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Abstract

In this article we study the degree of approximation of multivariate
pointwise and uniform convergences in the q-mean to the Fuzzy-Random
unit operator of multivariate Fuzzy-Random Quasi-Interpolation arct-
angent, algebraic, Gudermannian and generalized symmetric activation
functions based neural network operators. These multivariate Fuzzy-
Random operators arise in a natural way among multivariate Fuzzy-
Random neural networks. The rates are given through multivariate Probabilistic-
Jackson type inequalities involving the multivariate Fuzzy-Random modu-
lus of continuity of the engaged multivariate Fuzzy-Random function. The
plain stochastic extreme analog of this theory is also met in detail for the
stochastic analogs of the operators: the stochastic full quasi-interpolation
operators, the stochastic Kantorovich type operators and the stochastic
quadrature type operators.
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1 Fuzzy-Random Functions and Stochastic processes
Background

See also [18], Ch. 22, pp. 497-501.
We start with

De�nition 1 (see [35]) Let � : R! [0; 1] with the following properties:
(i) is normal, i.e., 9 x0 2 R : � (x0) = 1:
(ii) � (�x+ (1� �) y) � minf� (x) ; � (y)g, 8 x; y 2 R; 8 � 2 [0; 1] (� is

called a convex fuzzy subset).
(iii) � is upper semicontinuous on R, i.e., 8 x0 2 R and 8 " > 0, 9 neigh-

borhood V (x0) : � (x) � � (x0) + ", 8 x 2 V (x0) :
(iv) the set supp (�) is compact in R (where supp(�) := fx 2 R;� (x) > 0g).
We call � a fuzzy real number. Denote the set of all � with RF :
E.g., �fx0g 2 RF , for any x0 2 R; where �fx0g is the characteristic function

at x0.
For 0 < r � 1 and � 2 RF de�ne [�]r := fx 2 R : � (x) � rg and

[�]
0
:= fx 2 R : � (x) > 0g:

Then it is well known that for each r 2 [0; 1], [�]r is a closed and bounded
interval of R. For u; v 2 RF and � 2 R, we de�ne uniquely the sum u � v and
the product �� u by

[u� v]r = [u]r + [v]r ; [�� u]r = � [u]
r
; 8 r 2 [0; 1] ;

where [u]r+[v]r means the usual addition of two intervals (as subsets of R) and
� [u]

r means the usual product between a scalar and a subset of R (see, e.g.,
[35]). Notice 1�u = u and it holds u�v = v�u, ��u = u��. If 0 � r1 � r2 � 1
then [u]r2 � [u]r1 . Actually [u]r =

h
u
(r)
� ; u

(r)
+

i
, where u(r)� < u

(r)
+ , u

(r)
� ; u

(r)
+ 2 R,

8 r 2 [0; 1] :
De�ne

D : RF � RF ! R+ [ f0g

by

D (u; v) := sup
r2[0;1]

max
n���u(r)� � v(r)�

��� ; ���u(r)+ � v(r)+
���o ;

where [v]r =
h
v
(r)
� ; v

(r)
+

i
; u; v 2 RF . We have that D is a metric on RF . Then

(RF ; D) is a complete metric space, see [35], with the properties

D (u� w; v � w) = D (u; v) ; 8 u; v; w 2 RF ;
D (k � u; k � v) = jkjD (u; v) , 8 u; v 2 RF , 8 k 2 R;

D (u� v; w � e) � D (u;w) +D (v; e) , 8 u; v; w; e 2 RF :
(1)
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Let (M;d) metric space and f; g : M ! RF be fuzzy real number valued func-
tions. The distance between f; g is de�ned by

D� (f; g) := sup
x2M

D (f (x) ; g (x)) :

On RF we de�ne a partial order by "�": u; v 2 RF , u � v i¤ u(r)� � v
(r)
� and

u
(r)
+ � v

(r)
+ , 8 r 2 [0; 1] :

�P
denotes the fuzzy summation, eo := �f0g 2 RF the neutral element with

respect to �. For more see also [36], [37].
We need

De�nition 2 (see also [30], De�nition 13.16, p. 654) Let (X;B; P ) be a prob-
ability space. A fuzzy-random variable is a B-measurable mapping g : X ! RF
(i.e., for any open set U � RF ; in the topology of RF generated by the metric
D, we have

g�1 (U) = fs 2 X; g (s) 2 Ug 2 B). (2)

The set of all fuzzy-random variables is denoted by LF (X;B; P ). Let gn; g 2
LF (X;B; P ), n 2 N and 0 < q < +1. We say gn (s)

�q-mean�!
n!+1

g (s) if

lim
n!+1

Z
X

D (gn (s) ; g (s))
q
P (ds) = 0: (3)

Remark 3 (see [30], p. 654) If f; g 2 LF (X;B; P ), let us denote F : X !
R+ [ f0g by F (s) = D (f (s) ; g (s)), s 2 X. Here, F is B-measurable, because
F = G �H, where G (u; v) = D (u; v) is continuous on RF �RF , and H : X !
RF � RF , H (s) = (f (s) ; g (s)), s 2 X, is B-measurable. This shows that the
above convergence in q-mean makes sense.

De�nition 4 (see [30], p. 654, De�nition 13.17) Let (T; T ) be a topological
space. A mapping f : T ! LF (X;B; P ) will be called fuzzy-random function
(or fuzzy-stochastic process) on T . We denote f (t) (s) = f (t; s), t 2 T , s 2 X.

Remark 5 (see [30], p. 655) Any usual fuzzy real function f : T ! RF can
be identi�ed with the degenerate fuzzy-random function f (t; s) = f (t), 8 t 2 T ,
s 2 X.

Remark 6 (see [30], p. 655) Fuzzy-random functions that coincide with prob-
ability one for each t 2 T will be consider equivalent.

