A SUB-MULIPLICATIVE PROPERTY FOR THE ENTROPIC
TRACE CLASS P-DETERMINANT OF POSITIVE OPERATORS
IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let H be a complex Hilbert space. For a given operator P > 0
with P € By (H) , the trace class associated to B (H) and tr (P) = 1, we define
the entropic trace P-determinant of the positive invertible operator A by

np (A) :=exp [—tr (PAln A)].
In this paper we show among others that, if A, B > 0 are such that AB+BA >
0, then

np(A)np(B) 2 np(A+ B).
Ifo<m< A< M and 0<n < B < N, then we have the reverse inequality
A

D) o, (MENY,

np(A+ B) m+n
Moreover, if 2mn > i (M —m) (N —n), then

np(Anp(B) o an — 3 (M —m) (N — n)]

> 1.

np(A+B) ~ M+ N

1. INTRODUCTION

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a finite von Neumann algebra (M, 7) with a faithful normal trace.

Let T € M be normal and |T| := (T*T)/? its modulus. By the spectral theorem
one can represent 71" as an integral

T = / ME (),
Sp(T)

where E (A) is a projection valued measure and Sp (T) is the spectrum of 7. The
measure pp := 7 o E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T') .

For any T' € M the Fuglede-Kadison determinant (FK-determinant) is defined

by
Apg (T) :=exp (/ lntd,uT) .
0

Arg (T) :=exp (1t (In (|T1))) ,

If T is invertible, then
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where In (|T']) is defined by the use of functional calculus.

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z| = 1, defined by

AL (A) :=exp (ln Az, z)

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [7].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H, (-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of H.
We say that A € B(H) is a Hilbert-Schmidt operator if

(1.1) > [l Aei|* < 0.

el
It is well know that, if {e;},.; and {f;},; are orthonormal bases for H and A €
B (H) then

(1.2) Do lAeil® =D AL =D 1A f1?

il jel jel
showing that the definition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let By (H) the set of Hilbert-Schmidt operators in B(H). For A € By (H) we
define

1/2
2
(13) lAll, = (ZAeil )
i€l
for {e;};c; an orthonormal basis of H.

Using the triangle inequality in [2 (I), one checks that By (H) is a vector space
and that [|-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)"/?.

Because |||A| z|| = ||Az]| for all z € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidt and ||A||, = |||A||l5. From (1.2) we have that if A € By (H), then A* €
By (H) and [A]l, = | 4"l

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1. We have:
(i) (B2 (H),|||l5) is a Hilbert space with inner product

(1.4) (A,B)y =Y (Ae;,Be;) = > (B*Aeie;)
el el

and the definition does not depend on the choice of the orthonormal basis {e;};c;;
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(ii) We have the inequalities
(1.5) [AIF < [|All
for any A € By (H) and, if A € Bo(H) and T € B(H), then AT, TA € By (H)
with
(1.6) [AT ||y, ([T Ally < 1T 1Al

(iti) Bo (H) is an operator ideal in B (H), i.e.

B(H)By (H)B(H) C By (H).

If {e;};c; an orthonormal basis of H, we say that A € B(H) is trace class if

(1.7) Al == (Al e, e:) < o0.
iel

The definition of ||A||; does not depend on the choice of the orthonormal basis

{ei};cr - We denote by By (H) the set of trace class operators in B (H) .
The following proposition holds:

Proposition 1. If A € B(H), then the following are equivalent:
(i) A€ Bi(H);
(ii) |A|"* € By (H).

The following properties are also well known:

Theorem 2. With the above notations:

(i) We have
(1.8) [A[ly = 1A%, and [|A]l; < [[Ally
for any A € By (H);

(i) By (H) is an operator ideal in B(H), i.e.

B(H)B: (H)B(H) C B (H);
(11i) We have
By (H)By (H) =B, (H);
(iv) We have
[Ally = sup {(A, B), | B€Ba(H), |Bly <1};
(v) (Bi(H),||l;) is a Banach space.
We define the trace of a trace class operator A € By (H) to be

(1.9) tr(A) = > (Aei,e;),
icl
where {e;};c; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A€ By (H) then A* € By (H) and

(1.10) tr (A*) = tr (A);
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(ii) If A € By (H) and T € B(H), then AT, TA € By (H),
(1.11) tr (AT) = tr (TA) and |tr (AT)| < || A, || ;

(#3) tr (+) is a bounded linear functional on By (H) with |tr|| = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA).

Now, if we assume that P > 0 and P € By (H), then for all T € B(H), PT,
TP € B, (H) and tr (PT) = tr (TP). Also, since PY/? € By (H), TPY? € By (H),
hence PY/?TPY? and TPY?PY? = TP € By (H) with tr (PY/2TPY?) = tr (TP).
Therefore, if P > 0 and P € B; (H),

tr (PT) = tr (TP) = tr (PWTPW)

forall T € B(H).

