BASIC PROPERTIES OF RELATIVE ENTROPIC NORMALIZED
DETERMINANT OF POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A, B and = € H with |z| =1
we define the relative entropic normalized determinant Dy (A|B) by
D; (A|B) := exp <A% (ln (A_%BA_%>) A%x,x> .
In this paper we show, among others, that
A (Az,x) B (Az,z)
(et ) < b qamy < (222
(AB~1Az, z) (Az, x)

for all A, B> 0 and = € H with ||z|| = 1. Several other properties of Dy (-|-)
are also provided.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,x) > 0 for all z € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [9], [10], introduced the normalized determinant A,(A)
for positive invertible operators A on a Hilbert space H and a fixed unit vector
x € H, namely |z|| = 1, defined by A, (A4) := exp (In Az, x) and discussed it as a
continuous geometric mean and observed some inequalities around the determinant
from this point of view.

Some of the fundamental properties of normalized determinant are as follows,
[9].
For each unit vector « € H, see also [12], we have:

(i) continuity: the map A — A, (A) is norm continuous;

(i) bounds: <A*1x,x>71 < AL(A) < (Az, z);
(iii) continuous mean: (APz,z)"? | A,(A) for p | 0 and (APz,z)'/? 1 A,(A)
for p T 0;

(iv) power equality: A, (AY) = A (A)! for all t > 0;
v) homogeneity: Ay(tA) =tA,z(A) and A, (tI) = ¢ for all t > 0;
(vi) monotonicity: 0 < A < B implies A, (A) < A, (B);
(vii) maultiplicativity: Ay (AB) = Ay(A)A,(B) for commuting A and B;
(viii) Ky Fan type inequality: A, ((1 —a) A+ aB) > A, (A)' A, (B)* for 0 <

a<l1.
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We define the logarithmic mean of two positive numbers a, b by

lnll;:ilna if b 7& a,
(1.1) L(a,b) :=
aifb=a.

In [9] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

MInm —mInM
M—m

(1.2) 0< (Az,z) — AL(A) < L(m,M) {lnL(m,M)—&— 1
for all x € H, ||z|| = 1.
We recall that Specht’s ratio is defined by [18]

Bt he (0,1) U (1,00),
(13) S(h) : eln(hh—1>

lifh=1.

It is well known that lim,—, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).

In [10], the authors obtained the following multiplicative reverse inequality as
well

(Az, x) M
1.4 1< <S|—
(14) - AL(4) m
for0<mlI <A< MIandxe€H, |z| =1.
For the entropy function 7 (¢f) = —tlnt, ¢ > 0, the operator entropy has the
following expression:
n(A)=—AlnA
for positive A.
For z € H, ||z|| = 1, we define the normalized entropic determinant n,(A) by
(1.5) n,(A) :=exp (— (Aln Az, z)) = exp (n (A) z, x) .

Let x € H, ||z|| = 1. Observe that the map A — n,(A) is norm continuous and
since

exp (— (tAln (tA) z, z))
=exp(— (tA(Int+1nA)z,z)) =exp(— ((tAlnt +tAln A) z, z))
=exp (— (Az,z) tInt) exp (—t (Aln Az, z))
=expln (t_<Am’r>t> [exp (— (Aln Az, x>)]_t ,
hence
(1.6) 0, (tA) = ¢ A5 [y ()]

for ¢t >0 and A > 0.
Observe also that

(1.7) ng(I)=1and n,(tI) =t"
for t > 0.
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In the recent paper [3] we showed among others that, if A, B > 0, then for all
x € H,||z||=1and ¢ € [0,1],

n,(L=t)A+tB) > (n, (4)" ™" (n, (B))" .
Also we have the bounds
—(Az,x)
<A2x x>
1. itk bt < (A) < (Ag, )~ Ao
(19 <<Ax7$>> < ,(4) < (A, a) 45
where A > 0 and z € H, ||z|| = 1.

Definition 1. For positive invertible operators A, B and x € H with ||z|] = 1 we
define the relative entropic normalized determinant D, (A|B) by

D, (A|B) :=exp (S (A|B) z,z) = exp <A% (ln (A_%BA_%)) A%x,x> .
We observe that for A > 0,
Dy (Allg) = exp (S (AlLx) z, 2) = exp (= (Aln Az, z)) = 1, (A),
where n,(-) is the normalized entropic determinant and for B > 0,
D, (1| B) := exp (S (14| B) 2, z) = exp (In Ba,x) = A, (B),

where A, () is the normalized determinant.
Motivated by the above results, in this paper we show, among others, that

for all A, B > 0 and € H with ||z|| = 1. Several other properties of D, (:|-) are
also provided.