Remark 7 (see [30], p. 655) Let f; g : T ! LF (X;B; P ). Then f � g and
k � f are de�ned pointwise, i.e.,

(f � g) (t; s) = f (t; s)� g (t; s) ;
(k � f) (t; s) = k � f (t; s) , t 2 T; s 2 X; k 2 R:
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De�nition 8 (see also De�nition 13.18, pp. 655-656, [30]) For a fuzzy-random
function f : W � RN ! LF (X;B; P ), N 2 N, we de�ne the (�rst) fuzzy-
random modulus of continuity



(F)
1 (f; �)Lq =

sup

(�Z
X

Dq (f (x; s) ; f (y; s))P (ds)

� 1
q

: x; y 2W; kx� yk1 � �

)
;

0 < �; 1 � q <1:

De�nition 9 ([16]) Here 1 � q < +1. Let f : W � RN ! LF (X;B; P ),
N 2 N, be a fuzzy random function. We call f a (q-mean) uniformly continuous
fuzzy random function over W , i¤ 8 " > 0 9 � > 0 :whenever kx� yk1 � �;

x; y 2W; implies thatZ
X

(D (f (x; s) ; f (y; s)))
q
P (ds) � ":

We denote it as f 2 CUqFR (W ) :

Proposition 10 ([16]) Let f 2 CUqFR (W ) ; where W � RN is convex.

Then 
(F)1 (f; �)Lq <1, any � > 0:

Proposition 11 ([16]) Let f; g : W � RN ! LF (X;B; P ), N 2 N, be fuzzy
random functions. It holds
(i) 
(F)1 (f; �)Lq is nonnegative and nondecreasing in � > 0:

(ii) lim
�#0


(F)
1 (f; �)Lq = 


(F)
1 (f; 0)Lq = 0, i¤ f 2 C

Uq
FR (W ) :

We mention

De�nition 12 (see also [6]) Let f (t; s) be a random function (stochastic process)
from W � (X;B; P ) ; W � RN ; into R, where (X;B; P ) is a probability space.
We de�ne the q-mean multivariate �rst modulus of continuity of f by


1 (f; �)Lq :=

sup

(�Z
X

jf (x; s)� f (y; s)jq P (ds)
� 1

q

: x; y 2W; kx� yk1 � �

)
; (4)

� > 0; 1 � q <1.

The concept of f being (q-mean) uniformly continuous random function is
de�ned the same way as in De�nition 9, just replace D by j�j, etc. We denote it
as f 2 CUqR (W ) :

Similar properties as in Propositions 10, 11 are valid for 
1 (f; �)Lq :
Also we have
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Proposition 13 ([3]) Let Y (t; !) be a real valued stochastic process such that
Y is continuous in t 2 [a; b]. Then Y is jointly measurable in (t; !) :

According to [28], p. 94 we have the following

De�nition 14 Let (Y; T ) be a topological space, with its �-algebra of Borel
sets B := B (Y; T ) generated by T . If (X;S) is a measurable space, a function
f : X ! Y is called measurable i¤ f�1 (B) 2 S for all B 2 B.

By Theorem 4.1.6 of [28], p. 89 f as above is measurable i¤

f�1 (C) 2 S for all C 2 T .

We mention

Theorem 15 (see [28], p. 95) Let (X;S) be a measurable space and (Y; d) be
a metric space. Let fn be measurable functions from X into Y such that for
all x 2 X, fn (x) ! f (x) in Y . Then f is measurable. I.e., lim

n!1
fn = f is

measurable.

We need also

Proposition 16 ([16]) Let f; g be fuzzy random variables from S into RF .
Then
(i) Let c 2 R, then c� f is a fuzzy random variable.
(ii) f � g is a fuzzy random variable.

Proposition 17 Let Y
��!
t ; !

�
be a real valued multivariate random function

(stochastic process) such that Y is continuous in
�!
t 2

NQ
i=1

[ai; bi]. Then Y is

jointly measurable in
��!
t ; !

�
and

R
NQ
i=1

[ai;bi]
Y
��!
t ; !

�
d
�!
t is a real valued random

variable.

Proof. Similar to Proposition 18.14, p. 353 of [7].

2 About neural networks background

2.1 About the arctangent activation function

We consider the

arctanx =

Z x

0

dz

1 + z2
; x 2 R: (5)
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We will be using

h (x) :=
2

�
arctan

��
2
x
�
=
2

�

Z �x
2

0

dz

1 + z2
, x 2 R; (6)

which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (�x) = �h (x) , h (+1) = 1, h (�1) = �1;

and
h0 (x) =

4

4 + �2x2
> 0, all x 2 R: (7)

We consider the activation function

 1 (x) :=
1

4
(h (x+ 1)� h (x� 1)) , x 2 R; (8)

and we notice that
 1 (�x) =  1 (x) ; (9)

it is an even function.
Since x+ 1 > x� 1, then h (x+ 1) > h (x� 1), and  1 (x) > 0, all x 2 R.
We see that

 1 (0) =
1

�
arctan

�

2
�= 18:31: (10)

Let x > 0, we have that

 01 (x) =
1

4
(h0 (x+ 1)� h0 (x� 1)) =

�4�2x�
4 + �2 (x+ 1)

2
��
4 + �2 (x� 1)2

� < 0: (11)

That is
 01 (x) < 0, for x > 0: (12)

That is  1 is strictly decreasing on [0;1) and clearly is strictly increasing on
(�1; 0], and  01 (0) = 0:
Observe that

lim
x!+1

 1 (x) =
1
4 (h (+1)� h (+1)) = 0;

and
lim

x!�1
 1 (x) =

1
4 (h (�1)� h (�1)) = 0:

(13)

That is the x-axis is the horizontal asymptote on  1.
All in all,  1 is a bell symmetric function with maximum  1 (0)

