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Abstract

In this article we study the degree of approximation of multivariate
pointwise and uniform convergences in the g-mean to the Fuzzy-Random
unit operator of multivariate Fuzzy-Random Quasi-Interpolation arct-
angent, algebraic, Gudermannian and generalized symmetric activation
functions based neural network operators. These multivariate Fuzzy-
Random operators arise in a natural way among multivariate Fuzzy-
Random neural networks. The rates are given through multivariate Probabilistic-
Jackson type inequalities involving the multivariate Fuzzy-Random modu-
lus of continuity of the engaged multivariate Fuzzy-Random function. The
plain stochastic extreme analog of this theory is also met in detail for the
stochastic analogs of the operators: the stochastic full quasi-interpolation
operators, the stochastic Kantorovich type operators and the stochastic
quadrature type operators.
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1 Fuzzy-Random Functions and Stochastic processes
Background

See also [18], Ch. 22, pp. 497-501.
We start with

Definition 1 (see [35]) Let p: R — [0, 1] with the following properties:

(i) is normal, i.e., 3 xo € R: pu(xg) = 1.

(it) p(Az+ (1= A)y) > min{p(z),pn(y)} Yo,y € R,V A€ [0,1] (uis
called a convex fuzzy subset).

(iii) p is upper semicontinuous on R, i.e., V g € R and ¥V € > 0, 3 neigh-
borhood V (xo) : pu(x) < p(xo) +, Vo eV (o).

(iv) the set supp (u) is compact in R (where supp(p) := {x € R;u(z) > 0}).

We call v a fuzzy real number. Denote the set of all pu with Rx.

E.g.. X{zoy € Rz, for any zo € R, where x(,y is the characteristic function
at xg.

For 0 < r <1 and p € Ry define [p]" == {z € R : p(x) > r} and
1’ :={z eR: pu(z) > 0}

Then it is well known that for each r € [0,1], [u]" is a closed and bounded
interval of R. For u,v € Ry and A € R, we define uniquely the sum u v and
the product A ® u by

[uev] ="+, Aou" =Xu", Vrel,1],

where [u]” + [v]" means the usual addition of two intervals (as subsets of R) and
A[u]” means the usual product between a scalar and a subset of R (see, e.g.,
[35]). Notice 1Gu = u and it holds u®v = vPu, AOu = ueA. If0 <r <ry <1
then [u]™ C [u]™. Actually [u]" = [u(_r),ug_r)}, where u!"”) < uS:), u(j),ug) €R,
Vrelo,1].
Define
D:Rr xRF — R U{0}

by

o - o

3

where [v]" = [v(j’),v(p} ; u,v € Rr. We have that D is a metric on Rx. Then

(Rx, D) is a complete metric space, see [35], with the properties

D (u,v) :== sup max {)u(f) — "
rel0,1]

D(udw,vdw)=Duv), Yuuv,weRg,
D(koukov)=1k|lD(u,v), YVuveERsVYEkEeR, (1)
Duev,wde) <D(uw)+D((ve), VuvweécRg.



Let (M, d) metric space and f,g : M — Rz be fuzzy real number valued func-
tions. The distance between f, g is defined by

D*(f,9) == sup D (f (z) g (x)).
zeM

On Rz we define a partial order by "<": u,v € Rz, u < v iff u(_r) < v(_r) and
ug:) < U_(,:), YV rel0,1].

x
>~ denotes the fuzzy summation, 0 := x (0} € Rz the neutral element with
respect to @. For more see also [36], [37].
We need

Definition 2 (see also [30], Definition 15.16, p. 654) Let (X, B, P) be a prob-
ability space. A fuzzy-random variable is a B-measurable mapping g : X — Rz
(i.e., for any open set U C Rz, in the topology of Rx generated by the metric
D, we have

9 ' (U)={se X;g(s) cU} €B). 2)
The set of all fuzzy-random variables is denoted by Lr (X,B,P). Let g,,g9 €
Lr(X,B,P),neN and0<q < +oo. We say g, (s) /q_m—jm/ g(s)if
tim [ D (4. (3).9(s))" P ds) = 0. 3)
n—-—1+0oo X

Remark 3 (see [30], p. 654) If f,g € L (X,B,P), let us denote F' : X —
Ry U{0} by F(s) =D (f(s),g9(s)), s € X. Here, F is B-measurable, because
F =Go H, where G (u,v) = D (u,v) is continuous on Rr x Rg, and H : X —
Rr xRgr, H(s) = (f(s),9(s)), s € X, is B-measurable. This shows that the
above convergence in g-mean makes sense.

Definition 4 (see [30], p. 654, Definition 13.17) Let (T,T) be a topological
space. A mapping f : T — Lx(X,B,P) will be called fuzzy-random function
(or fuzzy-stochastic process) on T. We denote f (t)(s) = f (t,s), t €T, s€ X.

Remark 5 (see [30], p. 655) Any usual fuzzy real function f : T — Rg can
be identified with the degenerate fuzzy-random function f (t,s) = f(t),Vt e T,
se X.

Remark 6 (see [30], p. 655) Fuzzy-random functions that coincide with prob-
ability one for each t € T will be consider equivalent.

