
BASIC PROPERTIES OF RELATIVE ENTROPIC NORMALIZED
DETERMINANT OF POSITIVE OPERATORS IN HILBERT

SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A, B and x 2 H with kxk = 1
we de�ne the relative entropic normalized determinant Dx (AjB) by

Dx (AjB) := exp
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:

In this paper we show, among others, that�
hAx; xi

hAB�1Ax; xi

�hAx;xi
� Dx (AjB) �

�
hBx; xi
hAx; xi

�hAx;xi
for all A; B > 0 and x 2 H with kxk = 1: Several other properties of Dx (�j�)
are also provided.

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [9], [10], introduced the normalized determinant �x(A)

for positive invertible operators A on a Hilbert space H and a �xed unit vector
x 2 H; namely kxk = 1; de�ned by �x(A) := exp hlnAx; xi and discussed it as a
continuous geometric mean and observed some inequalities around the determinant
from this point of view.
Some of the fundamental properties of normalized determinant are as follows,

[9].
For each unit vector x 2 H; see also [12], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.
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We de�ne the logarithmic mean of two positive numbers a; b by

(1.1) L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [9] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.2) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [18]

(1.3) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [10], the authors obtained the following multiplicative reverse inequality as

well

(1.4) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
For the entropy function � (t) = �t ln t; t > 0; the operator entropy has the

following expression:
� (A) = �A lnA

for positive A:
For x 2 H; kxk = 1; we de�ne the normalized entropic determinant �x(A) by

(1.5) �x(A) := exp (�hA lnAx; xi) = exp h� (A)x; xi :
Let x 2 H; kxk = 1: Observe that the map A ! �x(A) is norm continuous and
since

exp (�htA ln (tA)x; xi)
= exp (�htA (ln t+ lnA)x; xi) = exp (�h(tA ln t+ tA lnA)x; xi)
= exp (�hAx; xi t ln t) exp (�t hA lnAx; xi)

= exp ln
�
t�hAx;xit

�
[exp (�hA lnAx; xi)]�t ;

hence

(1.6) �x(tA) = t
�thAx;xi [�x(A)]

�t

for t > 0 and A > 0:
Observe also that

(1.7) �x(I) = 1 and �x(tI) = t
�t

for t > 0:
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In the recent paper [3] we showed among others that, if A; B > 0; then for all
x 2 H; kxk = 1 and t 2 [0; 1] ;

�x((1� t)A+ tB) � (�x (A))
1�t

(�x (B))
t
:

Also we have the bounds

(1.8)

 

A2x; x

�
hAx; xi

!�hAx;xi
� �x(A) � hAx; xi

�hAx;xi
;

where A > 0 and x 2 H; kxk = 1.

De�nition 1. For positive invertible operators A, B and x 2 H with kxk = 1 we
de�ne the relative entropic normalized determinant Dx (AjB) by

Dx (AjB) := exp hS (AjB)x; xi = exp
D
A

1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2x; x

E
:

We observe that for A > 0;

Dx (Aj1H) = exp hS (Aj1H)x; xi = exp (�hA lnAx; xi) = �x(A);
where �x(�) is the normalized entropic determinant and for B > 0;

Dx (1H jB) := exp hS (1H jB)x; xi = exp hlnBx; xi = �x(B);
where �x(�) is the normalized determinant.
Motivated by the above results, in this paper we show, among others, that�

hAx; xi
hAB�1Ax; xi

�hAx;xi
� Dx (AjB) �

�
hBx; xi
hAx; xi

�hAx;xi
for all A; B > 0 and x 2 H with kxk = 1: Several other properties of Dx (�j�) are
also provided.

