define

(1.3)
$$||A||_2 := \left(\sum_{i \in I} ||Ae_i||^2\right)^{1/2}$$

for $\{e_i\}_{i \in I}$ an orthonormal basis of H.

Using the triangle inequality in $l^2(I)$, one checks that $\mathcal{B}_2(H)$ is a vector space and that $\|\cdot\|_2$ is a norm on $\mathcal{B}_2(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathcal{B}(H)$ by $|A| := (A^*A)^{1/2}$.

Because |||A||x|| = ||Ax|| for all $x \in H$, A is Hilbert-Schmidt iff |A| is Hilbert-Schmidt and $||A||_2 = |||A|||_2$. From (1.2) we have that if $A \in \mathcal{B}_2(H)$, then $A^* \in \mathcal{B}_2(H)$ and $||A||_2 = ||A^*||_2$.

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 1. We have:

(i) $(\mathcal{B}_2(H), \|\cdot\|_2)$ is a Hilbert space with inner product

(1.4)
$$\langle A, B \rangle_2 := \sum_{i \in I} \langle Ae_i, Be_i \rangle = \sum_{i \in I} \langle B^* Ae_i, e_i \rangle$$

and the definition does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$;

(ii) We have the inequalities

$$(1.5) ||A|| \le ||A||_2$$

for any $A \in \mathcal{B}_{2}(H)$ and, if $A \in \mathcal{B}_{2}(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_{2}(H)$ with

(1.6)
$$||AT||_2, ||TA||_2 \le ||T|| ||A||_2$$

(iii) $\mathcal{B}_{2}(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H) \mathcal{B}_{2}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{2}(H).$$

If $\{e_i\}_{i\in I}$ an orthonormal basis of H, we say that $A\in\mathcal{B}(H)$ is trace class if

(1.7)
$$\|A\|_1 := \sum_{i \in I} \langle |A| e_i, e_i \rangle < \infty$$

The definition of $||A||_1$ does not depend on the choice of the orthonormal basis $\{e_i\}_{i \in I}$. We denote by $\mathcal{B}_1(H)$ the set of trace class operators in $\mathcal{B}(H)$.

The following proposition holds:

Proposition 1. If $A \in \mathcal{B}(H)$, then the following are equivalent:

(i) $A \in \mathcal{B}_1(H)$; (ii) $|A|^{1/2} \in \mathcal{B}_2(H)$.

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have

(1.8)
$$||A||_1 = ||A^*||_1 \text{ and } ||A||_2 \le ||A||_1$$

for any $A \in \mathcal{B}_1(H)$;

(ii) $\mathcal{B}_1(H)$ is an operator ideal in $\mathcal{B}(H)$, i.e.

$$\mathcal{B}(H) \mathcal{B}_{1}(H) \mathcal{B}(H) \subseteq \mathcal{B}_{1}(H);$$

(iii) We have

$$\mathcal{B}_{2}(H)\mathcal{B}_{2}(H)=\mathcal{B}_{1}(H);$$

(iv) We have

$$||A||_1 = \sup \{ \langle A, B \rangle_2 \mid B \in \mathcal{B}_2(H), ||B||_2 \le 1 \};$$

(v) $(\mathcal{B}_1(H), \|\cdot\|_1)$ is a Banach space.

We define the *trace* of a trace class operator $A \in \mathcal{B}_1(H)$ to be

(1.9)
$$\operatorname{tr}(A) := \sum_{i \in I} \langle A e_i, e_i \rangle$$

where $\{e_i\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (1.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

Theorem 3. We have:

(i) If
$$A \in \mathcal{B}_1(H)$$
 then $A^* \in \mathcal{B}_1(H)$ and
(1.10) $\operatorname{tr}(A^*) = \overline{\operatorname{tr}(A)};$

S. S. DRAGOMIR

(*ii*) If $A \in \mathcal{B}_1(H)$ and $T \in \mathcal{B}(H)$, then $AT, TA \in \mathcal{B}_1(H)$,

(1.11)
$$\operatorname{tr}(AT) = \operatorname{tr}(TA) \text{ and } |\operatorname{tr}(AT)| \le ||A||_1 ||T||;$$

(iii) tr (·) is a bounded linear functional on $\mathcal{B}_1(H)$ with ||tr|| = 1; (iv) If $A, B \in \mathcal{B}_2(H)$ then $AB, BA \in \mathcal{B}_1(H)$ and tr (AB) = tr (BA).