�= 18:31:
We need
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Theorem 18 ([19], p. 286) We have that

1X
i=�1

 1 (x� i) = 1, 8 x 2 R: (14)

Theorem 19 ([19], p. 287) It holdsZ 1

�1
 1 (x) dx = 1: (15)

So that  1 (x) is a density function on R:
We mention

Theorem 20 ([19], p. 288) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<:k = �1: jnx� kj � n1��

 1 (nx� k) <
2

�2 (n1�� � 2) =: c1 (�; n) : (16)

Denote by b�c the integral part of the number and by d�e the ceiling of the
number.
We need

Theorem 21 ([19], p. 289) Let x 2 [a; b] � R and n 2 N so that dnae � bnbc.
It holds

1Pbnbc
k=dnae  1 (nx� k)

<
1

 1 (1)
�= 0:0868 =: �1; 8 x 2 [a; b] : (17)

Note 22 ([19], pp. 290-291)
i) We have that

lim
n!1

bnbcX
k=dnae

 1 (nx� k) 6= 1; (18)

for at least some x 2 [a; b] :
ii) For large enough n 2 N we always obtain dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general, by Theorem 18, it holds

bnbcX
k=dnae

 1 (nx� k) � 1: (19)

7



We introduce (see [24])

Z1 (x1; :::; xN ) := Z1 (x) :=
NY
i=1

 1 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (20)

Denote by a = (a1; :::; aN ) and b = (b1; :::; bN ) :
It has the properties:
(i) Z1 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z1 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z1 (x1 � k1; :::; xN � kN ) = 1;

(21)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z1 (nx� k) = 1; (22)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z1 (x) dx = 1; (23)

that is Z1 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z1 (nx� k) <
2

�2 (n1�� � 2) = c1 (�; n) , (24)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN :
(vi) By Theorem 21 we get that

0 <
1Pbnbc

k=dnae Z1 (nx� k)
<

1

( 1 (1))
N
�= (0:0868)N =: 1 (N) ; (25)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z1 (nx� k) 6= 1; (26)
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for at least some x 2
�QN

i=1 [ai; bi]
�
:

Above it is kxk1 := max fjx1j ; :::; jxN jg, x 2 RN , also set 1 := (1; :::;1),
�1 = (�1; :::�1) upon the multivariate context.

2.2 About the algebraic activation function

Here see also [20].
We consider the generator algebraic function

' (x) =
x

2m
p
1 + x2m

; m 2 N, x 2 R, (27)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ' (�x) = �' (x) with ' (0) = 0. We get that

'0 (x) =
1

(1 + x2m)
2m+1
2m

> 0, 8 x 2 R, (28)

proving ' as strictly increasing over R; '0 (x) = '0 (�x) : We easily �nd that
lim

x!+1
' (x) = 1, ' (+1) = 1, and lim

x!�1
' (x) = �1, ' (�1) = �1:

We consider the activation function

 2 (x) =
1

4
[' (x+ 1)� ' (x� 1)] : (29)

Clearly it is  2 (x) =  2 (�x) ; 8 x 2 R, so that  2 is an even function and
symmetric with respect to the y-axis. Clealry  2 (x) > 0, 8 x 2 R.
Also it is

 2 (0) =
1

2 2m
p
2
: (30)

By [20], we have that  02 (x) < 0 for x > 0. That is  2 is strictly decreasing
over (0;+1) :
Clearly,  2 is strictly increasing over (�1; 0) and  02 (0) = 0.
Furthermore we obtain that

lim
x!+1

 2 (x) =
1

4
[' (+1)� ' (+1)] = 0; (31)

and
lim

x!�1
 2 (x) =

1

4
[' (�1)� ' (�1)] = 0: (32)

That is the x-axis is the horizontal asymptote of  2.
Conclusion,  2 is a bell shape symmetric function with maximum

 2 (0) =
1

2 2m
p
2
; m 2 N: (33)

We need
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Theorem 23 ([20]) We have that

1X
i=�1

 2 (x� i) = 1, 8 x 2 R: (34)

Theorem 24 ([20]) It holds Z 1

�1
 2 (x) dx = 1: (35)

Theorem 25 ([20]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 2 (nx� k) <
1

4m (n1�� � 2)2m
=: c2 (�; n) ; m 2 N:

(36)

We need

Theorem 26 ([20]) Let [a; b] � R and n 2 N so that dnae � bnbc. It holds

1
bnbcP

k=dnae
 2 (nx� k)

< 2
�
2m
p
1 + 4m

�
=: �2; (37)

8 x 2 [a; b], m 2 N:

Note 27 1) By [20] we have that

lim
n!1

bnbcX
k=dnae

 2 (nx� k) 6= 1; (38)

for at least some x 2 [a; b] :
2) Let [a; b] � R. For large n 2 N we always have dnae � bnbc. Also

a � k
n � b, i¤ dnae � k � bnbc.
In general it holds that

bnbcX
k=dnae

 2 (nx� k) � 1: (39)

We introduce (see also [25])

Z2 (x1; :::; xN ) := Z2 (x) :=
NY
i=1

 2 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (40)
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It has the properties:
(i) Z2 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z2 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z2 (x1 � k1; :::; xN � kN ) = 1;

(41)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z2 (nx� k) = 1; (42)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z2 (x) dx = 1; (43)

that is Z2 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z2 (nx� k) <
1

4m (n1�� � 2)2m
= c2 (�; n) , (44)

0 < � < 1; n 2 N : n1�� > 2, x 2 RN , m 2 N:
(vi) By Theorem 26 we get that

0 <
1Pbnbc

k=dnae Z2 (nx� k)
<

1

( 2 (1))
N
�=
�
2
�
2m
p
1 + 4m

��N
:= 2 (N) ; (45)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z2 (nx� k) 6= 1; (46)

for at least some x 2
�QN

i=1 [ai; bi]
�
:
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2.3 About the Gudermannian activation function