2. RELATIVE ENTROPIC NORMALIZED DETERMINANT

Kamei and Fujii [7], [8] defined the relative operator entropy S (A|B) , for positive
invertible operators A and B, by

(2.1) S(A|B) := A% (m (A*%BA*%»A%,
which is a relative version of the operator entropy considered by Nakamura-Umegaki

[16].
In general, we can define for positive operators A, B

S (A|B) = s- lir(r)1+S(A +ely|B)

if it exists, here 1y is the identity operator.
For the entropy function 7 (t) = —tlnt, the operator entropy has the following
expression:
n(A)=—-AlnA=S(A|lg) >0
for positive contraction A. This shows that the relative operator entropy (2.1) is a

relative version of the operator entropy.
For A= 1g in (2.1) we have

S(1y|B) =B

for positive contraction B.
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Following [11, p. 149-p. 155], we recall some important properties of relative
operator entropy for A and B positive invertible operators:
i) We have the equalities

2.2) S(A|B) = —AY? (ln Al/QB‘lAl/Q) AV2 = pY/2y (B_l/QAB_l/Q) BY2

(i
(

(ii) We have the inequalities

(2.3) S(A|B) < A(In||B|]| —InA) and S (4|B) < B — A4;
(i

iii) For any C, D positive invertible operators we have that
S(A+B|C+ D) > S(A|C)+ S(B|D);

(iv) If B < C then

S (A|B) < S (A|C);
(v) If B,, | B then

S(A|By) | S(A[B);
(vi) For o > 0 we have

S (aAlaB) = aS (A|B);
(vii) For every operator T we have
T*S(A|B)T < S(T*AT|T*BT).
(viii) The relative operator entropy is jointly concave, namely, for any positive
invertible operators A, B, C, D we have
StA+(1-t)BltC+(1—-1t)D)>tS(A|C)+ (1—1t)S(B|D)

for any t € [0,1].

For other results on the relative operator entropy see [1], [5], [13], [14], [15] and
[17].

Observe that, if we replace in (2.2) B with A, then we get

S (B|A) = AY?y (A’l/zBA’l/z) AL/2
— A1/2 (_A71/2BA71/2 In (Afl/QBAfl/Q)) A2,
therefore we have
(2.4) AL/ (A*l/zBA*l/‘2 In (A*WBA*W)) A2 = —5(B|A)

for positive invertible operators A and B.

It is well know that, in general S (A|B) is not equal to S (B|A).

In [19], A. Uhlmann has shown that the relative operator entropy S (A|B) can
be represented as the strong limit

(2.5) S (A|B) = s-lim M,
t—0 t
where .
At B = A2 (A‘l/QBA‘1/2) AY2 ye0,1]

is the weighted geometric mean of positive invertible operators A and B. For v = %

2
we denote AfB.
This definition of the weighted geometric mean can be extended for any real
number v.
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For B = 1y we have
A 1y = AV
while for A = 15 we get
lut,B = B
for any real number v.

For t > 0 and the positive invertible operators A, B we define the Tsallis relative
operator entropy (see also [4]) by

T; (A|B) := AﬁtBti_A
We then have
T, (Ally) = Aﬁtl? e AHt’A, t>0
and
T: (1y|B) = Bt_TlH, t>0
for A, B > 0.

The following result providing upper and lower bounds for relative operator
entropy in terms of T} (+|-) has been obtained in [7] for 0 < ¢ < 1. However, it hods
for any ¢ > 0.

Theorem 1. Let A, B be two positive invertible operators, then for any t > 0 we

have
(2.6) T, (A|B) (A4:B)~' A< S(A|B) < T, (A|B).
In particular, we have for ¢t = 1 that
(2.7) (ly —AB™ ') A< S(AB)<B—A, [T]
and for ¢ = 2 that
(2.8) % (11— (AB)*) A< S(4B) < % (BA™'B - 4A).