Now, if we assume that $P \geq 0$ and $P \in \mathcal{B}_1(H)$, then for all $T \in \mathcal{B}(H)$, PT, $TP \in \mathcal{B}_1(H)$ and $\operatorname{tr}(PT) = \operatorname{tr}(TP)$. Also, since $P^{1/2} \in \mathcal{B}_2(H)$, $TP^{1/2} \in \mathcal{B}_2(H)$, hence $P^{1/2}TP^{1/2}$ and $TP^{1/2}P^{1/2} = TP \in \mathcal{B}_1(H)$ with $\operatorname{tr}(P^{1/2}TP^{1/2}) = \operatorname{tr}(TP)$. Therefore, if $P \geq 0$ and $P \in \mathcal{B}_1(H)$,

$$\operatorname{tr}(PT) = \operatorname{tr}(TP) = \operatorname{tr}\left(P^{1/2}TP^{1/2}\right)$$

for all $T \in \mathcal{B}(H)$.

If $T \ge 0$, then $P^{1/2}TP^{1/2} \ge 0$, which implies that tr $(PT) \ge 0$ that shows that the functional $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is linear and isotonic functional. Also, by (1.11), if $T_n \to T$ for $n \to \infty$ in $\mathcal{B}(H)$ then $\lim_{n\to\infty} \operatorname{tr}(PT_n) = \operatorname{tr}(PT)$, namely $\mathcal{B}(H) \ni T \longmapsto \operatorname{tr}(PT)$ is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$, we define the *P*-determinant of the positive invertible operator A by

(1.12)
$$\Delta_P(A) := \exp \operatorname{tr}(P \ln A) = \exp \operatorname{tr}((\ln A) P) = \exp \operatorname{tr}\left(P^{1/2}(\ln A) P^{1/2}\right).$$

Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. We observe that we have the following elementary properties [2]:

- (i) continuity: the map $A \to \Delta_P(A)$ is norm continuous;
- (ii) power equality: $\Delta_P(A^t) = \Delta_P(A)^t$ for all t > 0;
- (iii) homogeneity: $\Delta_P(tA) = t\Delta_P(A)$ and $\Delta_P(tI) = t$ for all t > 0;
- (iv) monotonicity: $0 < A \leq B$ implies $\Delta_P(A) \leq \Delta_P(B)$.

In [2], we presented some fundamental properties of this determinant. Among others we showed that

$$1 \le \frac{\operatorname{tr}(PA)}{\Delta_P(A)} \le \exp\left[\operatorname{tr}(PA)\operatorname{tr}(PA^{-1}) - 1\right]$$

and

$$1 \le \frac{\Delta_P(A)}{\left[\operatorname{tr}(PA^{-1})\right]^{-1}} \le \exp\left[\operatorname{tr}(PA^{-1})\operatorname{tr}(PA) - 1\right]$$

for A > 0 and $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$.

For the entropy function $\eta(t) = -t \ln t$, t > 0, the operator entropy has the following expression:

$$\eta\left(A\right) = -A\ln A$$

for positive A.

Now, for a given $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and tr (P) = 1, we define the *entropic* P-determinant of the positive invertible operator A by

$$\eta_{P}\left(A\right) := \exp\left[-\operatorname{tr}\left(PA\ln A\right)\right] = \exp\left\{\operatorname{tr}\left[P\eta\left(A\right)\right]\right\} = \exp\left\{\operatorname{tr}\left[P^{1/2}\eta\left(A\right)P^{1/2}\right]\right\}.$$

4

Observe that the map $A \to \eta_P(A)$ is norm continuous and since

$$\exp\left(-\operatorname{tr}\left\{P\left[tA\ln\left(tA\right)\right]\right\}\right)$$

$$=\exp\left(-\operatorname{tr}\left\{P\left[tA\left(\ln t+\ln A\right)\right]\right\}\right)=\exp\left(-\operatorname{tr}\left\{P\left(tA\ln t+tA\ln A\right)\right\}\right)$$

$$=\exp\left(-t\ln t\operatorname{tr}\left(PA\right)\right)\exp\left(-t\operatorname{tr}\left(PA\ln A\right)\right)$$

$$=\exp\ln\left(t^{-\operatorname{tr}\left(PA\right)t}\right)\left[\exp\left(-\operatorname{tr}\left(PA\ln A\right)\right)\right]^{-t},$$

hence

(1.13)
$$\eta_P(tA) = t^{-t \operatorname{tr}(PA)} [\eta_P(A)]^{-t}$$

for t > 0 and A > 0.