See also [21], [34].
Here we consider gd (x) the Gudermannian function [34], which is a sigmoid

function, as a generator function:

� (x) = 2 arctan
�
tanh

�x
2

��
=

Z x

0

dt

cosh t
=: gd (x) , x 2 R. (47)

Let the normalized generator sigmoid function

f (x) :=
4

�
� (x) =

4

�

Z x

0

dt

cosh t
=
8

�

Z x

0

1

et + e�t
dt; x 2 R: (48)

Here
f 0 (x) =

4

� coshx
> 0; 8 x 2 R;

hence f is strictly increasing on R:
Notice that tanh (�x) = � tanhx and arctan (�x) = � arctanx, x 2 R:
So, here the neural network activation function will be:

 3 (x) =
1

4
[f (x+ 1)� f (x� 1)] , x 2 R: (49)

By [21], we get that
 3 (x) =  3 (�x) ; 8 x 2 R; (50)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+1) =
1, f (�1) = �1 and f (0) = 0. Clearly it is

f (�x) = �f (x) , 8 x 2 R; (51)

an odd function, symmetric with respect to the origin. Since x+1 > x� 1, and
f (x+ 1) > f (x� 1), we obtain  3 (x) > 0, 8 x 2 R:
By [21], we have that

 3 (0) =
2

�
gd (1) �= 0:551: (52)

By [21]  3 is strictly decreasing on (0;+1), and strictly increasing on (�1; 0),
and  03 (0) = 0.
Also we have that

lim
x!+1

 3 (x) = lim
x!�1

 3 (x) = 0; (53)

that is the x-axis is the horizontal asymptote for  3.
Conclusion,  3 is a bell shaped symmetric function with maximum  3 (0)

�=
0:551.
We need
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Theorem 28 ([21]) It holds that

1X
i=�1

 3 (x� i) = 1, 8 x 2 R: (54)

Theorem 29 ([21]) We have thatZ 1

�1
 3 (x) dx = 1: (55)

So  3 (x) is a density function.

Theorem 30 ([21]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: k = �1
: jnx� kj � n1��

 3 (nx� k) <
4

�e(n1���2)
=

4e2

�en1��
=: c3 (�; n) : (56)

Theorem 31 ([21]) Let [a; b] � R and n 2 N; so that dnae � bnbc. It holds

1
bnbcP

k=dnae
 3 (nx� k)

<
�

gd (2)
�= 2:412 =: �3; (57)

8 x 2 [a; b] :

We make

Remark 32 ([21])
(i) We have that

lim
n!1

bnbcX
k=dnae

 3 (nx� k) 6= 1; (58)

for at least some x 2 [a; b] :
(ii) Let [a; b] � R. For large n we always have dnae � bnbc. Also a � k

n � b,
i¤ dnae � k � bnbc.
In general it holds

bnbcX
k=dnae

 3 (nx� k) � 1: (59)

We introduce (see also [23])

Z3 (x1; :::; xN ) := Z3 (x) :=

NY
i=1

 3 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (60)
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It has the properties:
(i) Z3 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z3 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z3 (x1 � k1; :::; xN � kN ) = 1;

(61)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z3 (nx� k) = 1; (62)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z3 (x) dx = 1; (63)

that is Z3 is a multivariate density function.
(v) It is also clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z3 (nx� k) <
4e2

�en1��
= c3 (�; n) ; (64)

0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; m 2 N:
(vi) By Theorem 31 we get that

0 <
1Pbnbc

k=dnae Z3 (nx� k)
<

�
�

gd (2)

�N
�= (2:412)N =: 3 (N) ; (65)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z3 (nx� k) 6= 1; (66)

for at least some x 2
�QN

i=1 [ai; bi]
�
:
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2.4 About the generalized symmetrical activation func-
tion

Here we consider the generalized symmetrical sigmoid function ([22], [29])

f1 (x) =
x

(1 + jxj�)
1
�

; � > 0, x 2 R. (67)

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.
The parameter � is a shape parameter controling how fast the curve ap-

proaches the asymptotes for a given slope at the in�ection point. When � = 1
f1 is the absolute sigmoid function, and when � = 2; f1 is the square root
sigmoid function. When � = 1:5 the function approximates the arctangent
function, when � = 2:9 it approximates the logistic function, and when � = 3:4
it approximates the error function. Parameter � is estimated in the likelihood
maximization ([29]). For more see [29].
Next we study the particular generator sigmoid function

f2 (x) =
x�

1 + jxj�
� 1
�

; � is an odd number, x 2 R: (68)

We have that f2 (0) = 0, and

f2 (�x) = �f2 (x) ; (69)

so f2 is symmetric with respect to zero.
When x � 0, we get that ([22])

f 02 (x) =
1

(1 + x�)
�+1
�

> 0; (70)

that is f2 is strictly increasing on [0;+1) and f2 is strictly increasing on (�1; 0].
Hence f2 is strictly increasing on R.
We also have f2 (+1) = f2 (�1) = 1:
Let us consider the activation function ([22]):

 4 (x) =
1

4
[f2 (x+ 1)� f2 (x� 1)] =

1

4

264 (x+ 1)�
1 + jx+ 1j�

� 1
�

� (x� 1)�
1 + jx� 1j�

� 1
�

375 : (71)

Clearly it holds ([22])

 4 (x) =  4 (�x) ; 8 x 2 R: (72)
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and
 4 (0) =

1

2 �
p
2
; (73)

and  4 (x) > 0, 8 x 2 R.
Following [22], we have that  4 is strictly decreasing over [0;+1), and  4

is strictly increasing on (�1; 0], by  4-symmetry with respect to y-axis, and
 04 (0) = 0:

Clearly it is
lim

x!+1
 4 (x) = lim

x!�1
 4 (x) = 0; (74)

therefore the x-axis is the horizontal asymptote of  4 (x) :
The value

 4 (0) =
1

2 �
p
2
; � is an odd number, (75)

is the maximum of  4, which is a bell shaped function.
We need

Theorem 33 ([22]) It holds

1X
i=�1

 4 (x� i) = 1, 8 x 2 R: (76)

Theorem 34 ([22]) We have thatZ 1

�1
 4 (x) dx = 1: (77)

So that  4 (x) is a density function on R:
We need

Theorem 35 ([22]) Let 0 < � < 1, and n 2 N with n1�� > 2. It holds
1X

8<: j = �1
: jnx� jj � n1��

 4 (nx� j) <
1

2� (n1�� � 2)�
=: c4 (�; n) ; (78)

where � 2 N is an odd number.

We also need

Theorem 36 ([22]) Let [a; b] � R and n 2 N so that dnae � bnbc. Then

1
bnbcP

k=dnae
 4 (jnx� kj)

< 2
�
p
1 + 2� =: �4; (79)

where � is an odd number, 8 x 2 [a; b] :
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We make

Remark 37 ([22]) (1) We have that

lim
n!1

bnbcX
k=dnae

 4 (nx� k) 6= 1; for at least some x 2 [a; b] : (80)

(2) Let [a; b] � R. For large enough n we always obtain dnae � bnbc. Also
a � k

n � b, i¤ dnae � k � bnbc.
In general it holds that

bnbcX
k=dnae

 4 (nx� k) � 1: (81)

We introduce (see also [26])

Z4 (x1; :::; xN ) := Z4 (x) :=
NY
i=1

 4 (xi) , x = (x1; :::; xN ) 2 RN ; N 2 N: (82)

It has the properties:
(i) Z4 (x) > 0, 8 x 2 RN ;
(ii)

1X
k=�1

Z4 (x� k) :=
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1
Z4 (x1 � k1; :::; xN � kN ) = 1;

(83)
where k := (k1; :::; kn) 2 ZN , 8 x 2 RN ;
hence
(iii)

1X
k=�1

Z4 (nx� k) = 1; (84)

8 x 2 RN ; n 2 N,
and
(iv) Z

RN
Z4 (x) dx = 1; (85)

that is Z4 is a multivariate density function.
(v) It is clear that

1X
8<: k = �1 k

n � x

1 > 1

n�

Z4 (nx� k) <
1

2� (n1�� � 2)�
= c4 (�; n) ; (86)
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0 < � < 1, n 2 N : n1�� > 2, x 2 RN ; � is odd.
(vi) By Theorem 36 we get that

0 <
1Pbnbc

k=dnae Z4 (nx� k)
<
�
2

�
p
1 + 2�

�N
=: 4 (N) ; (87)

8 x 2
�QN

i=1 [ai; bi]
�
, n 2 N, � is odd.

Furthermore it holds

lim
n!1

bnbcX
k=dnae

Z4 (nx� k) 6= 1; (88)

for at least some x 2
�QN

i=1 [ai; bi]
�
:

Set
dnae := (dna1e ; :::; dnaNe) ;

bnbc := (bnb1c ; :::; bnbNc) ;

where a := (a1; :::; aN ), b := (b1; :::; bN ), k := (k1; :::; kN ) :

Let f 2 C
�QN

i=1 [ai; bi]
�
; and n 2 N such that dnaie � bnbic, i = 1; :::; N:

We de�ne the multivariate averaged positive linear quasi-interpolation neural

network operators (x := (x1; :::; xN ) 2
�QN

i=1 [ai; bi]
�
); j = 1; 2; 3; 4:

jAn (f; x1; :::; xN ) := jAn (f; x) :=

Pbnbc
k=dnae f

�
k
n

�
Zj (nx� k)Pbnbc

k=dnae Zj (nx� k)
= (89)

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e :::

PbnbNc
kN=dnaNe f

�
k1
n ; :::;

kN
n

� �QN
i=1  j (nxi � ki)

�
QN
i=1

�Pbnbic
ki=dnaie  j (nxi � ki)

� :

For large enough n 2 N we always obtain dnaie � bnbic, i = 1; :::; N . Also
ai � ki

n � bi, i¤ dnaie � ki � bnbic, i = 1; :::; N .
When f 2 CB

�
RN
�
we de�ne (j = 1; 2; 3; 4)

jBn (f; x) := jBn (f; x1; :::; xN ) :=
1X

k=�1
f

�
k

n

�
Zj (nx� k) := (90)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
f

�
k1
n
;
k2
n
; :::;

kN
n

� NY
i=1

 j (nxi � ki)
!
;

n 2 N, 8 x 2 RN ; N 2 N, the multivariate full quasi-interpolation neural
network operators.
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Also for f 2 CB
�
RN
�
we de�ne the multivariate Kantorovich type neural

network operators (j = 1; 2; 3; 4)

jCn (f; x) := jCn (f; x1; :::; xN ) :=
1X

k=�1

 
nN
Z k+1

n

k
n

f (t) dt

!
Zj (nx� k) :=

(91)
1X

k1=�1

1X
k2=�1

:::
1X

kN=�1

 
nN
Z k1+1

n

k1
n

Z k2+1
n

k2
n

:::

Z kN+1

n

kN
n

f (t1; :::; tN ) dt1:::dtN

!