2. Relative Entropic Normalized Determinant

Kamei and Fujii [7], [8] de�ned the relative operator entropy S (AjB) ; for positive
invertible operators A and B; by

(2.1) S (AjB) := A 1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2 ;

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[16].
In general, we can de�ne for positive operators A; B

S (AjB) := s- lim
"!0+

S (A+ "1H jB)

if it exists, here 1H is the identity operator.
For the entropy function � (t) = �t ln t; the operator entropy has the following

expression:
� (A) = �A lnA = S (Aj1H) � 0

for positive contraction A: This shows that the relative operator entropy (2.1) is a
relative version of the operator entropy.
For A = 1H in (2.1) we have

S (1H jB) = lnB
for positive contraction B:



4 S. S. DRAGOMIR

Following [11, p. 149-p. 155], we recall some important properties of relative
operator entropy for A and B positive invertible operators:
(i) We have the equalities

(2.2) S (AjB) = �A1=2
�
lnA1=2B�1A1=2

�
A1=2 = B1=2�

�
B�1=2AB�1=2

�
B1=2;

(ii) We have the inequalities

(2.3) S (AjB) � A (ln kBk � lnA) and S (AjB) � B �A;
(iii) For any C; D positive invertible operators we have that

S (A+BjC +D) � S (AjC) + S (BjD) ;
(iv) If B � C then

S (AjB) � S (AjC) ;
(v) If Bn # B then

S (AjBn) # S (AjB) ;
(vi) For � > 0 we have

S (�Aj�B) = �S (AjB) ;
(vii) For every operator T we have

T �S (AjB)T � S (T �AT jT �BT ) :
(viii) The relative operator entropy is jointly concave, namely, for any positive
invertible operators A, B; C; D we have

S (tA+ (1� t)BjtC + (1� t)D) � tS (AjC) + (1� t)S (BjD)
for any t 2 [0; 1] :
For other results on the relative operator entropy see [1], [5], [13], [14], [15] and

[17].
Observe that, if we replace in (2.2) B with A; then we get

S (BjA) = A1=2�
�
A�1=2BA�1=2

�
A1=2

= A1=2
�
�A�1=2BA�1=2 ln

�
A�1=2BA�1=2

��
A1=2;

therefore we have

(2.4) A1=2
�
A�1=2BA�1=2 ln

�
A�1=2BA�1=2

��
A1=2 = �S (BjA)

for positive invertible operators A and B:
It is well know that, in general S (AjB) is not equal to S (BjA) :
In [19], A. Uhlmann has shown that the relative operator entropy S (AjB) can

be represented as the strong limit

(2.5) S (AjB) = s- lim
t!0

A]tB �A
t

;

where
A]�B := A

1=2
�
A�1=2BA�1=2

��
A1=2; � 2 [0; 1]

is the weighted geometric mean of positive invertible operators A and B: For � = 1
2

we denote A]B:
This de�nition of the weighted geometric mean can be extended for any real

number �:
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For B = 1H we have
A]�1H = A

1��

while for A = 1H we get
1H]�B = B

�

for any real number �:
For t > 0 and the positive invertible operators A; B we de�ne the Tsallis relative

operator entropy (see also [4]) by

Tt (AjB) :=
A]tB �A

t
:

We then have

Tt (Aj1H) :=
A]t1H �A

t
=
A1�t �A

t
; t > 0

and

Tt (1H jB) :=
Bt � 1H

t
; t > 0

for A; B > 0:
The following result providing upper and lower bounds for relative operator

entropy in terms of Tt (�j�) has been obtained in [7] for 0 < t � 1: However, it hods
for any t > 0:

Theorem 1. Let A; B be two positive invertible operators, then for any t > 0 we
have

(2.6) Tt (AjB) (A]tB)�1A � S (AjB) � Tt (AjB) :

In particular, we have for t = 1 that

(2.7)
�
1H �AB�1

�
A � S (AjB) � B �A; [7]

and for t = 2 that

(2.8)
1

2

�
1H �

�
AB�1

�2�
A � S (AjB) � 1

2

�
BA�1B �A

�
:

The case t = 1
2 is of interest as well. Since in this case we have

T1=2 (AjB) := 2 (A]B �A)
and

T1=2 (AjB)
�
A]1=2B

��1
A = 2

�
1H �A (A]B)�1

�
A;

hence by (2.6) we get

(2.9) 2
�
1H �A (A]B)�1

�
A � S (AjB) � 2 (A]B �A) � B �A:

We have the following fundamental properties for the relative entropic normalized
determinant:

Proposition 1. Assume that A; B > 0 and x 2 H with kxk = 1:
(1) We have the upper bound

Dx (AjB) �
exp hBx; xi
exp hAx; xi ;

(2) For any C; D positive invertible operators we have that

(2.10) Dx (A+BjC +D) � Dx (AjC)Dx (BjD) ;
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(3) If B � C then
Dx (AjB) � Dx (AjC) ;

(4) If Bn # B then
Dx (AjBn) # Dx (AjB) ;

(5) For � > 0 we have

Dx (�Aj�B) = [Dx (AjB)]� :

The proof follows by the properties "(ii)-(iii)" above.