The case t = % is of interest as well. Since in this case we have
Tyja (A|B) == 2 (ALB - A)
and )
Tio (AIB) (At1sB) " A =2 (14— A(A1B) ") 4,
hence by (2.6) we get
(2.9) 2 (1H ' (AﬁB)_1> A< S(AIB)<2(AtB—A) < B — A

We have the following fundamental properties for the relative entropic normalized
determinant:
Proposition 1. Assume that A, B >0 and v € H with ||z| = 1.
(1) We have the upper bound

D, (A|B) < exp (Bz,x)

exp (Az, )’
(2) For any C, D positive invertible operators we have that

(2.10) D, (A+ B|C + D) > D, (A|C) D, (B|D);
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(3) If B<C then
D, (A|B) < D, (A|C);
(4) If B, | B then
Dy (A|By) | Dy (A|B);
(5) For a > 0 we have
D, (aAlaB) = [D, (AIB))"
The proof follows by the properties "(ii)-(iii)" above.
Corollary 1. For A, B> 0, a, >0 and x € H with ||z| = 1, we have
n(A+B) _  aldengBon)
Mo (AN, (B) ~ (o 4 g)lATBI=m
In particular, for a = 3 =1, we get
n,(A+ B) < 1
1o (A, (B) = 2B

(2.11)

(2.12)

Proof. Observe that
D, (Alaly) = exp<A%(m(Af%a1HAf%))A§%x>
= exp <A% (Inalg —In A) A%w,x>
= exp((Az,z)Ina — (Aln Az, z)) = o470y (A).
Then by (2.10) for C = aly and D = 51y we have
D, (A+ Bl (a+B)1x) > D, (Alaly) D, (B|B1H),

namely
(a+8) D", (A4 B) 2 a4, (4)545 ), (B)
and the inequality (2.11) is obtained.
Also, we have:

Corollary 2. For C, D >0, ~, 6 >0 and x € H with ||z|| = 1, we have
[Ac(C D)™ (48

2.13
= [A(O) [A(D)) — 78
In particular, for v = 3§ =1, we get
[AL(C + D)
e A (080 =

Proof. Observe that
1 1

D (7141C) = exp ((11m)* (In (1) "2 C (1) F)) (1) F )
=exp{(y(InC —Invy)z,z) = exp (v (InCz,z) — In (7))

_exp(y(InCx,z))  [(AL(C)\
~ expln(y7) _( 2] )

By (2.10) we have
Dy ((y+0)15|C+ D) > D, (v15|C) Dy (81x|D) ,
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(B£:2)"- (42 (42)

Proposition 2. Assume that A, B> 0 and © € H with ||z| = 1.
(a) We have

(2.15) D (A|B) < || B n, (A)
(aa) For every operator T with Tx # 0, we have

namely

IT)?
(2.16) D _r. (A|B) < D, (T*AT|T*BT).

e
(aaa) For every C, D >0
(2.17) D, (tA+ (1 —t) B|tC + (1 —t) D) > [D, (A|C))" [D, (B|D)]'™"
for allt €10,1].
Proof. a. By taking the inner product over x € H with ||z|| = 1 in (ii) we get
D, (A|B) =exp(S(A|B)z,z) <exp{((In||B||A—AlnA)z,x)
=exp (In||B| (Az,z) — (Aln Az, x))

=exp (In ||BH<A$"T>) exp (— (Aln Az, x))
= || B 9, (A)

and the statement is proved.
aa. If we take the inner product over x € H with ||z|| = 1 in (vii) then we get

exp (TS (A|B) Tz, x) < exp(S(T*AT|T*BT)z,z) = D, (T*AT|T*BT).
Also, if Tz # 0,
exp (I'*S (A|B)Tx,x) = exp (S (A|B) Tz, Tx)

Tx Tx
- eXp<'T”””2S (AIB) [Tl ||Tz|>
(|Tz|?
Tx Tx
= A|lB
(eXp<S (AIB) [Tl 7] >)
(|Tz|?
- {DH%H (A‘B)} ’

which proves the statement.
aaa. If we take the inner product over x € H with ||z|| = 1 in (viii), then we get
for all t € [0,1] that

D, (tA+(1—1t)B[tC+ (1 —1t)D)
=exp(S(tA+ (1 —-¢t)B|tC+ (1 —t)D)z,z)
> exp ([tS (A|C) + (1 —t) S (B|D)] z, )

exp [t (S (A|C) z,z) + (1 —¢) (S (B|D) z, z)]
(exp (S (A|C) 2, 2))" [exp (S (B|D) z, )]
= [D. (A|O)]" (D, (B|D)]'
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and the statement is proved. O

We define the logarithmic mean of two positive numbers a, b by

b=a__ if £ q,

Inb—Ina
L(a,b) :=
aif b= a.
The following Hermite-Hadamard type integral inequalities hold:

Corollary 3. With the assumptions of Proposition 2,
1
(2.18) / D,(tA+ (1 —-¢)BtC+ (1 —t)D)dt > L (D, (A|B),D, (C|D)).
0
and

(2.19) D, (A;B|C;D> >/01 D, (1= t) A+ £B|(1 - t) C +tD)]/?

x [Dy (tA+ (1 —t) B|tC + (1 — t) D)]"/* dt.