If T > 0, then PY/2T P2 > 0, which implies that tr (PT) > 0 that shows that
the functional B(H) > T ~— tr(PT) is linear and isotonic functional. Also, by
(1.11), if T,, — T for n — oo in B(H) then lim,,_, tr (PT;,) = tr (PT), namely
B(H)> T+ tr(PT) is also continuous in the norm topology.

For a survey on recent trace inequalities see [1] and the references therein.

Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the P-
determinant of the positive invertible operator A by

(1.12) Ap(A):=exptr(PInA) =exptr((InA) P) = exptr (P1/2 (In A) P1/2) .

Assume that P > 0 with P € By (H) and tr (P) = 1. We observe that we have
the following elementary properties [2]:

(i) continuity: the map A — Ap(A) is norm continuous;

(ii) power equality: Ap(A') = Ap(A)* for all t > 0;

(iii) homogeneity: Ap(tA) = tAp(A) and Ap(tI) =t for all t > 0;

(iv) monotonicity: 0 < A < B implies Ap(A) < Ap(B).
[2

In [2], we presented some fundamental properties of this determinant. Among
others we showed that

1< tr(PA) <exp [tr (PA)tr (PA™") —1]

Ap (A)
and
< LA)A < exp [tr (PA_l) tr (PA) — l] ,
[tr (PA~1)]
for A>0and P> 0 with P € By (H) and tr (P) = 1.
For the entropy function 7 (t) = —tln¢, ¢ > 0, the operator entropy has the

following expression:
n(A)=—-AlnA

for positive A.
Now, for a given P > 0 with P € By (H) and tr (P) = 1, we define the entropic
P-determinant of the positive invertible operator A by

np (A) :=exp[—tr (PAln A)] = exp {tr [Py (A)]} = exp {tr [Pl/gn (A) Pl/z} } .
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Observe that the map A — np(A) is norm continuous and since
exp (—tr {P[tAln (tA)]})
=exp(—tr{PtA(Int+1InA)]}) =exp(—tr {P (tAlnt +tAln A)})
=exp(—tlnttr (PA))exp(—ttr (PAln A))
=expln (t_ tr(PA)t) [exp (—tr (PAln A))]_t ,
hence
(1.13) np(tA) =t~ D [ (4)] 7

fort >0 and A > 0.
Observe also that

(1.14) np(I)=1and np(tl) =t""

for t > 0.
Motivated by the above results, in this paper we show among others that, if A,
B > 0 are such that AB + BA > 0, then

np(A)np(B) > np(A+ B).
fo<m<A<Mand0<n<B<N, then we have the reverse inequality

np(A)np(B) M4 N
1A+ D) Sexp(mw)'

Moreover, if 2mn > 1 (M —m) (N — n), then

np(Anp(B) _ [an— i (M —m) (N—n)] -
np(A+B) = M+ N =

2. MAIN RESULTS
We start with the following integral representation result:

Theorem 4. Assume that P > 0 with P € By (H) and tr (P) = 1. For any A,
B > 0 we have

(2.1) tr[P(A+ B)In(A+ B)] —tr (PAln A) — tr (PBIn B)
_ /Ootr [P(A+B+A)*1K(A7B;A) (A+B+A)*1} d,
0

where
(2.2) K(A,B;\) :=AB+BA+B(A+)\) "AB+ A(B+)\) "' BA.
Proof. Observe that for ¢t > 0, t # 1, we have

/“ d\ Int n 1 | u—+t
= n

o A+t)(A+1) t—-1 1-—t¢ u+1

for all u > 0.

By taking the limit over u — oo in this equality, we derive

Int _/°° d\
t—1  Jo A+t)(A+1)
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which gives the representation for the logarithm

e dA
2.3 Int=(t—1 —_
(2:3) nt = )/0 O+ (A +1)
for all ¢ > 0.
If we use the continuous functional calculus for selfadjoint operators, we have
o0 1 1
2.4 InT = —— (T -1 (AN+T) " dX
(2.4 oT= [ @D+

for all operators T' > 0.
Observe that

oo 1 1 (o) 1 1
— T -1 N+T) dr= TH+HA=A=-1)(A+T) “dX
| s r-nesnTas [ o )0+ T)

- /Ooo [(A+ - (A+T)’1] X
and then
InT = /OO (B+ D =+ 1) ax
giving the representation ’
(2.5) TlnT:/OOO [Q+ D =T O+T) ] A

for all operators T" > 0.
For A, B > 0 we have

(2.6) (A+B)In(A+B)— AlnA—-BlnB

-

[ YA+ B)— (A+B)Y A+ (A+B) ' ax
/OO[AH A— AN+ A)" }dx
0

[ +1)