Corollary 1. For A; B > 0; �; � > 0 and x 2 H with kxk = 1; we have

(2.11)
�x(A+B)

�x(A)�x(B)
� �hAx;xi�hBx;xi

(�+ �)
h(A+B)x;xi :

In particular, for � = � = 1; we get

(2.12)
�x(A+B)

�x(A)�x(B)
� 1

2h(A+B)x;xi
:

Proof. Observe that

Dx (Aj�1H) = exp
D
A

1
2

�
ln
�
A�

1
2�1HA

� 1
2

��
A

1
2x; x

E
= exp

D
A

1
2 (ln�1H � lnA)A

1
2x; x

E
= exp (hAx; xi ln�� hA lnAx; xi) = �hAx;xi�x(A):

Then by (2.10) for C = �1H and D = �1H we have

Dx (A+Bj (�+ �) 1H) � Dx (Aj�1H)Dx (Bj�1H) ;
namely

(�+ �)
h(A+B)x;xi

�x(A+B) � �hAx;xi�x(A)�hBx;xi�x(B)
and the inequality (2.11) is obtained. �

Also, we have:

Corollary 2. For C; D > 0; 
; � > 0 and x 2 H with kxk = 1; we have

(2.13)
[�x(C +D)]


+�

[�x(C)]


[�x(D)]

�
� (
 + �)


+�



��
:

In particular, for 
 = � = 1; we get

(2.14)
[�x(C +D)]

2

�x(C)�x(D)
� 4:

Proof. Observe that

Dx (
1H jC) = exp
D
(
1H)

1
2

�
ln
�
(
1H)

� 1
2 C (
1H)

� 1
2

��
(
1H)

1
2 x; x

E
= exp h
 (lnC � ln 
)x; xi = exp (
 hlnCx; xi � ln (

))

=
exp (
 hlnCx; xi)
exp ln (

)

=

�
�x(C)




�

:

By (2.10) we have

Dx ((
 + �) 1H jC +D) � Dx (
1H jC)Dx (�1H jD) ;
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namely �
�x(C +D)


 + �

�
+�
�
�
�x(C)




�
 �
�x(D)

�

��
�

Proposition 2. Assume that A; B > 0 and x 2 H with kxk = 1:
(a) We have

(2.15) Dx (AjB) � kBkhAx;xi �x(A)
(aa) For every operator T with Tx 6= 0; we have

(2.16)
h
D Tx

kTxk
(AjB)

ikTxk2
� Dx (T �AT jT �BT ) :

(aaa) For every C; D > 0

(2.17) Dx (tA+ (1� t)BjtC + (1� t)D) � [Dx (AjC)]t [Dx (BjD)]1�t

for all t 2 [0; 1] :
Proof. a. By taking the inner product over x 2 H with kxk = 1 in (ii) we get

Dx (AjB) = exp hS (AjB)x; xi � exp h(ln kBkA�A lnA)x; xi
= exp (ln kBk hAx; xi � hA lnAx; xi)

= exp
�
ln kBkhAx;xi

�
exp (�hA lnAx; xi)

= kBkhAx;xi �x(A)
and the statement is proved.
aa. If we take the inner product over x 2 H with kxk = 1 in (vii) then we get
exp hT �S (AjB)Tx; xi � exp hS (T �AT jT �BT )x; xi = Dx (T �AT jT �BT ) :