Remark 7 (see [30], p. 655) Let f,g : T — Lx(X,B,P). Then f ® g and
k® f are defined pointwise, i.e.,

(f@g)(t,s):f(t,s)@g(t,s),
(ko f)t,s)=kof(,s), teT,se X, keR.



Definition 8 (see also Definition 15.18, pp. 655-656, [30]) For a fuzzy-random
function f : W C RN — Lz (X,B,P), N € N, we define the (first) fuzzy-
random modulus of continuity

Qg}_) (fv 6)[,11 =

p{( [ o1 s s pas)

0<d,1<qg<o0.

Z.’L‘,yEVV, ||$_y||oo<§}7

Definition 9 ([16]) Here 1 < q < +oo. Let f : W C RN — Lz (X,B,P),
N €N, be a fuzzy random function. We call f a (g-mean) uniformly continuous
fuzzy random function over W, iff V.e > 0 3 § > 0 :whenever ||z —yl||, <9,
xz,y € W, implies that

/X (D (f (@.5) . f (5. 5))" P (ds) < <.

We denote it as f € ng% (W).

Proposition 10 ([16]) Let f € C’g"R (W), where W CRY is conver.
Then ng) (f,0)pq <00, any 6 > 0.

Proposition 11 (/16]) Let f,g : W C RN — Lz (X,B,P), N € N, be fuzzy
random functions. It holds
(i) ng) (f,0)q ts nonnegative and nondecreasing in 6 > 0.

(i6) i@ (£.6) 1, = O (£,0), = 0, iff € O (W).
We mention

Definition 12 (see also [6]) Let f (t, s) be a random function (stochastic process)
from W x (X,B,P), W C RY_ into R, where (X,B, P) is a probability space.
We define the q-mean multivariate first modulus of continuity of f by

Ql (fv 5)Lq =

1

Sup{(/xw,s)_f<y,s>|qp(ds>)“

6>0,1<¢g<o0.

m,y €W,z =yl <5}7 (4)

The concept of f being (¢-mean) uniformly continuous random function is
defined the same way as in Definition 9, just replace D by |-|, etc. We denote it
as f € Cﬂg“ (W).

Similar properties as in Propositions 10, 11 are valid for Q4 (f,0),, -

Also we have



Proposition 13 (/3]) Let Y (t,w) be a real valued stochastic process such that
Y is continuous in t € [a,b]. Then'Y is jointly measurable in (t,w).

According to [28], p. 94 we have the following

Definition 14 Let (Y,T) be a topological space, with its c-algebra of Borel
sets B := B(Y,T) generated by T. If (X,S) is a measurable space, a function
f: X — Y is called measurable iff f~' (B) € S for all B € B.

By Theorem 4.1.6 of [28], p. 89 f as above is measurable iff
fFHC)eSforall CeT.
‘We mention

Theorem 15 (see [28], p. 95) Let (X,S) be a measurable space and (Y,d) be

a metric space. Let f, be measurable functions from X into Y such that for

alx € X, fo(x) = f(x) inY. Then f is measurable. Le., lim f, = f is
n—oo

measurable.
We need also

Proposition 16 ([16]) Let f,g be fuzzy random wvariables from S into Rx.
Then

(i) Let c € R, then ¢ ® f is a fuzzy random variable.

(ii) f ® g is a fuzzy random variable.

Proposition 17 Let Y (?,w) be a real valued multivariate random function
N

(stochastic process) such that' Y is continuous in T e 11 [ai, b:]. Then Y is
i=1
jointly measurable in (?, w) and [ x Y (?,w) dt is a real valued random

il;I1 [ai ’bi]
variable.

Proof. Similar to Proposition 18.14, p. 353 of [7]. =

2 About neural networks background

2.1 About the arctangent activation function

We consider the

* d
arctan x = / 722, z €R. (5)
o 1+z



We will be using

2 m 2 (7 dz
h(x):= - arctan (§m> = ;/0 T30 ° eR, (6)

which is a sigmoid type function and it is strictly increasing. We have that

h(0)=0, h(-z)=—h(z), h(+00)=1, h(—o0c)=—1,

and
/ —
R (x) = e >0, allz € R. (7)
We consider the activation function
1
$1(@) =7 (@ +1)~h(z-1), 7R, (8)
and we notice that
Y1 (=) =9, (2), 9)

it is an even function.
Sincezx +1>x — 1, then h(z+1) > h(x —1), and ¢, (x) > 0, all z € R.
We see that
¥, (0) = %arctang ~ 18.31. (10)

Let = > 0, we have that

Yo = (0 (1)~ K (= 1)) =

—4r’z
< 0. 11
(4+7r2(z+1)2) (4+7r2(:571)2) ()
That is
Y (z) <0, for x > 0. (12)

That is v, is strictly decreasing on [0,00) and clearly is strictly increasing on
(_0070]1 and 7/)/1 (O) =0.
Observe that
lim by () = & (h(+00) b (+00)) =0,
and (13)
lim ¢, (z) = 3 (h(—00) = h(=00)) =0.

