
A SUB-MULIPLICATIVE PROPERTY FOR THE ENTROPIC
TRACE CLASS P -DETERMINANT OF POSITIVE OPERATORS

IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a complex Hilbert space. For a given operator P � 0

with P 2 B1 (H) ; the trace class associated to B (H) and tr (P ) = 1; we de�ne
the entropic trace P -determinant of the positive invertible operator A by

�P (A) := exp [� tr (PA lnA)] :
In this paper we show among others that, if A; B > 0 are such that AB+BA �
0; then

�P (A)�P (B) � �P (A+B):
If 0 < m � A �M and 0 < n � B � N , then we have the reverse inequality

�P (A)�P (B)

�P (A+B)
� exp

�
M +N

m+ n

�
:

Moreover, if 2mn � 1
4
(M �m) (N � n) ; then

�P (A)�P (B)

�P (A+B)
� exp

"
2mn� 1

4
(M �m) (N � n)
M +N

#
� 1:

1. Introduction

In 1952, in the paper [3], B. Fuglede and R. V. Kadison introduced the deter-
minant of a (invertible) operator and established its fundamental properties. The
notion generalizes the usual determinant and can be considered for any operator in
a �nite von Neumann algebra (M; �) with a faithful normal trace.
Let T 2M be normal and jT j := (T �T )1=2 its modulus. By the spectral theorem

one can represent T as an integral

T =

Z
Sp(T )

�dE (�) ;

where E (�) is a projection valued measure and Sp (T ) is the spectrum of T: The
measure �T := � �E becomes a probability measure on the complex plane and has
the support in the spectrum Sp (T ) :
For any T 2 M the Fuglede-Kadison determinant (FK-determinant) is de�ned

by

�FK (T ) := exp

�Z 1

0

ln td�jT j

�
:

If T is invertible, then

�FK (T ) := exp (� (ln (jT j))) ;
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where ln (jT j) is de�ned by the use of functional calculus.
Let B(H) be the space of all bounded linear operators on a Hilbert space H,

and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [4], [5], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by

�x(A) := exp hlnAx; xi

and discussed it as a continuous geometric mean and observed some inequalities
around the determinant from this point of view. For some recent results, see [7].
We need now some preparations for trace of operators in Hilbert spaces.
Let (H; h�; �i) be a complex Hilbert space and feigi2I an orthonormal basis of H:

We say that A 2 B (H) is a Hilbert-Schmidt operator if

(1.1)
X
i2I

kAeik2 <1:

It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.2)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.1) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.3) kAk2 :=
 X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H:
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)1=2 :
Because kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-

Schmidt and kAk2 = kjAjk2 : From (1.2) we have that if A 2 B2 (H) ; then A� 2
B2 (H) and kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 1. We have:
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.4) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii

and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
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(ii) We have the inequalities

(1.5) kAk � kAk2
for any A 2 B2 (H) and, if A 2 B2 (H) and T 2 B (H) ; then AT; TA 2 B2 (H)
with

(1.6) kATk2 ; kTAk2 � kTk kAk2
(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) :

If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.7) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) :

The following properties are also well known:

Theorem 2. With the above notations:
(i) We have

(1.8) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;
(iii) We have

B2 (H)B2 (H) = B1 (H) ;
(iv) We have

kAk1 = sup fhA;Bi2 j B 2 B2 (H) ; kBk2 � 1g ;
(v) (B1 (H) ; k�k1) is a Banach space.

We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.9) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.9)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 3. We have:
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.10) tr (A�) = tr (A);
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(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H),

(1.11) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;

(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) :

Now, if we assume that P � 0 and P 2 B1 (H) ; then for all T 2 B (H) ; PT;
TP 2 B1 (H) and tr (PT ) = tr (TP ) : Also, since P 1=2 2 B2 (H) ; TP 1=2 2 B2 (H),
hence P 1=2TP 1=2 and TP 1=2P 1=2 = TP 2 B1 (H) with tr

�
P 1=2TP 1=2

�
= tr (TP ) :