�
 

NY
i=1

 j (nxi � ki)
!
;

n 2 N; 8 x 2 RN :
Again for f 2 CB

�
RN
�
; N 2 N; we de�ne the multivariate neural net-

work operators of quadrature type jDn (f; x), n 2 N; as follows. Let � =
(�1; :::; �N ) 2 NN ; r = (r1; :::; rN ) 2 ZN+ , wr = wr1;r2;:::rN � 0, such that
�P
r=0

wr =
�1P
r1=0

�2P
r2=0

:::
�NP
rN=0

wr1;r2;:::rN = 1; k 2 ZN and

�nk (f) := �n;k1;k2;:::;kN (f) :=
�X
r=0

wrf

�
k

n
+

r

n�

�
:=

�1X
r1=0

�2X
r2=0

:::

�NX
rN=0

wr1;r2;:::rN f

�
k1
n
+

r1
n�1

;
k2
n
+

r2
n�2

; :::;
kN
n
+

rN
n�N

�
; (92)

where r
� :=

�
r1
�1
; r2�2 ; :::;

rN
�N

�
; j = 1; 2; 3; 4:

We put

jDn (f; x) := jDn (f; x1; :::; xN ) :=

1X
k=�1

�nk (f)Zj (nx� k) := (93)

1X
k1=�1

1X
k2=�1

:::
1X

kN=�1
�n;k1;k2;:::;kN (f)

 
NY
i=1

 j (nxi � ki)
!
;

8 x 2 RN :
For the next we need, for f 2 C

�QN
i=1 [ai; bi]

�
the �rst multivariate modulus

of continuity

!1 (f; h) := sup

x; y 2
QN
i=1 [ai; bi]

kx� yk1 � h

jf (x)� f (y)j , h > 0: (94)
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It holds that
lim
h!0

!1 (f; h) = 0: (95)

Similarly it is de�ned for f 2 CB
�
RN
�
(continuous and bounded functions

on RN ) the !1 (f; h), and it has the property (95), given that f 2 CU
�
RN
�

(uniformly continuous functions on RN ).
We mention

Theorem 38 (see [23], [24], [25], [26]) Let f 2 C
�QN

i=1 [ai; bi]
�
; 0 < � < 1,

x 2
�QN

i=1 [ai; bi]
�
; N; n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then

1)

jjAn (f; x)� f (x)j � j (N)

�
!1

�
f;
1

n�

�
+ 2cj (�; n) kfk1

�
=: �j1; (96)

and
2)

kjAn (f)� fk1 � �j1: (97)

We notice that lim
n!1 jAn (f) = f , pointwise and uniformly.

In this article we extend Theorem 38 to the fuzzy-random level.
We mention

Theorem 39 (see [23], [24], [25], [26]) Let f 2 CB
�
RN
�
; 0 < � < 1, x 2 RN ;

N; n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then
1)

jjBn (f; x)� f (x)j � !1

�
f;
1

n�

�
+ 2cj (�; n) kfk1 =: �j2; (98)

2)
kjBn (f)� fk1 � �j2: (99)

Given that f 2
�
CU
�
RN
�
\ CB

�
RN
��
, we obtain lim

n!1 jBn (f) = f , uniformly.

We also need

Theorem 40 (see [23], [24], [25], [26]) Let f 2 CB
�
RN
�
; 0 < � < 1, x 2 RN ;

N; n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then
1)

jjCn (f; x)� f (x)j � !1

�
f;
1

n
+
1

n�

�
+ 2cj (�; n) kfk1 =: �j3; (100)

2)
kjCn (f)� fk1 � �j3: (101)

Given that f 2
�
CU
�
RN
�
\ CB

�
RN
��
; we obtain lim

n!1 jCn (f) = f , uniformly.
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We also need

Theorem 41 (see [23], [24], [25], [26]) Let f 2 CB
�
RN
�
; 0 < � < 1, x 2 RN ;

N; n 2 N with n1�� > 2; j = 1; 2; 3; 4. Then
1)

jjDn (f; x)� f (x)j � !1

�
f;
1

n
+
1

n�

�
+ 2cj (�; n) kfk1 = �j3; (102)

2)
kjDn (f)� fk1 � �j3: (103)

Given that f 2
�
CU
�
RN
�
\ CB

�
RN
��
; we obtain lim

n!1 jDn (f) = f , uni-

formly.

In this article we extend Theorems 39, 40, 41 to the random level.
We are also motivated by [1] - [16] and continuing [17]. For general knowledge

on neural networks we recommend [31], [32], [33].

3 Main Results

I) q-mean Approximation by Fuzzy-Random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
Quasi-Interpolation Neural Network Operators
All terms and assumptions here as in Sections 1, 2.

Let f 2 C
Uq
FR

�
NQ
i=1

[ai; bi]

�
, 1 � q < +1, n;N 2 N, 0 < � < 1; �!x 2�

NQ
i=1

[ai; bi]

�
, (X;B; P ) probability space, s 2 X; j = 1; 2; 3; 4:

We de�ne the following multivariate fuzzy random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based quasi-
interpolation linear neural network operators

�
jA

FR
n (f)

�
(�!x ; s) :=

bnbc�X
�!
k =dnae

f

 �!
k

n
; s

!
�

Zj

�
n�!x ��!k

�
bnbcP

�!
k =dnae

Zj

�
n�!x ��!k

� ; (104)

(see also (89).
We present

Theorem 42 Let f 2 C
Uq
FR

�
NQ
i=1

[ai; bi]

�
; 0 < � < 1; �!x 2

�
NQ
i=1

[ai; bi]

�
,

n;N 2 N; with n1�� > 2; 1 � q < +1: Assume that
R
X
(D� (f (�; s) ; eo))q P (ds) <

1; j = 1; 2; 3; 4: Then
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1) �Z
X

Dq
��
jA

FR
n (f)

�
(�!x ; s) ; f (�!x ; s)

�
P (ds)

� 1
q

� (105)

j (N)

(

1

�
f;
1

n�

�
Lq
+ 2cj (�; n)

�Z
X

(D� (f (�; s) ; eo))q P (ds)� 1
q

)
=: �

(FR)
j1 ;

2)
�Z

X

Dq
��
jA

FR
n (f)

�
(�!x ; s) ; f (�!x ; s)

�
P (ds)

� 1
q


1;

�
NQ
i=1

[ai;bi]

� � �
(FR)
j1 ;

(106)
where j (N) as in (25), (45), (65), (87) and cj (�; n) as in (24), (44), (64),
(86).