4

i

/ AN+ A" +BA+B) ' —(A+B) A+ A+B) | dx
0

V) 'B-BO\+B)” 1}dA

Now, observe that
AA+A)""+BA+B) '—(A+B)(A+A+B)"!
—(A+ A= NA+A T +B+A-NN+B)"
—(A+B4+A-NA+A+B)"
=1-AA+A) " +1-AQA+B) " -1+ AXO0+A+B)"
:1+>\[(A+A+B)’1—(A+A)’1—()\+B)’1}
:A{(A+A+B)’1+/\‘17(/\+A)*17(>\+B)*1}

Consider

(2.7) Lyi=(A+B+N) 423" —A+ N "' =B+N"
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Then by (2.6) we obtain the representation
(2.8) (A+B)1n(A+B)—AlnA—BlnB:/Ooo)\L,\d)\
for all A, B > 0.
If we multiply both sides of (2.7 ) by A+ B + A, then we get
Wx:=(A+B+\)L\(A+B+\)
—(A+B+ N+ (A+B+))°
—(A+B+N(A+ N (A+B+))
—(A+B+ XN (B+)\) " (A+B+))
—(A+B4+N+A(A+ B+
—(A+B4+XN—-B(A+XN " (A+B+)\)
—AB+N"(A+B+A)—(A+B+))
=AY A+B+)N-B(A+)) 'B-B
—AB+NTTA—A—(A+B+ )\

)
)

= A1 (A% + AB+ M+ BA+ B> + AB + A + AB + A?)
—B(A+)\) 'B-2B—A(B+A)'A—24- )
=\ (A*+ AB+ BA+ B?) + 2B+ 24+ A
—B(A+)) 'B—AB+)N 'A-24—-2B—\
=\ (A2 4 AB+BA+B?) - B(A+)N) 'B-AB+N) A
-\t {A2+AB+BA+B2fAB(AvL)\)_lB*)\A(B*/\)_lA}
A [A L AB+ BA+BE - B(\ A+ 1) B A B4+1) T 4]
Observe that
B2-B(A\'A+1)'B
:B(A—1A+1)’1 (/\‘1A+1)BfB(/\‘1A+1)7lB
:)5?(/\*1144-1)_1 (A 'A+1-1)B
=A'B(AA+1) T AB=B(A+)) ' AB

and
A AN'B+1) A
—ANB+1D) T (AVIBH)A-A(NB41) A
—AMT'B+1) T (AV'B+1-1)4
—A"A(AT'B+1)  BA=A(B+)\) ' BA.
Therefore

Wy = A" [AB—l—BA—&—B(A—i—)\)’lAB+A(B+)\)’1BA},
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which gives that

Ly:=(A+B+)) "Wy(A+B+X)"".
From (2.8) we then get the following representation that is of interest in itself:
(2.9) (A+B)ln(A+B)—AlnA—BlnB

:/ (A+B+X)""K(A B\ (A+B+ )\ ""dA\
0

Further, if we multiply both sides by PY/2 > 0, we get
PY2(A+ B)In(A+ B)PY?2 — P'/24In AP'/? — PY/2BIn BP'/?

= / PY2(A+ B+ M) ""K (A B\ (A+B+)\) ' P2
0

If we take the trace and use its properties, we get the desired result (2.1). O

Corollary 1. With the assumptions of Theorem 4 we have the representation

np(A)np(B)

(2.10) (A + B)

- exp/ [P (A+ B+ XK (4B (A+ B+ X dx
0

Proof. If we take the exponential in (2.1), then we get
exp (tr[P(A+ B)In(A+ B)] —tr (PAIn A) — tr (PBIn B))

= exp (/Oootr {P(A—G—B—&—)\)_lK(A,B;/\)(A—&-B—I—)\)_l} dA).

Observe that
exp (tr[P(A+ B)In(A+ B)] —tr (PAln A) — tr (PBIn B))
_exp[—tr(PAlnA)]exp[—tr (PBInB)] np(A)np(B)
exp[—tr[P(A+ B)In(A+ B)|] np(A+B)’
and the identity (2.10) is thus proved. O

The symmetrized product of two operators A, B € B(H) is defined by S(A, B) =
AB 4+ BA. In general, the symmetrized product of two operators A, B is not
positive (see for instance [9]). Also Gustafson [6] showed that if 0 <m < A< M
and 0 <n < B < N, then we have the lower bound

(2.11) S(4,B) > 2mn—i(M—m) (N —n) =k,

which can take positive or negative values depending on the parameters m, M, n,
N.