Therefore, if P � 0 and P 2 B1 (H) ;

tr (PT ) = tr (TP ) = tr
�
P 1=2TP 1=2

�
for all T 2 B (H) :
If T � 0; then P 1=2TP 1=2 � 0; which implies that tr (PT ) � 0 that shows that

the functional B (H) 3 T 7�! tr (PT ) is linear and isotonic functional. Also, by
(1.11), if Tn ! T for n ! 1 in B (H) then limn!1 tr (PTn) = tr (PT ) ; namely
B (H) 3 T 7�! tr (PT ) is also continuous in the norm topology.
For a survey on recent trace inequalities see [1] and the references therein.
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the P -

determinant of the positive invertible operator A by

(1.12) �P (A) := exp tr (P lnA) = exp tr ((lnA)P ) = exp tr
�
P 1=2 (lnA)P 1=2

�
:

Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: We observe that we have
the following elementary properties [2]:

(i) continuity : the map A! �P (A) is norm continuous;
(ii) power equality: �P (At) = �P (A)t for all t > 0;
(iii) homogeneity : �P (tA) = t�P (A) and �P (tI) = t for all t > 0;
(iv) monotonicity : 0 < A � B implies �P (A) � �P (B).
In [2], we presented some fundamental properties of this determinant. Among

others we showed that

1 � tr (PA)

�P (A)
� exp

�
tr (PA) tr

�
PA�1

�
� 1
�

and

1 � �P (A)

[tr (PA�1)]
�1 � exp

�
tr
�
PA�1

�
tr (PA)� 1

�
;

for A > 0 and P � 0 with P 2 B1 (H) and tr (P ) = 1:
For the entropy function � (t) = �t ln t; t > 0; the operator entropy has the

following expression:

� (A) = �A lnA

for positive A:
Now, for a given P � 0 with P 2 B1 (H) and tr (P ) = 1; we de�ne the entropic

P -determinant of the positive invertible operator A by

�P (A) := exp [� tr (PA lnA)] = exp ftr [P� (A)]g = exp
n
tr
h
P 1=2� (A)P 1=2

io
:
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Observe that the map A! �P (A) is norm continuous and since

exp (� tr fP [tA ln (tA)]g)
= exp (� tr fP [tA (ln t+ lnA)]g) = exp (� tr fP (tA ln t+ tA lnA)g)
= exp (�t ln t tr (PA)) exp (�t tr (PA lnA))

= exp ln
�
t� tr(PA)t

�
[exp (� tr (PA lnA))]�t ;

hence

(1.13) �P (tA) = t
�t tr(PA) [�P (A)]

�t

for t > 0 and A > 0:
Observe also that

(1.14) �P (I) = 1 and �P (tI) = t
�t

for t > 0:
Motivated by the above results, in this paper we show among others that, if A;

B > 0 are such that AB +BA � 0; then

�P (A)�P (B) � �P (A+B):

If 0 < m � A �M and 0 < n � B � N , then we have the reverse inequality
�P (A)�P (B)

�P (A+B)
� exp

�
M +N

m+ n

�
:

Moreover, if 2mn � 1
4 (M �m) (N � n) ; then

�P (A)�P (B)

�P (A+B)
� exp

�
2mn� 1

4 (M �m) (N � n)
M +N

�
� 1:

2. Main Results

We start with the following integral representation result:

Theorem 4. Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: For any A;
B > 0 we have

tr [P (A+B) ln (A+B)]� tr (PA lnA)� tr (PB lnB)(2.1)

=

Z 1

0

tr
h
P (A+B + �)

�1
K (A;B;�) (A+B + �)

�1
i
d�;

where

(2.2) K (A;B;�) := AB +BA+B (A+ �)
�1
AB +A (B + �)

�1
BA:

Proof. Observe that for t > 0; t 6= 1; we haveZ u

0

d�

(�+ t) (�+ 1)
=

ln t

t� 1 +
1

1� t ln
�
u+ t

u+ 1

�
for all u > 0:
By taking the limit over u!1 in this equality, we derive

ln t

t� 1 =
Z 1

0

d�

(�+ t) (�+ 1)
;
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which gives the representation for the logarithm