Tr——00

=

That is the z-axis is the horizontal asymptote on ;.
All in all, ¢, is a bell symmetric function with maximum ), (0) 2 18.31.
We need



Theorem 18 ([19], p. 286) We have that

i¢1(x—i)=1,VxeR. (14)

1=—00

Theorem 19 (/19], p. 287) It holds

/_OO Py (x)dx = 1. (15)

So that 1, (x) is a density function on R.
We mention

Theorem 20 ([19], p. 288) Let 0 < a < 1, and n € N with n' =% > 2. It holds

o0

3 Y nr—k) < —2  —ei(am).  (16)

w2 (nl—e —2)
k=—o0
{ nx — k| > ntme

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

‘We need

Theorem 21 ([19], p. 289) Let x € [a,b] C R and n € N so that [na] < [nb].
It holds

1
< ~0.0868 =: a1, Vx €]Ja,b]. (17)
Zg;b[me ¥y (ne— k) ¥1(1)
Note 22 ([19], pp. 290-291)
i) We have that
Lnb]
lim Y 4y (nx— k) # 1, (18)

k=[na]

for at least some x € [a, b].

it) For large enough n € N we always obtain [na] < [nb]. Also a
iff [na] <k < [nb].

In general, by Theorem 18, it holds

IN
3=
IN

N

Lnb]

> v (nz—k) <L (19)

k=[na]



We introduce (see [24])

N
71 (21, .xy) = 71 (x) := Hz/Jl (z;), x=(z1,...,zy)€RY, N eN. (20)
i=1

Denote by a = (a1, ...,an) and b = (by,...,bn) .
It has the properties:
(i) Z1(z) >0, Ve RV,
(ii)

o

k=—o0 k1=—00 ka=—00 kn=—00

where k 1= (k1,....,k,) € ZN, ¥V x € RV,
hence

(iii)

oo

Z Zy (nz — k) =1,

k=—oc0

VzeRN;neN,
and

(iv)
/ Zy (x)dz =1,
RN

that is Z; is a multivariate density function.
(v) It is clear that

Z Zl(nw—k)<m:

{ k= —o0
1% ==l > 55
0<f<l,neN:n'"#>2 zcRV,

(vi) By Theorem 21 we get that

1
S e k) ()

0

Vze (Hf\il [ai,bi]), n € N.
Furthermore it holds

Lnbd]
lim Z Z1 (nx — k) # 1,
k=[na]

Z Z1 (x—k) = Z Z Z Zl (.73‘1—]{,’1,...

1 N
< - = (0.0868)

(23)

a (67 n) ’ (24)

=7 (N), (29)



for at least some x € (Hfil [a;, b2]>

Above it is ||z|| = max {|z1], ..., |zn|}, € RV, also set oo := (o0, ..., 00),
—00 = (—00, ... — 00) upon the multivariate context.

2.2 About the algebraic activation function

Here see also [20].
We consider the generator algebraic function

T

¢($)2W7

which is a sigmoidal type of function and is a strictly increasing function.
We see that ¢ (—z) = —¢ (z) with ¢ (0) = 0. We get that

meN, zeR, (27)

1
Y lr)=——— >0, Vo eR, (28)

(1+$2m) 2m
proving ¢ as strictly increasing over R, ¢’ (z) = ¢’ (—x). We easily find that
lim p(x) =1, p(+o0)=1,and lim p(z)=-1, p(—o0) = —1.
r— 400 Tr— —00
We consider the activation function

Ya(@) = 1@+ 1) —p(e—1)]. (29)

Clearly it is ¥y (z) = ¥y (—2), V & € R, so that 1, is an even function and
symmetric with respect to the y-axis. Clealry ¢, () > 0,V = € R.

Also it is
1

2%%/2
By [20], we have that 1/, (z) < 0 for x > 0. That is 1, is strictly decreasing
over (0,+00).

Clearly, 1, is strictly increasing over (—oo, 0) and % (0) = 0.

Furthermore we obtain that

¥, (0) = (30)

1

im_ vy (2) = £ [ (+00) — 0 (+00)] =0, (31)
and ]
lim g, (2) = 5 [p (—00) — 9 (—00)] = 0. (32)

That is the z-axis is the horizontal asymptote of 1),.
Conclusion, v, is a bell shape symmetric function with maximum

We need



Theorem 23 (/20]) We have that

in(x—i)zl,VxeR. (34)

i=—00

Theorem 24 ([20]) It holds
/ ¥y (x)dz = 1. (35)
Theorem 25 ([20]) Let 0 < o < 1, and n € N with n'=* > 2. It holds

= 1
Z Yy (nz —k) < PP E— =:co(a,n), meN.
k= —o0
{: Inz — k| > nl=@

(36)
We need

Theorem 26 ([20]) Let [a,b] C R and n € N so that [na] < |nb]. It holds

1
i <2(WITT7) = @
>y (nw—k)
k=[na]
Yz € la,b], m € N.
Note 27 1) By [20] we have that
Lnb]
lim Y by (nx— k) # 1, (38)
k=[na]

for at least some x € [a,b] .

2) Let [a,b] C R. For large n € N we always have [na] < |[nb|. Also
a < B <b, iff [na] <k < [nb).