Corollary 2. Let A, B > 0 and assume that S(A, B) > k for some real constant
k, then

np(A)np(B) 1
(2.12) % > exp (ktr [P (A+ B) ]) .
If k > 0, then
np(A)np(B) 1
(2.13) % > exp <k:tr [P (A+ B) ]) > 1.
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Proof. Since for all A, B > 0,
(B+XN) 'B>0, (A+)\) "4>0
for A > 0, then
AB+))""BA, B(A+\) 4B >0
that gives
AB+)N)""BA+B(A+)) "AB>0,
which implies that
(A+B+\)" [A(B+A)*1BA+B(A+A)*1AB] (A+B+AN)"'>0

forA > 0.
By the representation (2.1) we then get

(A+B)In(A+B)—AlnA—-BlnB

2/ (A+B+X)""S(A,B)(A+B+\)""d\
0
Zk/ (A+B+N) 2dA=k(A+B)"

0

since

1 :/ (A+t)"2d\ for t > 0.
0

If we multiply both sides by PY/2 > 0, we get
tr[P(A+B)ln(A+ B)] —tr (PAIn A) — tr (PBIn B) > ktr P(A—i—B)*l} .
By taking the exponential and using the equality (2.10) we obtain (2.12). O

Remark 1. If0<m <A< M and0<n < B<N, then

np(A)np(B)
np(A+ B)

zexp([mn—i(M—m) (N—n)} tr [p(A+B)—1D.

(2.14)

If2mn > 1 (M —m) (N —n), then
np(A)np(B) 2 np(A+ B).

Corollary 3. Assume that A, B > 0 with A+ B < L for some positive constant
L, then

np(A)np(B)
np(A+ B)
Moreover, if 0 < £ < A+ B for some constant £ > 0, then

np(Anp(B) _ L
(2.16) m <7

(2.15) < Ltr [P (A+B)].
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Proof. Assume that A, B > 0. Observe that for A > 0
(A+N) A=A+ N A+A= N =1-2(A+ 1",
which shows that
0<(A+N 'A<
If we multiply this inequality both sides by B, then we get

0<B(A+)\) 'AB< B2

Similarly,
0<A(B+)) "BA< A%
Therefore
0<B(A+)A) "AB+A(B+)\) 'BA< A? + B?
and

L(A,B;\)=AB+BA+B(A+)\) "AB+ A(B+)\) 'BA
<AB+BA+ A+ B*=(A+ B’ <L,
which implies that
(A+ B+ X "L(ABNA+B+)N"
<SLA+B+AN)'"A+B+)N"!

for A > 0.
By taking the integral and using the identity (2.1) we derive

(A+B)ln(A+B)— AlnA—BlnB
SL/ (A+B+N " (A+B+N "dt=L(A+B)"",
0

which proves the desired inequality (2.15). O

Remark 2. We observe that, if 0 < m < A< M and 0 < n < B < N, then
0<m+n<A+B<M+N and by (2.16) we obtain the simple upper bound

np(A)np(B) M+ N
(2.17) %gex (m+n).

3. RELATED RESULTS

The following integral inequalities also hold:

Theorem 5. Assume that P > 0 with P € By (H) and tr (P) = 1. Let A, B> 0
with AB+ BA > 0, then

B A e B < [ gl -0 A+ B (-0 B+ A
0
< /1 np((1—1t) A+ tB)dt
0
and, if A+ B < L, then also
(3.2) /1 np((1—1) A+ tB)np((1 —t) B+ tA)dt
0

<np(A+ B)exp [Ltr (P(A+B)71>] .
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Proof. We have
(1 —t)A+tB)((1—1t) B +tA)
—(1-t)?AB+t(1—t)B>+t(1—t) A’ +1?BA
and
(1—t)B+tA)((1—t)A+tB)
—(1—t)’BA+t(1—t)A2+ (1 —t)tB*>+?AB.
Therefore, since AB + BA > 0, then
(1 —t)A+tB)((1—1t) B +tA)
+((1—t)B+tA)((1—t)A+tB)
—(1-t)?AB+t(1—t)B>+t(1—t)A> +1?BA
+(1—t)’BA+t(1—t) A% + (1 —t)tB> + ?AB
2 (1 —t) A% +2t (1 —t) B® + {(lft)2+t2} (AB + BA)
0

v

for all t € [0,1].
By utilizing (2.13) for (1 —¢) A+ tB and (1 —t) B+ tA, t € [0,1], we get

np((1=1) A+ tB)np((1—1t) B+tA) > np(A+ B).
If we integrate over ¢ € [0, 1], then we get

np(A+ B) < /1 np((1—t)A+tB)np((1 —t) B+tA)dt
0

< (/01 (1= 1) A+ tB)dt) . (/01 (1= 1) B + tA)dt)

:/1 np((1—1t) A+tB)dt,
0

which proves (3.1).
From (2.15) we get

np((1—t) A+ tB)np((1 —t) B +tA) < np(A + B)exp [L tr (p (A+ B)—l)}

1/2

for all ¢ € [0,1], which by integration gives (3.2). O
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