Proof. We notice that

D

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
� D

 
f

 �!
k

n
; s

!
; eo!+D (f (�!x ; s) ; eo) (107)

� 2D� (f (�; s) ; eo) :
Hence

Dq

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
� 2qD�q (f (�; s) ; eo) ; (108)

and Z
X

Dq

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
P (ds)

! 1
q

� 2
�Z

X

(D� (f (�; s) ; eo))q P (ds)� 1
q

:

(109)
We observe that

D
��
jA

FR
n (f)

�
(�!x ; s) ; f (�!x ; s)

�
= (110)

D

0BBBB@
bnbc�X

�!
k =dnae

f

 �!
k

n
; s

!
� Zj (nx� k)

bnbcP
�!
k =dnae

Zj (nx� k)
; f (�!x ; s)� 1

1CCCCA =

D

0BBBB@
bnbc�X

�!
k =dnae

f

 �!
k

n
; s

!
� Zj (nx� k)

bnbcP
�!
k =dnae

Zj (nx� k)
; f (�!x ; s)�

bnbcP
�!
k =dnae

Zj (nx� k)

bnbcP
�!
k =dnae

Zj (nx� k)

1CCCCA =

(111)
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D

0BBBB@
bnbc�X

�!
k =dnae

f

 �!
k

n
; s

!
� Zj (nx� k)

bnbcP
�!
k =dnae

Zj (nx� k)
;

bnbc�X
�!
k =dnae

f (�!x ; s)� Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCA

�
bnbcX

�!
k =dnae

0BBBB@ Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCAD

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
: (112)

So that
D
��
jA

FR
n (f)

�
(�!x ; s) ; f (�!x ; s)

�
�

bnbcX
�!
k =dnae

0BBBB@ Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCAD

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
= (113)

bnbcX
�!
k =dnae�!kn ��!x 1� 1

n�

0BBBB@ Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCAD

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
+

bnbcX
�!
k =dnae�!kn ��!x 1> 1

n�

0BBBB@ Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCAD

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
:

Hence it holds�Z
X

Dq
��
jA

FR
n (f)

�
(�!x ; s) ; f (�!x ; s)

�
P (ds)

� 1
q

� (114)

bnbcX
�!
k =dnae�!kn ��!x 1� 1

n�

0BBBB@ Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCA
 Z

X

Dq

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
P (ds)

! 1
q

+

bnbcX
�!
k =dnae�!kn ��!x 1> 1

n�

0BBBB@ Zj (nx� k)
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCA
 Z

X

Dq

 
f

 �!
k

n
; s

!
; f (�!x ; s)

!
P (ds)

! 1
q

�
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0BBBB@ 1
bnbcP

�!
k =dnae

Zj (nx� k)

1CCCCA �
�


(F)
1

�
f;
1

n�

�
Lq
+ (115)

2

�Z
X

(D� (f (�; s) ; eo))q P (ds)� 1
q

0BBBBBB@
bnbcX

�!
k =dnae�!kn ��!x 1> 1

n�

Zj (nx� k)

1CCCCCCA

9>>>>>>=>>>>>>;
(by (24), (25); (44), (45); (64), (65); (86), (87))

� j (N)

(


(F)
1

�
f;
1

n�

�
Lq
+ 2cj (�; n)

�Z
X

(D� (f (�; s) ; eo))q P (ds)� 1
q

)
:

(116)
We have proved claim.

Conclusion 43 By Theorem 42 we obtain the pointwise and uniform conver-
gences with rates in the q-mean and D-metric of the operator jAFRn to the unit

operator for f 2 CUqFR
�
NQ
i=1

[ai; bi]

�
; j = 1; 2; 3; 4:

II) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
full Quasi-Interpolation Neural Network Operators
Let g 2 CU1R

�
RN
�
, 0 < � < 1, �!x 2 RN , n;N 2 N, with kgk1;RN ;X < 1,

(X;B; P ) probability space, s 2 X:
We de�ne

jB
(R)
n (g) (�!x ; s) :=

1X
�!
k =�1

g

 �!
k

n
; s

!
Zj

�
n�!x ��!k

�
; j = 1; 2; 3; 4; (117)

(see also (90)).
We give

Theorem 44 Let g 2 CU1R
�
RN
�
; 0 < � < 1, �!x 2 RN , n;N 2 N, with n1�� >

2; kgk1;RN ;X <1; j = 1; 2; 3; 4: Then
1) Z

X

����jB(R)n (g)
�
(�!x ; s)� g (�!x ; s)

���P (ds) � (118)�

1

�
g;
1

n�

�
L1
+ 2cj (�; n) kgk1;RN ;X

�
=: �

(R)
j1 ;
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2) Z
X

����jB(R)n (g)
�
(�!x ; s)� g (�!x ; s)

���P (ds)
1;RN

� �
(R)
j1 : (119)

Proof. Since kgk1;RN ;X <1, then�����g
 �!
k

n
; s

!
� g (�!x ; s)

����� � 2 kgk1;RN ;X <1: (120)

Hence Z
X

�����g
 �!
k

n
; s

!
� g (�!x ; s)

�����P (ds) � 2 kgk1;RN ;X <1: (121)

We observe that �
jB

(R)
n (g)

�
(�!x ; s)� g (�!x ; s) =

1X
�!
k =�1

g

 �!
k

n
; s

!
Zj (nx� k)� g (�!x ; s)

1X
�!
k =�1

Zj (nx� k) = (122)