Observe also that

(1.14)
$$\eta_P(I) = 1 \text{ and } \eta_P(tI) = t^{-t}$$

for t > 0.

Motivated by the above results, in this paper we show among others that, if A, B > 0 are such that $AB + BA \ge 0$, then

$$\eta_P(A)\eta_P(B) \ge \eta_P(A+B).$$

If $0 < m \le A \le M$ and $0 < n \le B \le N$, then we have the reverse inequality

$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \le \exp\left(\frac{M+N}{m+n}\right).$$

Moreover, if $2mn \ge \frac{1}{4}(M-m)(N-n)$, then

$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \ge \exp\left[\frac{2mn - \frac{1}{4}\left(M - m\right)\left(N - n\right)}{M + N}\right] \ge 1.$$

2. Main Results

We start with the following integral representation result:

Theorem 4. Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. For any A, B > 0 we have

(2.1)
$$\operatorname{tr}\left[P\left(A+B\right)\ln\left(A+B\right)\right] - \operatorname{tr}\left(PA\ln A\right) - \operatorname{tr}\left(PB\ln B\right)$$
$$= \int_{0}^{\infty} \operatorname{tr}\left[P\left(A+B+\lambda\right)^{-1}K\left(A,B;\lambda\right)\left(A+B+\lambda\right)^{-1}\right]d\lambda$$

where

(2.2)
$$K(A, B; \lambda) := AB + BA + B(A + \lambda)^{-1}AB + A(B + \lambda)^{-1}BA.$$

Proof. Observe that for $t > 0, t \neq 1$, we have

$$\int_0^u \frac{d\lambda}{(\lambda+t)(\lambda+1)} = \frac{\ln t}{t-1} + \frac{1}{1-t}\ln\left(\frac{u+t}{u+1}\right)$$

for all u > 0.

By taking the limit over $u \to \infty$ in this equality, we derive

$$\frac{\ln t}{t-1} = \int_{0}^{\infty} \frac{d\lambda}{\left(\lambda+t\right)\left(\lambda+1\right)},$$

which gives the representation for the logarithm

(2.3)
$$\ln t = (t-1) \int_0^\infty \frac{d\lambda}{(\lambda+1)(\lambda+t)}$$

for all t > 0.

If we use the continuous functional calculus for selfadjoint operators, we have

(2.4)
$$\ln T = \int_0^\infty \frac{1}{\lambda+1} \left(T-1\right) \left(\lambda+T\right)^{-1} d\lambda$$

for all operators T > 0.

Observe that

$$\int_0^\infty \frac{1}{\lambda+1} \left(T-1\right) \left(\lambda+T\right)^{-1} d\lambda = \int_0^\infty \frac{1}{\lambda+1} \left(T+\lambda-\lambda-1\right) \left(\lambda+T\right)^{-1} d\lambda$$
$$= \int_0^\infty \left[\left(\lambda+1\right)^{-1} - \left(\lambda+T\right)^{-1} \right] d\lambda$$

and then

$$\ln T = \int_0^\infty \left[(\lambda + 1)^{-1} - (\lambda + T)^{-1} \right] d\lambda$$

giving the representation

(2.5)
$$T \ln T = \int_0^\infty \left[(\lambda + 1)^{-1} T - T (\lambda + T)^{-1} \right] d\lambda$$

for all operators T > 0.