In general it holds that

[nb)
> gy (nz—k) <L (39)
k=[na]

We introduce (see also [25])

N
Zo (x1, ..y an) 1= Zp (2) = H¢2 (i), == (z1,...,an) €ERY, N eN. (40)
i=1

10



It has the properties:
(i) Zz(x) >0, Vo € RN,
(i)

N Zo(x—k):= > > > Zy(wr—k oy —ky) =1,

k=—o00 ki=—oc0o kag=—00 kny=—0o0

where k := (k1,....,k,) € ZN, ¥ 2 € RV,
hence
(i)
Z Zs (nx — k) =1,
k=—o0

VzeRN:neN,
and

(iv)
/]RN Zs (z)dx =1,

that is Z5 is a multivariate density function.
(v) Tt is clear that

1
Z Zg (nz — ]C) < am (nlfﬁ — 2)2771 = C2 (ﬁan) )

0<B<l,neN:n'F>2 2eRY meN.
(vi) By Theorem 26 we get that
1 1

0< <
St Za(na — k) (o (1)

Ve (HiN:l [ai,bi]), n € N.
Furthermore it holds

Lnb)
lim Z Zy (nx — k) #1,
e k=[na]

for at least some x € (Hf\il lai, bJ) -

11

(42)

(43)

(44)

(45)



2.3 About the Gudermannian activation function

See also [21], [34].
Here we consider gd (x) the Gudermannian function [34], which is a sigmoid
function, as a generator function:

x Todt
o (z) = 2arctan (tanh (§)> = /0 ol = gd(z), z eR. (47)
Let the normalized generator sigmoid function
4 4 (7 dt 8 [7 1
P S == ——dt R. 48
1 (@) 71_0'(33) 7r/0 cosht 77/0 et +et ve (48)
Here 4
"(z) = >0, VzeR
(@) 7 cosh @ Ve ’

hence f is strictly increasing on R.
Notice that tanh (—z) = —tanhz and arctan (—z) = —arctanz, z € R.
So, here the neural network activation function will be:

[f(z+1)—f(z—-1)],xzeR (49)

| =

V3 (7) =

By [21], we get that
Y3 (x) =¢3(—z), VzeR, (50)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+00) =
1, f(—o0) = —1 and f(0) = 0. Clearly it is

f(=x)=—f(z), VzeR, (51)

an odd function, symmetric with respect to the origin. Since z+1 >z — 1, and
fx+1)> f(z—1), we obtain 95 (z) >0,V z € R.
By [21], we have that

Ps (0) = %gd(l) =~ ().551. (52)

By [21] 4 is strictly decreasing on (0, +00), and strictly increasing on (—oo, 0),
and % (0) = 0.
Also we have that
lim ¢y (z) = lim ¢3(z) =0, (53)

r——+00

that is the x-axis is the horizontal asymptote for 5.

Conclusion, 15 is a bell shaped symmetric function with maximum ) (0) =2
0.551.

We need

12



Theorem 28 (/21]) It holds that

> dy(z—i)=1, VzeR. (54)

i=—00

Theorem 29 ([21]) We have that

/ Y3 (z)dz = 1. (55)
So 4 (x) is a density function.

Theorem 30 (/21]) Let 0 < a < 1, and n € N with n'=* > 2. It holds

- 4 4e?
Z Ps (nx — k) < e g) T o = 03 (a,n). (56)
Te Te
k=—o00
{: Inz — k| > nt=@

Theorem 31 ([21]) Let [a,b] CR and n € N, so that [na] < |nb|. It holds

1 T
2412 =:
[nb] < 9d(2) “ (57)
2. Y3 (nz—k)
k=[na]
Vz € la,b].
We make
Remark 32 (/21])
(i) We have that
[nb]
lim Y by (nx — k) # 1, (58)
k=[na]

for at least some x € [a, b].
(i) Let [a,b] C R. For large n we always have [na] < |nb|. Alsoa < £ <,
iff [na] <k < |nb].

In general it holds
[nb]

> g(nz—k) <L (59)
k=[na]

We introduce (see also [23])

N
Zs (w1, an) = Z3 () == [ [ 3 (x:), 2= (21,..,2n) €ERY, N €N. (60)
i=1

13



It has the properties:
(i) Z3(x) >0, Vo € RN,
(i)

Z Z3(£U—k) = Z Z Z Zg(xl—kl,...,

k=—o00 ki=—oc0o kag=—00 kny=—0o0

where k := (k1,....,k,) € ZN, ¥ 2 € RV,
hence

(i) .
Z Zs (nx — k) =

k=—o0

/ Zs (z)dx =1,
RN

that is Z3 is a multivariate density function.
(v) Tt is also clear that

oo

(T et

0<B<l,neN:n'F>2 2eRY meN.
(vi) By Theorem 31 we get that

1 m N N
0< < < ) >~ (2.412)7 =
Inb} 7, (nz — k) 9d(2)

k=[na]

Vaoe (Hl 1[az,b]), n € N.
Furthermore it holds

Lnb]
lim Z Zs (nx — k) #1,
n— oo keTma]

for at least some x € (Hf\il [a;, bi]) .