Proof. If we take the integral over ¢ € [0,1] in (2.17), then we get

/1 D,(tA+ (1—t)B|tC + (1 —t)D)dt > /1 [D, (A\C)]t [D, (B|D)]1_t dt
0 0

for all A, B, C, D > 0, which proves (2.18).
We get from (2.17) for t = 1/2 that

A+B C+D
D,
( 7 12

If we replace A by (1-t)A+tB, BbytA+(1—t)B,Cby (1—-t)C+tD and D
by tC + (1 —t) D we obtain

A+B C+D
2 (5757)
> (D, (1—t) A+ tB|(1—t)C +tD)]*/?
x [Dy (tA+ (1 — t) BtC + (1 — t) D)]*/?.

) > (D, (AIC)Y2 (D, (BID)Y2

By taking the integral, we derive the desired result (2.19). O

By the use of Theorem 1 we can also state:

Proposition 3. Assume that A, B > 0 and x € H with ||z|| = 1. Then for any
t > 0 we have

(2200  exp <Tt (A|B) (At,B) ™" Am> < D, (A|B) < exp (T; (A|B) z, ).

In particular, we have for t =1 that

exp (Azx, z) < D, (AlB) < exp (Bx, x)

2.21 —_—
(221) exp (AB~ YAz, z) — ~ exp (Az, )
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and fort = 2 that

1
2

exp (Azx, )
<(AB—1)2 Az, x>

(2.22)

exp <BA’1Bx, x> :
exp (Azx, x)

< D, (A|B) < (

We have the following bounds for the normalized entropic determinant.

Corollary 4. Assume that A >0 and x € H with ||z|| = 1. If a, t > 0, then

=t Al
(2.23) o~ A7) exp <AatAx, x>
< n,(4)
tAl—t _
< a2 oxp <a A ; Ax,x> .
In particular, for a« =1, we get
A— AtF! A7t — A
(2.24) exp <t:c,x> <n,(A) <exp <tx,x> ,
for all t > 0.
Fort =1, we get
(2.25) o~ AT exp ((A—a'4%) z,2)
<1,(4)
<oA% exp ((aly — A)z,z)
for all a > 0.
Also, for a =t =1, we obtain
(2.26) exp ((A—A*) z,2) <n,(A) <exp((ly — A)z,z).

Proof. If we take B = aly in (2.20), we get
(2.27) exp <Tt (Alaly) (At (aly)) ™" Aa:,x> < D, (Alaly)
<exp(T; (Alaly)x,z) .
Observe that
Aty (aly) = AY? (A71/2 (OelH)Afl/2>tA1/2 — atAlt

and
T, (Aloly) = Aty (ozltH) -A_ atA1_tt _ A.
Also
T, (Aladn) (A (adp)) ™ A= M“% ey
_A- A(atAlft)flA
t

A—atAt
—
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Then by (2.27) we get

ottt tAl—t
exp <AO‘tAx’m> < al4m2)p (4) < exp <O‘AﬁAT/, I>

and the inequality (2.23) is obtained.

We also have the following bounds for the normalized determinant.

Corollary 5. Assume that B > 0 and x € H with ||z| = 1. If 8, t > 0, then

1y —B'B~1 it —1
(2.28) B exp <Hfa:,x> < A, (B) < Bexp <BtHx, x> .
In particular, for 8 =1, we get

1lg — B~ Bt -1
(2.29) exp <Htw,x> < A,(B) <exp <tHx,:r> ,

for allt > 0.
Fort=1, we get

(2.30) Bexp<(1H - BB_l) x,x> < A,(B) < Bexp <(ﬂle - 1H) x,a:> ,

for all p > 0.
Also, for B =1t =1, we obtain
(2.31) exp((lg — B ") z,2) < Ay(B) < exp((B—lg)z,).