For A, B > 0 we have

(2.6)
$$(A+B)\ln(A+B) - A\ln A - B\ln B = \int_0^\infty \left[(\lambda+1)^{-1} (A+B) - (A+B) (\lambda+(A+B))^{-1} \right] d\lambda - \int_0^\infty \left[(\lambda+1)^{-1} A - A (\lambda+A)^{-1} \right] d\lambda - \int_0^\infty \left[(\lambda+1)^{-1} B - B (\lambda+B)^{-1} \right] d\lambda = \int_0^\infty \left[A (\lambda+A)^{-1} + B (\lambda+B)^{-1} - (A+B) (\lambda+A+B)^{-1} \right] d\lambda.$$

Now, observe that

$$\begin{aligned} A \left(\lambda + A \right)^{-1} + B \left(\lambda + B \right)^{-1} - \left(A + B \right) \left(\lambda + A + B \right)^{-1} \\ &= \left(A + \lambda - \lambda \right) \left(\lambda + A \right)^{-1} + \left(B + \lambda - \lambda \right) \left(\lambda + B \right)^{-1} \\ &- \left(A + B + \lambda - \lambda \right) \left(\lambda + A + B \right)^{-1} \\ &= 1 - \lambda \left(\lambda + A \right)^{-1} + 1 - \lambda \left(\lambda + B \right)^{-1} - 1 + \lambda \left(\lambda + A + B \right)^{-1} \\ &= 1 + \lambda \left[\left(\lambda + A + B \right)^{-1} - \left(\lambda + A \right)^{-1} - \left(\lambda + B \right)^{-1} \right] \\ &= \lambda \left[\left(\lambda + A + B \right)^{-1} + \lambda^{-1} - \left(\lambda + A \right)^{-1} - \left(\lambda + B \right)^{-1} \right] \end{aligned}$$

Consider

(2.7)
$$L_{\lambda} := (A + B + \lambda)^{-1} + \lambda^{-1} - (A + \lambda)^{-1} - (B + \lambda)^{-1}.$$

Then by (2.6) we obtain the representation

(2.8)
$$(A+B)\ln(A+B) - A\ln A - B\ln B = \int_0^\infty \lambda L_\lambda d\lambda$$

for all A, B > 0.

If we multiply both sides of (2.7) by $A + B + \lambda$, then we get

$$W_{\lambda} := (A + B + \lambda) L_{\lambda} (A + B + \lambda)$$

= $(A + B + \lambda) + \lambda^{-1} (A + B + \lambda)^{2}$
- $(A + B + \lambda) (A + \lambda)^{-1} (A + B + \lambda)$
- $(A + B + \lambda) (B + \lambda)^{-1} (A + B + \lambda)$
= $(A + B + \lambda) + \lambda^{-1} (A + B + \lambda)^{2}$
- $(A + B + \lambda) - B (A + \lambda)^{-1} (A + B + \lambda)$
- $A (B + \lambda)^{-1} (A + B + \lambda) - (A + B + \lambda)$
= $\lambda^{-1} (A + B + \lambda)^{2} - B (A + \lambda)^{-1} B - B$
- $A (B + \lambda)^{-1} A - A - (A + B + \lambda)$

$$= \lambda^{-1} \left(A^2 + AB + \lambda A + BA + B^2 + \lambda B + \lambda A + \lambda B + \lambda^2 \right) - B \left(A + \lambda \right)^{-1} B - 2B - A \left(B + \lambda \right)^{-1} A - 2A - \lambda = \lambda^{-1} \left(A^2 + AB + BA + B^2 \right) + 2B + 2A + \lambda - B \left(A + \lambda \right)^{-1} B - A \left(B + \lambda \right)^{-1} A - 2A - 2B - \lambda = \lambda^{-1} \left(A^2 + AB + BA + B^2 \right) - B \left(A + \lambda \right)^{-1} B - A \left(B + \lambda \right)^{-1} A = \lambda^{-1} \left[A^2 + AB + BA + B^2 - \lambda B \left(A + \lambda \right)^{-1} B - \lambda A \left(B + \lambda \right)^{-1} A \right] = \lambda^{-1} \left[A^2 + AB + BA + B^2 - B \left(\lambda^{-1} A + 1 \right)^{-1} B - A \left(\lambda^{-1} B + 1 \right)^{-1} A \right].$$