Also, if Tx 6= 0;
exp hT �S (AjB)Tx; xi = exp hS (AjB)Tx; Txi

= exp

�
kTxk2 S (AjB) Tx

kTxk ;
Tx

kTxk

�
=

�
exp

�
S (AjB) Tx

kTxk ;
Tx

kTxk

��kTxk2
=
h
D Tx

kTxk
(AjB)

ikTxk2
;

which proves the statement.
aaa. If we take the inner product over x 2 H with kxk = 1 in (viii), then we get

for all t 2 [0; 1] that
Dx (tA+ (1� t)BjtC + (1� t)D)
= exp hS (tA+ (1� t)BjtC + (1� t)D)x; xi
� exp h[tS (AjC) + (1� t)S (BjD)]x; xi
= exp [t hS (AjC)x; xi+ (1� t) hS (BjD)x; xi]
= (exp hS (AjC)x; xi)t [exp hS (BjD)x; xi]1�t

= [Dx (AjC)]t [Dx (BjD)]1�t
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and the statement is proved. �

We de�ne the logarithmic mean of two positive numbers a; b by

L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

The following Hermite-Hadamard type integral inequalities hold:

Corollary 3. With the assumptions of Proposition 2,

(2.18)
Z 1

0

Dx(tA+ (1� t)BjtC + (1� t)D)dt � L (Dx (AjB) ; Dx (CjD)) :

and

Dx

�
A+B

2
jC +D

2

�
�
Z 1

0

[Dx ((1� t)A+ tBj (1� t)C + tD)]1=2(2.19)

� [Dx (tA+ (1� t)BjtC + (1� t)D)]1=2 dt:

Proof. If we take the integral over t 2 [0; 1] in (2.17), then we getZ 1

0

Dx(tA+ (1� t)BjtC + (1� t)D)dt �
Z 1

0

[Dx (AjC)]t [Dx (BjD)]1�t dt

= L (Dx (AjC) ; Dx (BjD))

for all A; B; C; D > 0; which proves (2.18).
We get from (2.17) for t = 1=2 that

Dx

�
A+B

2
jC +D

2

�
� [Dx (AjC)]1=2 [Dx (BjD)]1=2 :

If we replace A by (1� t)A+ tB, B by tA+ (1� t)B; C by (1� t)C + tD and D
by tC + (1� t)D we obtain

Dx

�
A+B

2
jC +D

2

�
� [Dx ((1� t)A+ tBj (1� t)C + tD)]1=2

� [Dx (tA+ (1� t)BjtC + (1� t)D)]1=2 :

By taking the integral, we derive the desired result (2.19). �

By the use of Theorem 1 we can also state:

Proposition 3. Assume that A; B > 0 and x 2 H with kxk = 1: Then for any
t > 0 we have

(2.20) exp
D
Tt (AjB) (A]tB)�1Ax; x

E
� Dx (AjB) � exp hTt (AjB)x; xi :

In particular, we have for t = 1 that

(2.21)
exp hAx; xi

exp hAB�1Ax; xi � Dx (AjB) �
exp hBx; xi
exp hAx; xi



PROPERTIES OF RELATIVE ENTROPIC NORMALIZED DETERMINANT 9

and for t = 2 that

(2.22)

0@ exp hAx; xiD
(AB�1)

2
Ax; x

E
1A 1

2

� Dx (AjB) �
 
exp



BA�1Bx; x

�
exp hAx; xi

! 1
2

:

We have the following bounds for the normalized entropic determinant.

Corollary 4. Assume that A > 0 and x 2 H with kxk = 1: If �; t > 0; then

��hAx;xi exp

�
A� ��tAt+1

t
x; x

�
(2.23)

� �x(A)

� ��hAx;xi exp
�
�tA1�t �A

t
x; x

�
:

In particular, for � = 1; we get

(2.24) exp

�
A�At+1

t
x; x

�
� �x(A) � exp

�
A1�t �A

t
x; x

�
;

for all t > 0:
For t = 1; we get

��hAx;xi exp

�
A� ��1A2

�
x; x

�
(2.25)

� �x(A)
� ��hAx;xi exp h(�1H �A)x; xi ;

for all � > 0:
Also, for � = t = 1; we obtain

(2.26) exp

�
A�A2

�
x; x

�
� �x(A) � exp h(1H �A)x; xi :

Proof. If we take B = �1H in (2.20), we get

exp
D
Tt (Aj�1H) (A]t (�1H))�1Ax; x

E
� Dx (Aj�1H)(2.27)

� exp hTt (Aj�1H)x; xi :