Proof. We have from (2.20) for A = 1y that

(2.32)  exp <Tt (B1x|B) ((Bly) 4:B) ™" (ﬂlH)x,a:> < D, (81y4|B)
<exp(T; (Blu|B) z,z).
Observe that

(BL) 8B = (B11)"* ((8L) ™ B (B14) 2)t (B1g)/? = 8B,

and -
R
Also,
1-tpt -
7, (311B) (B1a) 1B)~" (81m) = T = (g1t~ g
_ B—2 (BlftBt)—lﬁ
t
B—p Bt
B

Then by (2.32) we get

ﬂ]-H o Bt+1Bft AZ(B) B 51—tBt . 61H
exp( ——————=x,x ) < <exp{————x,x).
' 3 t

By taking the power 1/5 we get

<ﬂ1H _ ﬁt+1B_t > - Aa;(B) - <ﬁ1tBt _ BIH >
exp( ————z,z ) < <exp{ ———=z,z ),
pt B gt
which is equivalent to (2.28).
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3. SEVERAL BOUNDS

We have the following bounds for the relative entropic normalized determinant:

Theorem 2. Assume that A, B > 0 and x € H with ||z|| = 1. Then for any s >0
we have

(3.1) sHATT) exp ((Az,z) — s (AB™ ' Az, z))
< D, (A|B)
< S(Am,m) exp (<Bl’,$> - S <A$,$>> )
s
The best lower bound in the first inequality is
<A£L’, iIJ> (Az,x)
. A D1 A .\ < T 5
(3.2) <<AB—1AJL‘,$> < Do (4]B)

while the best upper bound in the second inequality is

<B£L’, .’E> (Az,z)
(Az, x))

(3.3) D, (A|B) < (

Proof. We use the gradient inequality for differentiable convex functions f on the
open interval

frs)t=s) = f(t)—fs) = f(t)(t—>s)
forallt, s e 1.
If we write this inequality for the function In on (0,00), then we get

E—1211175—111521—f
S t

for all ¢, s € (0,00) .
Using the functional calculus for positive operator T > 0, we get

1
T —1g>WnT —Insly > 1 —sT 1.
S

for all s € (0,00).
If we take T = A~2BA™z > 0, then we get

1
2AEBATF — 1y >In (A*%BA*%) Clnsly > 1y —sA3B71A3%
S

for all s € (0,00).
If we multiply both sides by Az > 0, then we get

éB —A> Al (1n (A—%BA—%)) A% —(Ins)A> A—sAB'A

for all s € (0,00).
Now, if we take the inner product for € H with ||z|| = 1, then we get

% (Bx,z) — (Az,z) > <A% (ln (A_%BA_%>> A%x,x> — (Ins) (Az, x)
> (Azx,x) — s <AB_1Aar,x>

for all s € (0,00).
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By taking the exponential, we derive

z,7) — s (Az, x exp( Az (In(A=2BA-2)) Azz,z
=P (<B > s S >) & < Exp<[(1n 5) <Ax,$)>]> >
> exp ((Az,z) — s (AB™ Az, z))

for all s € (0,00), which is equivalent to (3.1).
Now, consider the function

f(s) == st exp ((Az,z) — s (AB™" Az, z)), s € (0,00).
We have
7/(5) = (Az,a) 5470

exp ((A:z:, x)—s <AB*1Ax, a:>)
— <A

_1A33, x> s4A%7) oxp (<ACB, x)—s <AB_1A33, x>)
Az,2) =1 oxp (<ALE ) — s <ABilAz, z>)
x ((Az,z) — (AB'Az,z) s) .

= &6

We observe that the function f is increasing on (O 7 {Az.2)

) m) and decreasing on
(%, oo) Therefore

B (Az, x) B (Az, x) (Aw.z)
568(10120) fls)=1f <<AB—1A:U,:E> - \(AB~1Ax,z) ’
which gives the best lower bound in (3.1).
Now, consider the function

(6)i= s exp (22 - (4n.0)) s € (0,00),

We have

¢ (5) i= (Az,z) stAz)L p(w—mﬁc,w)

4 s oy <(Bx z) ) < Bx )
s
:8<A:c,z> le p<<BZL’£L’ wa)< BZ’ 1’>>

S
B
S(Am,m) QQXp << x, J,‘

) ((Az,z) s — (Bz,z)).

We observe that the function g is decreasing on (0, Eﬁi:g) and increasing on
(<Bz’m> ) . Therefore

(Az,x)?
. (Bz, x) (Bz,x) (Aw,z)
f == =
sel(g,oo) 9(s) =9 < (Az, x) (Az, x) ’

which gives the best upper bound in (3.1).
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Corollary 6. Assume that A >0 and x € H with ||z|| = 1. Then for any s > 0 we
have

(3.4) 5472} exp ((Az,z) — s (A%z, z))

1
<) £ e (1 - ().