(2.3) ln t = (t� 1)
Z 1

0

d�

(�+ 1) (�+ t)

for all t > 0:
If we use the continuous functional calculus for selfadjoint operators, we have

(2.4) lnT =

Z 1

0

1

�+ 1
(T � 1) (�+ T )�1 d�

for all operators T > 0:
Observe thatZ 1

0

1

�+ 1
(T � 1) (�+ T )�1 d� =

Z 1

0

1

�+ 1
(T + �� �� 1) (�+ T )�1 d�

=

Z 1

0

h
(�+ 1)

�1 � (�+ T )�1
i
d�

and then

lnT =

Z 1

0

h
(�+ 1)

�1 � (�+ T )�1
i
d�

giving the representation

(2.5) T lnT =

Z 1

0

h
(�+ 1)

�1
T � T (�+ T )�1

i
d�

for all operators T > 0:
For A; B > 0 we have

(A+B) ln (A+B)�A lnA�B lnB(2.6)

=

Z 1

0

h
(�+ 1)

�1
(A+B)� (A+B) (�+ (A+B))�1

i
d�

�
Z 1

0

h
(�+ 1)

�1
A�A (�+A)�1

i
d�

�
Z 1

0

h
(�+ 1)

�1
B �B (�+B)�1

i
d�

=

Z 1

0

h
A (�+A)

�1
+B (�+B)

�1 � (A+B) (�+A+B)�1
i
d�:

Now, observe that

A (�+A)
�1
+B (�+B)

�1 � (A+B) (�+A+B)�1

= (A+ �� �) (�+A)�1 + (B + �� �) (�+B)�1

� (A+B + �� �) (�+A+B)�1

= 1� � (�+A)�1 + 1� � (�+B)�1 � 1 + � (�+A+B)�1

= 1 + �
h
(�+A+B)

�1 � (�+A)�1 � (�+B)�1
i

= �
h
(�+A+B)

�1
+ ��1 � (�+A)�1 � (�+B)�1

i
Consider

(2.7) L� := (A+B + �)
�1
+ ��1 � (A+ �)�1 � (B + �)�1 :
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Then by (2.6) we obtain the representation

(2.8) (A+B) ln (A+B)�A lnA�B lnB =
Z 1

0

�L�d�

for all A; B > 0:
If we multiply both sides of (2.7 ) by A+B + �; then we get

W� := (A+B + �)L� (A+B + �)

= (A+B + �) + ��1 (A+B + �)
2

� (A+B + �) (A+ �)�1 (A+B + �)
� (A+B + �) (B + �)�1 (A+B + �)
= (A+B + �) + ��1 (A+B + �)

2

� (A+B + �)�B (A+ �)�1 (A+B + �)
�A (B + �)�1 (A+B + �)� (A+B + �)
= ��1 (A+B + �)

2 �B (A+ �)�1B �B
�A (B + �)�1A�A� (A+B + �)

= ��1
�
A2 +AB + �A+BA+B2 + �B + �A+ �B + �2

�
�B (A+ �)�1B � 2B �A (B + �)�1A� 2A� �
= ��1

�
A2 +AB +BA+B2

�
+ 2B + 2A+ �

�B (A+ �)�1B �A (B + �)�1A� 2A� 2B � �
= ��1

�
A2 +AB +BA+B2

�
�B (A+ �)�1B �A (B + �)�1A

= ��1
h
A2 +AB +BA+B2 � �B (A+ �)�1B � �A (B + �)�1A

i
= ��1

h
A2 +AB +BA+B2 �B

�
��1A+ 1

��1
B �A

�
��1B + 1

��1
A
i
:

Observe that

B2 �B
�
��1A+ 1

��1
B

= B
�
��1A+ 1

��1 �
��1A+ 1

�
B �B

�
��1A+ 1

��1
B

= B
�
��1A+ 1

��1 �
��1A+ 1� 1

�
B

= ��1B
�
��1A+ 1

��1
AB = B (A+ �)

�1
AB

and

A2 �A
�
��1B + 1

��1
A

= A
�
��1B + 1

��1 �
��1B + 1

�
A�A

�
��1B + 1

��1
A

= A
�
��1B + 1

��1 �
��1B + 1� 1

�
A

= ��1A
�
��1B + 1

��1
BA = A (B + �)