Observe that

$$B^{2} - B (\lambda^{-1}A + 1)^{-1} B$$

= $B (\lambda^{-1}A + 1)^{-1} (\lambda^{-1}A + 1) B - B (\lambda^{-1}A + 1)^{-1} B$
= $B (\lambda^{-1}A + 1)^{-1} (\lambda^{-1}A + 1 - 1) B$
= $\lambda^{-1}B (\lambda^{-1}A + 1)^{-1} AB = B (A + \lambda)^{-1} AB$

 and

$$A^{2} - A (\lambda^{-1}B + 1)^{-1} A$$

= $A (\lambda^{-1}B + 1)^{-1} (\lambda^{-1}B + 1) A - A (\lambda^{-1}B + 1)^{-1} A$
= $A (\lambda^{-1}B + 1)^{-1} (\lambda^{-1}B + 1 - 1) A$
= $\lambda^{-1}A (\lambda^{-1}B + 1)^{-1} BA = A (B + \lambda)^{-1} BA.$

Therefore

$$W_{\lambda} = \lambda^{-1} \left[AB + BA + B \left(A + \lambda \right)^{-1} AB + A \left(B + \lambda \right)^{-1} BA \right],$$

which gives that

$$L_{\lambda} := (A + B + \lambda)^{-1} W_{\lambda} (A + B + \lambda)^{-1}$$

From (2.8) we then get the following representation that is of interest in itself:

(2.9)
$$(A+B)\ln(A+B) - A\ln A - B\ln B$$
$$= \int_0^\infty (A+B+\lambda)^{-1} K(A,B;\lambda) (A+B+\lambda)^{-1} d\lambda$$

Further, if we multiply both sides by $P^{1/2} \ge 0$, we get

$$P^{1/2} (A + B) \ln (A + B) P^{1/2} - P^{1/2} A \ln A P^{1/2} - P^{1/2} B \ln B P^{1/2}$$
$$= \int_0^\infty P^{1/2} (A + B + \lambda)^{-1} K (A, B; \lambda) (A + B + \lambda)^{-1} P^{1/2} d\lambda.$$

If we take the trace and use its properties, we get the desired result (2.1).

Corollary 1. With the assumptions of Theorem 4 we have the representation

(2.10)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} = \exp \int_0^\infty \operatorname{tr} \left[P\left(A+B+\lambda\right)^{-1} K\left(A,B;\lambda\right) \left(A+B+\lambda\right)^{-1} \right] d\lambda$$

Proof. If we take the exponential in (2.1), then we get

$$\exp\left(\operatorname{tr}\left[P\left(A+B\right)\ln\left(A+B\right)\right]-\operatorname{tr}\left(PA\ln A\right)-\operatorname{tr}\left(PB\ln B\right)\right)\right)$$
$$=\exp\left(\int_{0}^{\infty}\operatorname{tr}\left[P\left(A+B+\lambda\right)^{-1}K\left(A,B;\lambda\right)\left(A+B+\lambda\right)^{-1}\right]d\lambda\right).$$

Observe that

$$\exp\left(\operatorname{tr}\left[P\left(A+B\right)\ln\left(A+B\right)\right] - \operatorname{tr}\left(PA\ln A\right) - \operatorname{tr}\left(PB\ln B\right)\right)$$
$$= \frac{\exp\left[-\operatorname{tr}\left(PA\ln A\right)\right]\exp\left[-\operatorname{tr}\left(PB\ln B\right)\right]}{\exp\left[-\operatorname{tr}\left[P\left(A+B\right)\ln\left(A+B\right)\right]\right]} = \frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)},$$

and the identity (2.10) is thus proved.

The symmetrized product of two operators $A, B \in B(H)$ is defined by S(A, B) = AB + BA. In general, the symmetrized product of two operators A, B is not positive (see for instance [9]). Also Gustafson [6] showed that if $0 \le m \le A \le M$ and $0 \le n \le B \le N$, then we have the lower bound

(2.11)
$$S(A,B) \ge 2mn - \frac{1}{4}(M-m)(N-n) =: k,$$

which can take positive or negative values depending on the parameters m, M, n, N.