Observe that

A]t (�1H) = A
1=2
�
A�1=2 (�1H)A

�1=2
�t
A1=2 = �tA1�t

and

Tt (Aj�1H) =
A]t (�1H)�A

t
=
�tA1�t �A

t
:

Also

Tt (Aj�1H) (A]t (�1H))�1A =
�tA1�t �A

t

�
�tA1�t

��1
A

=
A�A

�
�tA1�t

��1
A

t

=
A� ��tAt+1

t
:
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Then by (2.27) we get

exp

�
A� ��tAt+1

t
x; x

�
� �hAx;xi�x(A) � exp

�
�tA1�t �A

t
x; x

�
and the inequality (2.23) is obtained. �
We also have the following bounds for the normalized determinant.

Corollary 5. Assume that B > 0 and x 2 H with kxk = 1: If �; t > 0; then

(2.28) � exp

�
1H � �tB�t

t
x; x

�
� �x(B) � � exp

�
��tBt � 1H

t
x; x

�
:

In particular, for � = 1; we get

(2.29) exp

�
1H �B�t

t
x; x

�
� �x(B) � exp

�
Bt � 1H

t
x; x

�
;

for all t > 0:
For t = 1; we get

(2.30) � exp

�
1H � �B�1

�
x; x

�
� �x(B) � � exp


�
��1B � 1H

�
x; x

�
;

for all � > 0:
Also, for � = t = 1; we obtain

(2.31) exp

�
1H �B�1

�
x; x

�
� �x(B) � exp h(B � 1H)x; xi :

Proof. We have from (2.20) for A = �1H that

exp
D
Tt (�1H jB) ((�1H) ]tB)�1 (�1H)x; x

E
� Dx (�1H jB)(2.32)

� exp hTt (�1H jB)x; xi :
Observe that

(�1H) ]tB = (�1H)
1=2
�
(�1H)

�1=2
B (�1H)

�1=2
�t
(�1H)

1=2
= �1�tBt;

and

Tt ((�1H) jB) :=
(�1H) ]tB � �1H

t
=
�1�tBt � �1H

t
:

Also,

Tt (�1H jB) ((�1H) ]tB)�1 (�1H) =
�1�tBt � �1H

t

�
�1�tBt

��1
�

=
� � �

�
�1�tBt

��1
�

t

=
� � �t+1B�t

t
:

Then by (2.32) we get

exp

�
�1H � �t+1B�t

t
x; x

�
�
�
�x(B)

�

��
� exp

�
�1�tBt � �1H

t
x; x

�
:

By taking the power 1=� we get

exp

�
�1H � �t+1B�t

�t
x; x

�
� �x(B)

�
� exp

�
�1�tBt � �1H

�t
x; x

�
;

which is equivalent to (2.28). �
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3. Several Bounds

We have the following bounds for the relative entropic normalized determinant:

Theorem 2. Assume that A; B > 0 and x 2 H with kxk = 1: Then for any s > 0
we have

shAx;xi exp
�
hAx; xi � s



AB�1Ax; x

��
(3.1)

� Dx (AjB)

� shAx;xi exp
�
hBx; xi � s hAx; xi

s

�
:

The best lower bound in the �rst inequality is

(3.2)
�

hAx; xi
hAB�1Ax; xi

�hAx;xi
� Dx (AjB) ;

while the best upper bound in the second inequality is

(3.3) Dx (AjB) �
�
hBx; xi
hAx; xi

�hAx;xi
:

Proof. We use the gradient inequality for di¤erentiable convex functions f on the
open interval

f 0 (s) (t� s) � f (t)� f (s) � f 0 (t) (t� s)
for all t; s 2 I:
If we write this inequality for the function ln on (0;1) ; then we get

t

s
� 1 � ln t� ln s � 1� s

t

for all t; s 2 (0;1) :
Using the functional calculus for positive operator T > 0; we get