�1
BA:

Therefore

W� = �
�1
h
AB +BA+B (A+ �)

�1
AB +A (B + �)

�1
BA
i
;
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which gives that

L� := (A+B + �)
�1
W� (A+B + �)

�1
:

From (2.8) we then get the following representation that is of interest in itself:

(A+B) ln (A+B)�A lnA�B lnB(2.9)

=

Z 1

0

(A+B + �)
�1
K (A;B;�) (A+B + �)

�1
d�:

Further, if we multiply both sides by P 1=2 � 0; we get
P 1=2 (A+B) ln (A+B)P 1=2 � P 1=2A lnAP 1=2 � P 1=2B lnBP 1=2

=

Z 1

0

P 1=2 (A+B + �)
�1
K (A;B;�) (A+B + �)

�1
P 1=2d�:

If we take the trace and use its properties, we get the desired result (2.1). �
Corollary 1. With the assumptions of Theorem 4 we have the representation

�P (A)�P (B)

�P (A+B)
(2.10)

= exp

Z 1

0

tr
h
P (A+B + �)

�1
K (A;B;�) (A+B + �)

�1
i
d�:

Proof. If we take the exponential in (2.1), then we get

exp (tr [P (A+B) ln (A+B)]� tr (PA lnA)� tr (PB lnB))

= exp

�Z 1

0

tr
h
P (A+B + �)

�1
K (A;B;�) (A+B + �)

�1
i
d�

�
:

Observe that

exp (tr [P (A+B) ln (A+B)]� tr (PA lnA)� tr (PB lnB))

=
exp [� tr (PA lnA)] exp [� tr (PB lnB)]

exp [� tr [P (A+B) ln (A+B)]] =
�P (A)�P (B)

�P (A+B)
;

and the identity (2.10) is thus proved. �
The symmetrized product of two operators A; B 2 B(H) is de�ned by S(A;B) =

AB + BA. In general, the symmetrized product of two operators A; B is not
positive (see for instance [9]). Also Gustafson [6] showed that if 0 � m � A � M
and 0 � n � B � N , then we have the lower bound

(2.11) S(A;B) � 2mn� 1
4
(M �m) (N � n) =: k;

which can take positive or negative values depending on the parameters m; M; n;
N:

Corollary 2. Let A; B > 0 and assume that S(A;B) � k for some real constant
k; then

(2.12)
�P (A)�P (B)

�P (A+B)
� exp

�
k tr

h
P (A+B)

�1
i�
:

If k � 0; then

(2.13)
�P (A)�P (B)

�P (A+B)
� exp

�
k tr

h
P (A+B)

�1
i�
� 1:
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Proof. Since for all A; B > 0,

(B + �)
�1
B > 0; (A+ �)

�1
A > 0

for � � 0; then
A (B + �)

�1
BA; B (A+ �)

�1
AB � 0

that gives

A (B + �)
�1
BA+B (A+ �)

�1
AB � 0;

which implies that

(A+B + �)
�1
h
A (B + �)

�1
BA+B (A+ �)

�1
AB
i
(A+B + �)

�1 � 0

for� � 0:
By the representation (2.1) we then get

(A+B) ln (A+B)�A lnA�B lnB

�
Z 1

0

(A+B + �)
�1
S(A;B) (A+B + �)

�1
d�

� k
Z 1

0

(A+B + �)
�2
d� = k (A+B)

�1

since

t�1 =

Z 1

0

(�+ t)
�2
d� for t > 0:

If we multiply both sides by P 1=2 � 0; we get

tr [P (A+B) ln (A+B)]� tr (PA lnA)� tr (PB lnB) � k tr
h
P (A+B)

�1
i
:

By taking the exponential and using the equality (2.10) we obtain (2.12). �

Remark 1. If 0 � m � A �M and 0 � n � B � N , then

�P (A)�P (B)

�P (A+B)
(2.14)

� exp
��
2mn� 1

4
(M �m) (N � n)

�
tr
h
P (A+B)

�1
i�
:

If 2mn � 1
4 (M �m) (N � n) ; then

�P (A)�P (B) � �P (A+B):

Corollary 3. Assume that A; B > 0 with A + B � L for some positive constant
L; then

(2.15)
�P (A)�P (B)

�P (A+B)
� L tr

h
P (A+B)

�1
i
:

Moreover, if 0 < ` � A+B for some constant ` > 0; then

(2.16)
�P (A)�P (B)

�P (A+B)
� L

`
:
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Proof. Assume that A; B � 0: Observe that for � > 0
(A+ �)

�1
A = (A+ �)

�1
(A+ �� �) = 1� � (A+ �)�1 ;

which shows that
0 � (A+ �)�1A � 1:

If we multiply this inequality both sides by B; then we get

0 � B (A+ �)�1AB � B2:
Similarly,

0 � A (B + �)�1BA � A2:
Therefore

0 � B (A+ �)�1AB +A (B + �)�1BA � A2 +B2

and

L (A;B;�) = AB +BA+B (A+ �)
�1
AB +A (B + �)

�1
BA

� AB +BA+A2 +B2 = (A+B)2 � L;
which implies that

(A+B + �)
�1
L (A;B;�) (A+B + �)

�1

� L (A+B + �)�1 (A+B + �)�1

for � > 0:
By taking the integral and using the identity (2.1) we derive

(A+B) ln (A+B)�A lnA�B lnB

� L
Z 1

0

(A+B + �)
�1
(A+B + �)

�1
dt = L (A+B)

�1
;

which proves the desired inequality (2.15). �
Remark 2. We observe that, if 0 < m � A � M and 0 < n � B � N , then
0 < m+ n � A+B �M +N and by (2.16) we obtain the simple upper bound

(2.17)
�P (A)�P (B)

�P (A+B)
� exp

�
M +N

m+ n

�
:

3. Related Results

The following integral inequalities also hold:

Theorem 5. Assume that P � 0 with P 2 B1 (H) and tr (P ) = 1: Let A; B � 0
with AB +BA � 0; then

�P (A+B) �
Z 1

0

�P ((1� t)A+ tB)�P ((1� t)B + tA)dt(3.1)

�
Z 1

0

�2P ((1� t)A+ tB)dt

and, if A+B � L; then alsoZ 1

0

�P ((1� t)A+ tB)�P ((1� t)B + tA)dt(3.2)

� �P (A+B) exp
h
L tr

�
P (A+B)

�1
�i
:
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Proof. We have

((1� t)A+ tB) ((1� t)B + tA)
= (1� t)2AB + t (1� t)B2 + t (1� t)A2 + t2BA

and

((1� t)B + tA) ((1� t)A+ tB)
= (1� t)2BA+ t (1� t)A2 + (1� t) tB2 + t2AB:

Therefore, since AB +BA � 0; then
((1� t)A+ tB) ((1� t)B + tA)
+ ((1� t)B + tA) ((1� t)A+ tB)
= (1� t)2AB + t (1� t)B2 + t (1� t)A2 + t2BA
+ (1� t)2BA+ t (1� t)A2 + (1� t) tB2 + t2AB

= 2t (1� t)A2 + 2t (1� t)B2 +
h
(1� t)2 + t2

i
(AB +BA)

� 0
for all t 2 [0; 1] :
By utilizing (2.13) for (1� t)A+ tB and (1� t)B + tA; t 2 [0; 1] ; we get

�P ((1� t)A+ tB)�P ((1� t)B + tA) � �P (A+B):
If we integrate over t 2 [0; 1] ; then we get

�P (A+B) �
Z 1

0

�P ((1� t)A+ tB)�P ((1� t)B + tA)dt

�
�Z 1

0

�2P ((1� t)A+ tB)dt
�1=2�Z 1

0

�2P ((1� t)B + tA)dt
�1=2

=

Z 1

0

�2P ((1� t)A+ tB)dt;

which proves (3.1).
From (2.15) we get

�P ((1� t)A+ tB)�P ((1� t)B + tA) � �P (A+B) exp
h
L tr

�
P (A+B)

�1
�i

for all t 2 [0; 1] ; which by integration gives (3.2). �
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