Corollary 2. Let A, B > 0 and assume that $S(A, B) \ge k$ for some real constant k, then

(2.12)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \ge \exp\left(k\operatorname{tr}\left[P\left(A+B\right)^{-1}\right]\right).$$

If $k \geq 0$, then

(2.13)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \ge \exp\left(k\operatorname{tr}\left[P\left(A+B\right)^{-1}\right]\right) \ge 1.$$

Proof. Since for all A, B > 0,

$$(B+\lambda)^{-1}B > 0, \ (A+\lambda)^{-1}A > 0$$

for $\lambda \geq 0$, then

$$A (B + \lambda)^{-1} BA, \ B (A + \lambda)^{-1} AB \ge 0$$

that gives

$$A (B + \lambda)^{-1} BA + B (A + \lambda)^{-1} AB \ge 0,$$

which implies that

$$(A + B + \lambda)^{-1} \left[A \left(B + \lambda \right)^{-1} BA + B \left(A + \lambda \right)^{-1} AB \right] (A + B + \lambda)^{-1} \ge 0$$

for $\lambda \geq 0$.

By the representation (2.1) we then get

$$(A+B)\ln(A+B) - A\ln A - B\ln B$$

$$\geq \int_0^\infty (A+B+\lambda)^{-1} S(A,B) (A+B+\lambda)^{-1} d\lambda$$

$$\geq k \int_0^\infty (A+B+\lambda)^{-2} d\lambda = k (A+B)^{-1}$$

since \mathbf{s}

$$t^{-1} = \int_0^\infty \left(\lambda + t\right)^{-2} d\lambda \text{ for } t > 0.$$

If we multiply both sides by $P^{1/2} \ge 0$, we get

$$\operatorname{tr}\left[P\left(A+B\right)\ln\left(A+B\right)\right] - \operatorname{tr}\left(PA\ln A\right) - \operatorname{tr}\left(PB\ln B\right) \ge k\operatorname{tr}\left[P\left(A+B\right)^{-1}\right].$$

By taking the exponential and using the equality (2.10) we obtain (2.12).

Remark 1. If $0 \le m \le A \le M$ and $0 \le n \le B \le N$, then m (A)m (B)

(2.14)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \ge \exp\left(\left[2mn - \frac{1}{4}\left(M - m\right)\left(N - n\right)\right] \operatorname{tr}\left[P\left(A + B\right)^{-1}\right]\right).$$

If $2mn \geq \frac{1}{4}(M-m)(N-n)$, then

$$\eta_P(A)\eta_P(B) \ge \eta_P(A+B).$$

Corollary 3. Assume that A, B > 0 with $A + B \leq L$ for some positive constant L, then

(2.15)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \le L \operatorname{tr} \left[P \left(A + B \right)^{-1} \right].$$

Moreover, if $0 < \ell \leq A + B$ for some constant $\ell > 0$, then

(2.16)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \le \frac{L}{\ell}.$$

Proof. Assume that $A, B \ge 0$. Observe that for $\lambda > 0$

$$(A + \lambda)^{-1} A = (A + \lambda)^{-1} (A + \lambda - \lambda) = 1 - \lambda (A + \lambda)^{-1},$$

which shows that

$$0 \le \left(A + \lambda\right)^{-1} A \le 1.$$

If we multiply this inequality both sides by B, then we get

$$0 \le B \left(A + \lambda\right)^{-1} AB \le B^2.$$

Similarly,

$$0 \le A \left(B + \lambda \right)^{-1} BA \le A^2.$$

Therefore

$$0 \le B (A + \lambda)^{-1} AB + A (B + \lambda)^{-1} BA \le A^2 + B^2$$

and

$$L(A, B; \lambda) = AB + BA + B(A + \lambda)^{-1}AB + A(B + \lambda)^{-1}BA$$

\$\le AB + BA + A^2 + B^2 = (A + B)^2 \le L\$,

which implies that

$$(A + B + \lambda)^{-1} L (A, B; \lambda) (A + B + \lambda)^{-1}$$

$$\leq L (A + B + \lambda)^{-1} (A + B + \lambda)^{-1}$$

for $\lambda > 0$.

By taking the integral and using the identity (2.1) we derive

$$(A+B)\ln(A+B) - A\ln A - B\ln B$$

$$\leq L \int_0^\infty (A+B+\lambda)^{-1} (A+B+\lambda)^{-1} dt = L (A+B)^{-1},$$

which proves the desired inequality (2.15).