14

42
S Zme-k <o
e

C3 (5’77’)7

WS(N)a

(62)

(64)



2.4 About the generalized symmetrical activation func-
tion
Here we consider the generalized symmetrical sigmoid function ([22], [29])

fl(x):$, un>0,xeR. (67)

(1+ fa])*
This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.

The parameter p is a shape parameter controling how fast the curve ap-
proaches the asymptotes for a given slope at the inflection point. When p =1
f1 is the absolute sigmoid function, and when p = 2, f; is the square root
sigmoid function. When g = 1.5 the function approximates the arctangent
function, when p = 2.9 it approximates the logistic function, and when p = 3.4
it approximates the error function. Parameter p is estimated in the likelihood
maximization ([29]). For more see [29].

Next we study the particular generator sigmoid function

f2(z) =

©

(1+ 11

We have that f, (0) = 0, and
fa(=2) =—f2(2), (69)

so fo is symmetric with respect to zero.
When x > 0, we get that ([22])

, Ais an odd number, z € R. (68)

Pl

£y (@) = —— x>0, (70)

(1+a%)
that is fo is strictly increasing on [0, +00) and f is strictly increasing on (—oo, 0].
Hence fs is strictly increasing on R.
We also have f5 (+00) = fa (—o0) = 1.
Let us consider the activation function ([22]):

Yaw) = 11+ 1)~ folw—1) =

i (x+1) __ (x—1) § (71)
(1+|x+1|*)* (1+|a;—1|A)A
Clearly it holds ([22])
Yy (2) =9y (-2), Vel (72)

15



and
1

T ™

4 (0)

and ¢, () >0,V 2 € R.

Following [22], we have that 1, is strictly decreasing over [0,400), and 1,
is strictly increasing on (—o0,0], by 1,-symmetry with respect to y-axis, and
¥} (0) =0.

Clearly it is

lim o, (2) = lim 4, (2) =0, (74)

r— 400

therefore the z-axis is the horizontal asymptote of 1, (x).

The value 1
Y, (0) = 5 A is an odd number, (75)
is the maximum of ,, which is a bell shaped function.
We need
Theorem 33 ([22]) It holds
> Wy (z—i)=1, VzeR (76)
Theorem 34 ([22]) We have that
/ Yy () de = 1. (77)

So that ¢, (x) is a density function on R.
We need

Theorem 35 ([22]) Let 0 < a < 1, and n € N with n'=% > 2. It holds

oo

b, (na — j) < M —eian),  (18)

e

tna = j| > ntme

where A € N is an odd number.
We also need

Theorem 36 (/22]) Let [a,b] C R and n € N so that [na] < |nb]. Then

1
I <2V1+2) = ay, (79)
> Yy (|Inz — k)

k=[na]

where A is an odd number, ¥ x € [a,b].

16



‘We make

Remark 37 ([22]) (1) We have that

L]
lim Z Yy (nx — k) #1, for at least some = € [a,b]. (80)
k=[na]

(2) Let [a,b] C R. For large enough n we always obtain [na] < |nb|. Also
a <k <b, iff [na] <k < [nb).
In general it holds that

Lnb]

> Yy (nz—k) <L (81)

k=[na]

We introduce (see also [26])

N
Zy (21, .y xy) = Zg (x) := Hz/J4 (z;), x=(x1,...,x5)ERY, NeN. (82)
i=1

It has the properties:
(i) Zs(z) >0, Vo e RV,
(i)

Z Z4($—k) = Z Z Z Z4(LE1—]€1,...,$N—/€N)=1,
k=—o00 k1=—00 ko=—0o0 kn=—00
(83)
where k := (ki,...,k,) € ZN,V z € RV,
hence
(iii)
Z Zy(nx — k) =1, (84)
k=—oc0
VzeRN; neN,
and
(iv)
/ Zy (x)dx =1, (85)
RN

that is Z4 is a multivariate density function.
(v) It is clear that

{Hﬁk

1 p—
2X (n1=F — 2)*

K

Zy (nx — k) <

—00

1
>nﬁ

|
B8

oo
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0<B<l,neN:n"#>2 2ecRN, \is odd.
(vi) By Theorem 36 we get that

0< ! < (2 V1t QA)N =7, (N), (87)

nb
St o Za (na — k)

Ve (vazl [aiabi]), n € N, X is odd.
Furthermore it holds

[nb)
lim_ kzr: | Zy(nx — k) #1, (88)

for at least some z € (Hil [a;, bl]> .
Set
[na] := ([na1],..., [nan]),

[nb] := (|nb1], ..., [nbNn]),
where a := (ay, ...,an), b := (b1, ...,bn), k = (K1, ..., kn) .
Let feC (sz\;1 [ai,bi]) , and n € N such that [na;] < |nb;],i=1,...,N.
We define the multivariate averaged positive linear quasi-interpolation neural
network operators (z := (z1,...,2n) € (Hi\il [ai,bi]>); j=1,2,34:

Zlinb%na] (k) Zj (TLZL' - k)
An (f, 21, enzn) = AL (f,2) = - = (89)
1 N J E;E brjmﬂ (nm k’)

|nb1] [nb2 ] [nbn |
Zkl:lj'nal] ZkQ:zfnag'\ ZkN N|'na;xf| (kl %) (Hz lw (’I'LSCZ - 1))
N nb; ’
Hi:1 ( IEi:[JnaJ ¢ (nx; — z))

For large enough n € N we always obtain [na;] < |nb;], i = 1,...,N. Also
a; < & < by, iff [na;] < ki < [nbi),i=1,..,N.
When f € Cp (RY) we define (j = 1,2,3,4)

B, (f,z):= ;jBn(f,21, ... Z f< ) (ne — k) == (90)

k=—o0

DN DI DI C RN (f[lwmiki)),

k:l 700](72 —0o0 ]CN — 00

n €N, Vz e RN, N €N, the multivariate full quasi-interpolation neural
network operators.
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Also for f € Cp (RN ) we define the multivariate Kantorovich type neural
network operators (j = 1,2, 3,4)

iCn (frz) = ;C, (f,21,...,aNn) = Z (nN/nf()dt>Z (nx — k) :=

k=—oc0 n
(91)
00 oo oo k1+1 kat1 Ey+1
SR> ( f(tl,...,tN)dtl...dtN)
ko kn
ki=—00 kg=—00 n no

N
: (H ¥ (nw; — ki)) ;
i=1
neN, VzeRVN,

Again for f € Cp (RN ), N € N, we define the multivariate neural net-
work operators of quadrature type ;D, (f,z), n € N, as follows. Let § =

01,....05) € NV, 7 = (rq,...,7n) € Zf, Wy = Wpy ry,..ry > 0, such that
01 02 On

(4
DW= D D e D Wrpmg,ry = 15 K€ ZY and
=0

r1=07r2=0 rny=0

0 _
Onk (f) 1= Onky kareken (f) = Zw;f <k + 7:0) =

ANNE k1 1 ke r9 kn TN
— ==y 2
> E Wy g, TNf( w0 Tne v T ) (92)

nd
T1= 0T2 0 TN= =0 N

where = (94 o ﬁ) j=1,2,34.
We put

D, (f,z) = ;D (f, 1, ... xN Z Sk (f) Zj (nz — k) := (93)

)DIID DI SEF N (m )

ki=—o00 kpg=—00 kn=—00
VzeRN.
For the next we need, for f € C (Hl 1 lag, bl]> the first multivariate modulus
of continuity

wi (f,h) = sup |f () = f ()], h>0. (94)
2,y € [T1L, [ai, bi]
lz -yl <h
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It holds that
limew (f,h) = 0. (95)

Similarly it is defined for f € Cp (RN ) (continuous and bounded functions
on RY) the wy (f, k), and it has the property (95), given that f € Cy (RY)
(uniformly continuous functions on RYV).

We mention

Theorem 38 (sce [23], [24], [25], [26]) Let f € C (Hﬁil [ai,bi]) L0< B <1,

x € (vazl [ai,bi]) ,N,neNwithn'=% >2;,j=1,23,4. Then
1)

n (1,0) = £ 7, () [n (£ 25 ) 4 265 ) 1L =, (90)

and
2)
HjAn (f) - f”oo < )‘jl- (97)
We notice that nlingo Ay (f) = f, pointwise and uniformly.

In this article we extend Theorem 38 to the fuzzy-random level.
We mention

Theorem 39 (sce [25], [24], [25], [26]) Let f € Cp (RY),0< B <1, z € RY,
N,n € N withn'=? > 2; j =1,2,3,4. Then
1)

3B (fo) = £ @) <or (£7) #2650 [l = Az 99

2)
13Bn (f) = fllo < A2 (99)
Given that f € (Cy (RY) N Cp (RY)), we obtain lim B, (f) = f, uniformly.

We also need

Theorem 40 (see [25], [24], [25], [26]) Let f € Cp (RY),0< B <1, z € RV,
N,n €N withn'=% >2;: j=1,2,3,4. Then

1)
5o (o) = F @I o (£ 4+ 1) 426 o) [l = A (100

2)
[5Cn () = flloo < A (101)
Given that f € (CU (RN) NCp (RN)) , we obtain lim ;Cy, (f) = f, uniformly.
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We also need

Theorem 41 (see [23], [24], [25], [26]) Let f € Cp (RY),0< <1, z € RV,
N,n € N withn'=? >2; j =1,2,3,4. Then
1)

3Du () = f @) < en (34 ) + 26 Gl = A (102)

2)
D0 (f) = flloo < Aja- (103)

Given that f € (Cy (RY)NCp (RY)), we obtain lim ;D, (f) = f, uni-
formly. /

In this article we extend Theorems 39, 40, 41 to the random level.
We are also motivated by [1] - [16] and continuing [17]. For general knowledge
on neural networks we recommend [31], [32], [33].