1

s
T � 1H � lnT � ln s1H � 1H � sT�1:

for all s 2 (0;1) :
If we take T = A�

1
2BA�

1
2 > 0; then we get

1

s
A�

1
2BA�

1
2 � 1H � ln

�
A�

1
2BA�

1
2

�
� ln s1H � 1H � sA

1
2B�1A

1
2

for all s 2 (0;1) :
If we multiply both sides by A

1
2 > 0; then we get

1

s
B �A � A 1

2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2 � (ln s)A � A� sAB�1A

for all s 2 (0;1) :
Now, if we take the inner product for x 2 H with kxk = 1; then we get

1

s
hBx; xi � hAx; xi �

D
A

1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2x; x

E
� (ln s) hAx; xi

� hAx; xi � s


AB�1Ax; x

�
for all s 2 (0;1) :
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By taking the exponential, we derive

exp

�
hBx; xi � s hAx; xi

s

�
�
exp

D
A

1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2x; x

E
exp [(ln s) hAx; xi]

� exp
�
hAx; xi � s



AB�1Ax; x

��
for all s 2 (0;1) ; which is equivalent to (3.1).
Now, consider the function

f (s) := shAx;xi exp
�
hAx; xi � s



AB�1Ax; x

��
; s 2 (0;1) :

We have

f 0 (s) = hAx; xi shAx;xi�1 exp
�
hAx; xi � s



AB�1Ax; x

��
�


AB�1Ax; x

�
shAx;xi exp

�
hAx; xi � s



AB�1Ax; x

��
= shAx;xi�1 exp

�
hAx; xi � s



AB�1Ax; x

��
�
�
hAx; xi �



AB�1Ax; x

�
s
�
:

We observe that the function f is increasing on
�
0; hAx;xi

hAB�1Ax;xi

�
and decreasing on�

hAx;xi
hAB�1Ax;xi ;1

�
: Therefore

sup
s2(0;1)

f (s) = f

�
hAx; xi

hAB�1Ax; xi

�
=

�
hAx; xi

hAB�1Ax; xi

�hAx;xi
;

which gives the best lower bound in (3.1).
Now, consider the function

g (s) := shAx;xi exp

�
hBx; xi
s

� hAx; xi
�
; s 2 (0;1) :

We have

g0 (s) := hAx; xi shAx;xi�1 exp
�
hBx; xi
s

� hAx; xi
�

+ shAx;xi exp

�
hBx; xi
s

� hAx; xi
��

�hBx; xi
s2

�
= shAx;xi�1 exp

�
hBx; xi
s

� hAx; xi
��

hAx; xi � hBx; xi
s

�
= shAx;xi�2 exp

�
hBx; xi
s

� hAx; xi
�
(hAx; xi s� hBx; xi) :

We observe that the function g is decreasing on
�
0; hBx;xihAx;xi

�
and increasing on�

hBx;xi
hAx;xi ;1

�
: Therefore

inf
s2(0;1)

g (s) = g

�
hBx; xi
hAx; xi

�
=

�
hBx; xi
hAx; xi

�hAx;xi
;

which gives the best upper bound in (3.1). �
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Corollary 6. Assume that A > 0 and x 2 H with kxk = 1: Then for any s > 0 we
have

shAx;xi exp
�
hAx; xi � s



A2x; x

��
(3.4)

� �x(A) � shAx;xi exp
�
1

s
� hAx; xi

�
:

The best lower bound for �x(A) is obtained for s =
hAx;xi
hA2x;xi ; namely�

hAx; xi
hA2x; xi

�hAx;xi
� �x(A):

The best upper bound for �x(A) is obtained for s = hAx; xi
�1
; namely

�x(A) � hAx; xi
�hAx;xi

:

Proof. If we take B = 1H in (3.1), then we get

shAx;xi exp
�
hAx; xi � s



A2x; x

��
� �x(A) � shAx;xi exp

�
1� s hAx; xi

s

�
;

which is equivalent to (3.4). �

Corollary 7. Assume that B > 0 and x 2 H with kxk = 1: Then for any s > 0
we have

(3.5) s exp
�
1� s



B�1x; x

��
� �x(B) � s exp

�
hBx; xi � s

s

�
:

The best lower bound for �x(B) is obtained for s =


B�1x; x

��1
; namely


B�1x; x
��1 � �x(B):

The best upper bound for �x(B) is obtained for s = hBx; xi ; namely

�x(A) � hBx; xi :