Remark 2. We observe that, if $0 < m \le A \le M$ and $0 < n \le B \le N$, then $0 < m + n \le A + B \le M + N$ and by (2.16) we obtain the simple upper bound

(2.17)
$$\frac{\eta_P(A)\eta_P(B)}{\eta_P(A+B)} \le \exp\left(\frac{M+N}{m+n}\right).$$

3. Related Results

The following integral inequalities also hold:

Theorem 5. Assume that $P \ge 0$ with $P \in \mathcal{B}_1(H)$ and $\operatorname{tr}(P) = 1$. Let $A, B \ge 0$ with $AB + BA \ge 0$, then

(3.1)
$$\eta_P(A+B) \le \int_0^1 \eta_P((1-t)A+tB)\eta_P((1-t)B+tA)dt$$
$$\le \int_0^1 \eta_P^2((1-t)A+tB)dt$$

and, if $A + B \leq L$, then also

(3.2)
$$\int_{0}^{1} \eta_{P}((1-t)A + tB)\eta_{P}((1-t)B + tA)dt \\ \leq \eta_{P}(A+B)\exp\left[L\operatorname{tr}\left(P\left(A+B\right)^{-1}\right)\right].$$

Proof. We have

$$((1-t) A + tB) ((1-t) B + tA)$$

= $(1-t)^2 AB + t (1-t) B^2 + t (1-t) A^2 + t^2 BA$

and

$$((1-t) B + tA) ((1-t) A + tB)$$

= $(1-t)^2 BA + t (1-t) A^2 + (1-t) tB^2 + t^2 AB.$

Therefore, since $AB + BA \ge 0$, then

$$\begin{aligned} &((1-t)A + tB) ((1-t)B + tA) \\ &+ ((1-t)B + tA) ((1-t)A + tB) \\ &= (1-t)^2 AB + t (1-t) B^2 + t (1-t) A^2 + t^2 BA \\ &+ (1-t)^2 BA + t (1-t) A^2 + (1-t) tB^2 + t^2 AB \\ &= 2t (1-t) A^2 + 2t (1-t) B^2 + \left[(1-t)^2 + t^2 \right] (AB + BA) \\ &\geq 0 \end{aligned}$$

for all $t \in [0, 1]$.

By utilizing (2.13) for (1-t)A + tB and (1-t)B + tA, $t \in [0,1]$, we get $\eta_P((1-t)A + tB)\eta_P((1-t)B + tA) \ge \eta_P(A+B).$

If we integrate over $t \in [0, 1]$, then we get

$$\begin{split} \eta_P(A+B) &\leq \int_0^1 \eta_P((1-t)A + tB)\eta_P((1-t)B + tA)dt \\ &\leq \left(\int_0^1 \eta_P^2((1-t)A + tB)dt\right)^{1/2} \left(\int_0^1 \eta_P^2((1-t)B + tA)dt\right)^{1/2} \\ &= \int_0^1 \eta_P^2((1-t)A + tB)dt, \end{split}$$

which proves (3.1).

From (2.15) we get

$$\eta_P((1-t)A + tB)\eta_P((1-t)B + tA) \le \eta_P(A+B)\exp\left[L\operatorname{tr}\left(P\left(A+B\right)^{-1}\right)\right]$$

r all $t \in [0,1]$, which by integration gives (3.2).

for all $t \in [0, 1]$, which by integration gives (3.2).

References

- [1] S. S. Dragomir, Trace inequalities for operators in Hilbert spaces: a survey of recent results, Aust. J. Math. Anal. Appl. Vol. 19 (2022), No. 1, Art. 1, 202 pp. [Online https://ajmaa.org/searchroot/files/pdf/v19n1/v19i1p1.pdf].
- [2] S. S. Dragomir, Some properties of trace class P-determinant of positive operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 15, 14 pp. [Online https://rgmia.org/papers/v25/v25a16.pdf].
- [3] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530.
- [4] J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.
- [5] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310.
- [6] K. Gustafson, Interaction antieigenvalues. J. Math. Anal. Appl. 299 (1) (2004), 174-185.

S. S. DRAGOMIR

- S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645
- [8] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.* 19 (2015), No. 2, pp. 467-479.
- [9] M. S. Moslehian, H. Najafi, An extension of the Löwner-Heinz inequality, *Linear Algebra Appl.*, 437 (2012), 2359–2365.
- [10] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

 $^2\mathrm{DST}\text{-}\mathrm{NRF}$ Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

12