3 Main Results

I) ¢-mean Approximation by Fuzzy-Random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
Quasi-Interpolation Neural Network Operators

All terms and assumptions here as in Sections 1, 2.
N

LetfeC’g%(H[ai,bi])1§q<+oo, nNeNO<pf<1 T ¢€

i=1

N
<H [ai, bi] |, (X, B, P) probability space, s € X; j =1,2,3,4.
i=1

We define the following multivariate fuzzy random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based quasi-

interpolation linear neural network operators

Crm e R Z, (n?—?)
GATR(D) (&)= > fl—s|0O ,(104)
- n Lnb] N
k=[na] Z Zj (n? — k)
k=[na]

(see also (89).
‘We present

N N
Theorem 42 Let f € C’g%z (H [ai,bi]>, 0<B<1 7€ (H [ai,bi]>,

2

I
—

=1
n,N € N, withn'=F > 2,1 < q < +o00. Assume that [ (D* (f (-, s),
o00; 5 =1,2,3,4. Then

g
=
v
8
A
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1)
q

( [ D1 (GATR () (7 9). £ (7)) P(ds)> < (105)

q

7 () {Q (r55) 2G| @ 0.0y Pian)
9

=
——
I
>
<.~
=9
z

1
q

H (/X DU (GAZR () (F.9). [ (T, 5)) p(ds>>

(106)
where v; (N) as in (25), (45), (65), (87) and c; (B,n) as in (24), (44), (64),
(86).

Proof. We notice that
D <f (ffﬁ) ,f(?,s)> <D (f (Ss) ,5) +D(f(%,s),0)  (107)

Hence

D (f (ﬁ ) ,f@,s)) < 20D (f(5),0) (108)
and
(/ D (f (?s)i(?,s))P(ds))qéZ(/ (D*<f<',s>,5>>qp<ds>)‘l‘.
b'e n X
(109)

We observe that

22



So that

|nb]| N
3 ny (nz — k) D(f (i,s) 7f(?,s)>+
_F=nal S Zj(nz—k)
57 < \F2hm
[nb] N
Z; (nx — k) L .
- \_anJ D (f (n,5> ,f(iC,S))
k =[na] > Zj(nz—k)
”E—?‘ >% ?:[na‘\
Hence it holds
( P (GATE) (?78),f(?,s))P(ds)> "< (114)
ot Z; (nx — k) ? g
; (Lor(s(5) s@n) pan) +
N I.an D' n
k =[na] > Zj(nz—k)
E-7||_s& \¥=lna]

!
B
=N
)
=
|
=
7N
T
)
[i=}
/N
kﬁ
VR
SRR
\’%
~
h
8]
&
~—
)
=
=
~
Q=
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1 1
3 \nT —

%= [na]

2 ([ (0 (7 9.0)7 P @)
al

1
e

L]
Z Z; (nx — k)
’(n

—
k=

=

7—1’

oo

(by (24), (25); (44), (45); (64), (65); (86), (87))

<3, () {Q@ (£55) w2 ([ 0007 Co0 P ) 3’} .

(116)
We have proved claim. m

Conclusion 43 By Theorem 42 we obtain the pointwise and uniform conver-
gences with rates in the g-mean and D-metric of the operator ;AL ™ to the unit
N
operator for f € CZQR (H [ai,bi]) ,j=1,2,3,4.
i=1
IT) l-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
full Quasi-Interpolation Neural Network Operators
Let g € C’%l (]RN), 0<B <1 7T eRY, n N eN, with HgHOO’RN)X < 00,
(X, B, P) probability space, s € X.

We define
> %
.
BP9 (7= 3 g <n5> Z (n?f k) j=1,2,3,4, (117
T =—00

(see also (90)).
We give

Theorem 44 Let g € C%l (RY),0<B<1, @ eRY, n N €N, withn'=# >
2, |9/l o v x <003 =1,2,3,4. Then
1)
/ (((BR (9)) (@) = (7 ,9)| P(ds) < (118)
X

1 R
{00 () 2 Bl p =P,
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2)
< ).

oo, RN

(/B (9) (F,5) = g (F.9)| P (ds)

I/

Proof. Since [|g]|,, gx x < 00, then

g<§> ~g(7.9)
g (:78> —g(?,s)

< 2 lglao o x < o0

Hence

P (ds) < 2||glloo ey x < oo

Z g (:,s> —g(?,s) Zj(nx — k) =
F=—00

Z g<i7s>—g(?,s) Zj (nx — k) +
F=—o00

Furthermore it holds

(/X ‘(jBr(LR) (9)) (@,5) — g(?,s)‘ P(ds)> <

25
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(120)

(121)

(122)

(123)
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> (/

g <’I]’€L’S> —g(?78)

P (ds)) Zj (nz — k) + (125)

F=—o0
[+-2].<5
> ¥
Z (/ 9<na3>—g(7,s)P(ds))Zj(nm—k)g
= X
k=—0c0
[5-2].>%
1 oo
Q1 <g>n5>L1+2”g|oo’RN’X Z Zj (nm—k) <
% =—oc0
7| >

1
Ql (ga 771B>L1 + 20] (B,’fl) HgHoo,]RN,X’

proving the claim. m

Conclusion 45 By Theorem 44 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators ngz) to the unit operator for
ge O (RY), j=1,2,3,4.

IIT) l-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate Kantorovich type neural network operator

Let g € C’%l (]RN), 0<B<1 7T RN, n N eN, with ||9Hoo,]RN,X < 00,
(X, B, P) probability space, s € X.