The best lower bound for n,(A) is obtained for s = <<AAQ‘7;’2>, namely
(Az,z)
<m> < 1, (A).
The best upper bound for 1, (A) is obtained for s = (Az,z)” ", namely
1, (A) < (A, z) =400
Proof. If we take B =1y in (3.1), then we get
$HATT) exp ((Az,z) — s (A%z,2)) < n,(A) < 5A4%:2) exp (1—s<sAx,m>) )
which is equivalent to (3.4). O

Corollary 7. Assume that B > 0 and x € H with ||z|| = 1. Then for any s > 0
we have

(3.5) sexp (1—s(B 'z,z)) < A,(B) < sexp (<B$7:>_S> .

The best lower bound for A, (B) is obtained for s = <B_1sc, 3?>_1 , namely
(B~ 'z,2)"" < Au(B).
The best upper bound for A, (B) is obtained for s = (Bz,z) , namely
A,(A) < (Bz,x).

Theorem 3. Assume that A, B > 0 with the property that 0 < mA < B < MA
for some constants m, M >0 and x € H with ||z| = 1. Then

(Aa.a)
(Bz,x) (Az,x)
A _ ({Br.)

(3.6) 2o < D, (AB) < (< i

and
Bx,x z,2) !

(3.7) 0< iAx x; ~ [Dx (A|B)] A7)

<L(m,M)|lnL(m,M)+

MInm—mlnM 1
M—m '
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Proof. We observe that for z € H with [jz|| =1
D, (A|B) = exp <A% (hl (AiéBAfé)) Az, 1:>

= eXp<(ln (A_%BA_%)) A%x,A%x>

exp [HA%HQ <(ln (a#Ba})) sz ‘ij>
|

x
[ 1 1 Abx Azg ] |A%$H2
Q) [aka] ;A;x\|> )
- \ ; 1\ (Aza)
= (exp <(1n(A§BA§)) Hjjx , jij> )
Tg I
_ (AAU%/HAU%H(A71/2BA71/2))<Ax,x> 7
which gives that
(3.8) (D2 (AN = 8 gy (A7H2BAT)

for x € H with ||z| = 1.
Since 0 < mA < B < MB for the positive operators A, B is equivalent with
0<m< A 2BA~2 < M, then by (1.4) for A'/2z/ ||A1/2x|| and for the operator
A 2BA™: we get
(A=3BA-R A2/ || AV 20|, AV20) || A0 ) v
s(2).

1§ _1 _1
A s/sgy | arssa| (A3 BATE)

namely (Be.a)
x, T

M
es(¥)
<A$,.’E> AAl/gx/”Al/Qx”(AffBAfi) m
which gives by (3.8) that
1 S <B:I:7x> - — S S <M> .
(Az,2) [D, (AB)] 4" m
By taking the power (Ax,z) > 0 we get
(Az,x)
(Bz,z)
1<(<Az,m)) <|:S<M>

=~ D, (AB) m

1<

(Az,x)

From (1.2) we get
0< <A*%BA*%A1/%/ HA”%” L AY2g) HA1/233H>
1
_ AAl/Qx/HAl/ZmH(A 2BA 2)

MInm—mlnM 1
M—m ’

< L(m,M) {lnL(m,M)-l—
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namely
<B$,ZE> (Az,z) !
0<—"~-—[D,(AlB ’
< e~ D (AlB)
MInm—mlnM

<L M) |InL M -1

< L(m, M) [ L (m, M) 4 2=
for x € H with ||z| = 1. O

Remark 1. Assume that B > 0 with the property that 0 < mly < B < M1y for
some constants m, M >0 and v € H with ||z|| = 1. Then by A = 1y in the above
Theorem 3 we recapture the inequality (1.4) and (1.2).

If we take B = 1y in Theorem 3, then for 0 < mA < 1y < MA for some
constants m, M >0 and x € H with ||z|| = 1. Then

(3.9) <(A:c, %) (fi) ) O (4) < (A )~

and
(3.10) 0 < (Az,z) ™" — [, (A) 5
MInm—mlnM
< — .
< L(m,M) {lnL(m,M)—i— T —m 1

If 0 < nly < A < Nlyg, then by taking m = N~ and M = n~! we get
0<mA<1lyg <MA and by (3.9) and (3.10) we obtain

N —(Az,x) A
(3.11) s (D) <) < o) e
n
and
(3.12) 0 < {Az,2) " = [n, ()40
L(n,N) L(n,N) Nlnn—nln N
< _
- nN {ln ( niN + N—-n 1
for x € H with ||z|| = 1.
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