0@ 1X
�!
k =�1

g

 �!
k

n
; s

!
� g (�!x ; s)

1AZj (nx� k) :

However it holds

1X
�!
k =�1

�����g
 �!
k

n
; s

!
� g (�!x ; s)

�����Zj (nx� k) � 2 kgk1;RN ;X <1: (123)

Hence ����jB(R)n (g)
�
(�!x ; s)� g (�!x ; s)

��� �
1X

�!
k =�1

�����g
 �!
k

n
; s

!
� g (�!x ; s)

�����Zj (nx� k) = (124)

1X
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�����g
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n
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!
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1X
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k =�1�!kn ��!x 1> 1
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�����g
 �!
k

n
; s

!
� g (�!x ; s)

�����Zj (nx� k) :
Furthermore it holds�Z

X

����jB(R)n (g)
�
(�!x ; s)� g (�!x ; s)

���P (ds)� �
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n
; s

!
� g (�!x ; s)

�����P (ds)
!
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k

n
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!
� g (�!x ; s)

�����P (ds)
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1

�
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�
L1
+ 2 kgk1;RN ;X

1X
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k =�1�!kn ��!x 1> 1

n�

Zj (nx� k) �


1

�
g;
1

n�

�
L1
+ 2cj (�; n) kgk1;RN ;X ;

proving the claim.

Conclusion 45 By Theorem 44 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jB

(R)
n to the unit operator for

g 2 CU1R
�
RN
�
, j = 1; 2; 3; 4:

III) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate Kantorovich type neural network operator
Let g 2 CU1R

�
RN
�
, 0 < � < 1, �!x 2 RN , n;N 2 N, with kgk1;RN ;X < 1,

(X;B; P ) probability space, s 2 X:
We de�ne (j = 1; 2; 3; 4):

jC
(R)
n (g) (�!x ; s) :=

1X
�!
k =�1

0@nN Z �!
k+1
n

�!
k
n

g
��!
t ; s

�
d
�!
t

1AZj

�
n�!x ��!k

�
; (126)

(see also (91).
We present

Theorem 46 Let g 2 CU1R
�
RN
�
; 0 < � < 1, �!x 2 RN , n;N 2 N, with n1�� >

2; j = 1; 2; 3; 4; kgk1;RN ;X <1: Then
1) Z

X

����jC(R)n (g)
�
(�!x ; s)� g (�!x ; s)

���P (ds) ��

1

�
g;
1

n
+
1

n�

�
L1
+ 2cj (�; n) kgk1;RN ;X

�
=: 

(R)
j1 ; (127)

2) Z
X

����jC(R)n (g)
�
(�!x ; s)� g (�!x ; s)

���P (ds)
1;RN

� 
(R)
j1 : (128)
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Proof. Since kgk1;RN ;X <1, then������nN
Z �!

k+1
n

�!
k
n

g
��!
t ; s

�
d
�!
t � g (�!x ; s)

������ =
������nN
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�
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d
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nN
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n
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k
n

���g ��!t ; s�� g (�!x ; s)��� d�!t � 2 kgk1;RN ;X <1: (129)

HenceZ
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������nN
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k+1
n

�!
k
n

g
��!
t ; s

�
d
�!
t � g (�!x ; s)

������P (ds) � 2 kgk1;RN ;X <1: (130)

We observe that �
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d
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(131)
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d
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However it holds
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k
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���g ��!t ; s�� g (�!x ; s)��� d�!t
35Zj �n�!x ��!k � � 2 kgk1;RN ;X <1:

(132)
Hence ����jC(R)n (g)

�
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��� �
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24nN Z �!
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k
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35Zj �n�!x ��!k � = (133)
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:

Furthermore it holds�Z
X

����jC(R)n (g)
�
(�!x ; s)� g (�!x ; s)

���P (ds)� �
(by Fubini�s theorem)
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1

�
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n
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+ 2cj (�; n) kgk1;RN ;X ; (137)

proving the claim.

Conclusion 47 By Theorem 46 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jC

(R)
n to the unit operator for

g 2 CU1R
�
RN
�
, j = 1; 2; 3; 4:
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IV) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate quadrature type neural network operator
Let g 2 CU1R

�
RN
�
, 0 < � < 1, �!x 2 RN , n;N 2 N, with kgk1;RN ;X < 1,

(X;B; P ) probability space, s 2 X, j = 1; 2; 3; 4:
We de�ne

jD
(R)
n (g) (�!x ; s) :=

1X
�!
k =�1

�
�
n
�!
k
(g)
�
(s)Zj

�
n�!x ��!k

�
; (138)

where �
�
n
�!
k
(g)
�
(s) :=

�!
�X

�!
r =0

w�!
r
g

 �!
k

n
+

�!
r

n
�!
�
; s

!
; (139)

(see also (92), (93)).
We �nally give

Theorem 48 Let g 2 CU1R
�
RN
�
; 0 < � < 1, �!x 2 RN , n;N 2 N, with n1�� >

2; j = 1; 2; 3; 4; kgk1;RN ;X <1: Then
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j1 ; (140)
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����jD(R)
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���P (ds)
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j1 : (141)

Proof. Notice that ����
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Hence Z
X
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n
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k
(g)
�
(s)� g (�!x ; s)

��P (ds) � 2 kgk1;RN ;X <1: (143)

We observe that �
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(R)
n (g)

�
(�!x ; s)� g (�!x ; s) =
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Thus ���jD(R)
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Hence it holds ����jD(R)
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Furthermore we derive�Z
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+
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+ 2cj (�; n) kgk1;RN ;X ; (148)

proving the claim.
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Conclusion 49 From Theorem 48 we obtain pointwise and uniform conver-
gences with rates in the 1-mean of random operators jD

(R)
n to the unit operator

for g 2 CU1R
�
RN
�
, j = 1; 2; 3; 4:
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