Theorem 3. Assume that A; B > 0 with the property that 0 < mA � B � MA
for some constants m; M > 0 and x 2 H with kxk = 1: Then

(3.6)

0@ hBx;xi
hAx;xi

S
�
M
m

�
1AhAx;xi

� Dx (AjB) �
�
hBx; xi
hAx; xi

�hAx;xi
and

0 � hBx; xi
hAx; xi � [Dx (AjB)]

hAx;xi�1(3.7)

� L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
:
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Proof. We observe that for x 2 H with kxk = 1

Dx (AjB) = exp
D
A

1
2

�
ln
�
A�

1
2BA�

1
2

��
A

1
2x; x

E
= exp

D�
ln
�
A�

1
2BA�

1
2

��
A

1
2x;A

1
2x
E

= exp

24


A 1
2x



2*�ln�A� 1

2BA�
1
2

�� A
1
2x


A 1
2x



 ; A

1
2x


A 1
2x




+35

=

0@exp
24*�ln�A� 1

2BA�
1
2

�� A
1
2x


A 1
2x



 ; A

1
2x


A 1
2x




+351A




A 1
2 x



2

=

0@exp
24*�ln�A� 1

2BA�
1
2

�� A
1
2x


A 1
2x



 ; A

1
2x


A 1
2x




+351AhAx;xi

=
�
�A1=2x=kA1=2xk(A

�1=2BA�1=2)
�hAx;xi

;

which gives that

(3.8) [Dx (AjB)]hAx;xi
�1
= �A1=2x=kA1=2xk(A

�1=2BA�1=2)

for x 2 H with kxk = 1:
Since 0 < mA � B � MB for the positive operators A; B is equivalent with

0 < m � A� 1
2BA�

1
2 � M , then by (1.4) for A1=2x=



A1=2x

 and for the operator
A�

1
2BA�

1
2 we get

1 �

D
A�

1
2BA�

1
2A1=2x=



A1=2x

 ; A1=2x= 

A1=2x

E
�A1=2x=kA1=2xk(A

� 1
2BA�

1
2 )

� S
�
M

m

�
;

namely

1 � hBx; xi
hAx; xi�A1=2x=kA1=2xk(A

� 1
2BA�

1
2 )
� S

�
M

m

�
;

which gives by (3.8) that

1 � hBx; xi
hAx; xi [Dx (AjB)]hAx;xi

�1 � S
�
M

m

�
:

By taking the power hAx; xi > 0 we get

1 �

�
hBx;xi
hAx;xi

�hAx;xi
Dx (AjB)

�
�
S

�
M

m

��hAx;xi
:

From (1.2) we get

0 �
D
A�

1
2BA�

1
2A1=2x=




A1=2x


 ; A1=2x=


A1=2x


E
��A1=2x=kA1=2xk(A

� 1
2BA�

1
2 )

� L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
;
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namely

0 � hBx; xi
hAx; xi � [Dx (AjB)]

hAx;xi�1

� L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for x 2 H with kxk = 1: �
Remark 1. Assume that B > 0 with the property that 0 < m1H � B � M1H for
some constants m; M > 0 and x 2 H with kxk = 1: Then by A = 1H in the above
Theorem 3 we recapture the inequality (1.4) and (1.2).
If we take B = 1H in Theorem 3, then for 0 < mA � 1H � MA for some

constants m; M > 0 and x 2 H with kxk = 1: Then

(3.9)
�
hAx; xiS

�
M

m

���hAx;xi
� �x(A) � hAx; xi

�hAx;xi

and

0 � hAx; xi�1 � [�x(A)]
hAx;xi�1(3.10)

� L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
:

If 0 < n1H � A � N1H ; then by taking m = N�1 and M = n�1 we get
0 < mA � 1H �MA and by (3.9) and (3.10) we obtain

(3.11)
�
hAx; xiS

�
N

n

���hAx;xi
� �x(A) � hAx; xi

�hAx;xi

and

0 � hAx; xi�1 � [�x(A)]
hAx;xi�1(3.12)

� L (n;N)

nN

�
ln

�
L (n;N)

nN

�
+
N lnn� n lnN

N � n � 1
�

for x 2 H with kxk = 1:
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