We define (5 =1,2,3,4):

00 E+1
jCT(LR) (9)(Z,s) := Z nN /_) g (?,s) dt Z; (n? — ?) , (126)
K
F=—00 "
(see also (91).
We present
Theorem 46 Let g € C’%l (RN) ,0<B<1, 7 eRY, n N €N, withn'# >
2:7=1,2,3,4, HgHOO’RN’X < 00. Then

1)
/X ‘(jC,(LR) (g)) (7, s) _9(775)‘ P (ds) <

1 1 R
o (0p ) 2B llrs] =P 02

R
<A\ (128)

oo,RN
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Proof. Since [|g||,, gv x < 00, then

n —
g(t

Hence

,8) d?—g(?,s)

—
k+1

’g (7,8) —9(7,5)‘ dt <2 19/l oo rv x < 00

[ L7 0(Fos) dT = 99| Pds) <209l x <
X o

n

We observe that

(R (9)) (F.s) — g(T,5) =
0o E+1
n —)
Z nN/ﬂ g(?,s)d? Zj(n?—k)—g(?,s):
k
& =—o0 7
00 T +1 .
n — — — —
Z nN/z g(t,s)dt Zj(nm—k)—g(?,s) Z Zj(n?—k):
?:—OO " ?:—oo
(131)
0o k+1 ]
n —
> N[ g(?,s>d7 ) Zj(n?_k):
k
F=—o00 n ]
00 k41 ]
n —
Z nv . <g<?,s)fg(x,s))dt ZJ(n?fk)
k
F=—00 n |
However it holds
00 T 41
n —
Z nN _ ‘g(?,s)—g(m,s)‘dt Zj(n?—k)§2||g||ooRNX<oo.
% RN,
?:—oo "
(132)
Hence
()0P (9) (7.5) — 9 (79)| <
k+1
n — —
'g(t,s)—g(z,s)dt Zj(nx—k): (133)
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_.k:—oo
-7 2%
) ?nJrl .
> nN/? ‘g(?,s)—g(?,s)’dt Zj(n?—k)z
& =—o0 n
|57 >
. (- T . L
Z n/ g t+;,s —g(Z,s)|dt Zj(nx—k)+
- 0
k =—o0
(e
(135)
=[] (- F o
Z ”/ g t+;,s —g(@,s)|dt Zj(nm—k)
- 0
57>

Furthermore it holds

([ 1(e® @) @0 -a@)

_)Z nN/O; (/X g(?—l—f,s)—g(?,s) P(ds))d? Z; (n?—?)—i—

k=—00 o

P (ds)> <

(by Fubini’s theorem)

E,—>H <1
oo

<L
(136)
SO 7 i }
Z ”N/ (/ 9<?+,s>—g(?,s) P(ds))dt Zj(n?—k>§
— 0 X n
k=—00 - i
7| >
1 1 > N
2 (g’n+rL5) +2||9||00,RN,X Z Zj (TL?— k) <
L F——oo
7| >
@ (9.5 + ) +2¢ B0 gl (137
119, n 7’?/8 I 7 ) g co,RN X »

proving the claim. m

Conclusion 47 By Theorem 46 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jCT(,,R) to the unit operator for
geCR (RY), j=1,2,3,4.
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IV) l-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate quadrature type neural network operator

Let g € Cp' (RY), 0< 8 <1, 7 € RN, n,N €N, with ||g]| g~ x < 0,
(X, B, P) probability space, s € X, j =1,2,3,4.

We define
DR (@) (T,s) = > (0,2(9) ()2 (nT - F), (138)
K =—oc0
where -
é ¥ 7
( nk (9)) (s) = w=9g (n + 7,5) , (139)
=0 n

(see also (92), (93)).
We finally give

Theorem 48 Let g € C’gl (RN) ,0<B8<1, = RN} n, N € N, with nl=8 >
2; j = 1727374a HgHooJRN)X < 00. Then

1)
/X ‘(ij«LR) (9)) (7,s) - g(?,s)’ P(ds) <
{Ql (9’ % + ”1ﬁ>u +2¢; (B,n) IIQIIOO,RN,X} =7, (140)
2)
H/X ‘(nga) (g)) (7,s) - g(?,s)‘ P (ds) LS #P. (141)

Proof. Notice that

< 2|9/l v x < 00 (142)

[ 16,7 @) () =9 (F,9)| P(ds) <2lgllon x <00 (143)

We observe that
(1D (9)) (F.5) — 9 (7 5) =
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S (6,7 @) ()~ g(T.9) 2 (n? - %’) . (144)
Thus

ﬁz 0,7 @) (5) = 9(F9)] Z; (07 = F) <209l cpmwx <00 (145)

k=—o00

Hence it holds

(147)
o
| Y (07 F) [2Mglenn oy <
k=—oc0
[#-7l..>%
a <gl+1) +2¢; (8,1) 19l v (148)
‘n nf) . I PR

proving the claim. m
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Conclusion 49 From Theorem 48 we obtain pointwise and uniform conver-

gences with rates in the 1-mean of random operators jDSLR

) to the unit operator

forge CY (RY), j=1,2,3,4.
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